当前位置:文档之家› 人教版八年级数学上册 期末试卷培优测试卷

人教版八年级数学上册 期末试卷培优测试卷

人教版八年级数学上册 期末试卷培优测试卷
人教版八年级数学上册 期末试卷培优测试卷

人教版八年级数学上册期末试卷培优测试卷

一、八年级数学全等三角形解答题压轴题(难)

1.(1)问题背景:

如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明

△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

(2)探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,

且∠EAF=1

2

∠BAD,上述结论是否仍然成立,并说明理由;

(3)结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

(4)能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且

∠MAN=45°.若BM=1,CN=3,试求出MN的长.

【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】

试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得

EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作

∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.

解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.

证明:如答图1,延长FD到点G,使DG=BE,连接AG,

∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,

在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.

∴AE=AG,∠BAE=∠DAG.

又∵∠EAF=1

2

∠BAD,

∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-1

2

∠BAD=

1

2

∠BAD,

∴∠EAF=∠GAF.

在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,

∴△AEF≌△AGF.∴EF=FG.

又∵FG=DG+DF=BE+DF.

∴EF=BE+FD.

(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,

∵∠AOB=30°+90°+20°=140°,∠FOE=70°=1

2

∠AOB,

又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.

∴EF=AE+FB=1.5×(60+80)=210(海里).

答:此时两舰艇之间的距离为210海里;

(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,

在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,

则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,

∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,

∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,

又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,

∴对于四边形AMCD符合探索延伸,

则ND=MN,

∵∠NCD=90°,CD=1,CN=3,

∴MN=ND=10.

2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.

(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;

(2)如图2,若∠AOB=120o,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.

【答案】(1)CF=CG;(2)CF=CG,见解析

【解析】

【分析】

(1)结论CF=CG,由角平分线性质定理即可判断.

(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.

【详解】

解:(1)结论:CF=CG;

证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,

∴CF=CG(角平分线上的点到角两边的距离相等);

(2)CF=CG.理由如下:如图,

过点C 作CM ⊥OA ,CN ⊥OB ,

∵OP 平分∠AOB ,CM ⊥OA ,CN ⊥OB ,∠AOB=120o, ∴CM=CN (角平分线上的点到角两边的距离相等), ∴∠AOC=∠BOC=60o(角平分线的性质), ∵∠DCE=∠AOC ,

∴∠AOC=∠BOC=∠DCE=60o,

∴∠MCO=90o-60o =30o,∠NCO=90o-60o =30o, ∴∠MCN=30o+30o=60o, ∴∠MCN=∠DCE ,

∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN , ∴∠MCF=∠NCG , 在△MCF 和△NCG 中,

CMF CNG CM CN

MCF NCG ∠=∠??

=??∠=∠?

∴△MCF ≌△NCG (ASA ),

∴CF=CG (全等三角形对应边相等); 【点睛】

本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .

3.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF . (1)试说明:△AED ≌△AFD ;

(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;

(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.

【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130 【解析】

试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,

45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即

45.DAF ∠=EAD DAF ∠=∠,

从而得到.AED AFD ≌ ()2 由△AED AFD ≌

得到ED FD =,再证明90DCF ∠=?,

利用勾股定理即可得出结论.

()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2

AH BH BC ===

1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .

试题解析:()

1ABE AFC ≌,

AE AF =,BAE CAF ∠=∠,

45,EAD ∠=90,BAC ∠= 45,BAE CAD ∴∠+∠= 45,CAF CAD ∴∠+∠=

即45.DAF ∠=

在AED 和AFD 中,{AF AE

EAF DAE AD AD ,

=∠=∠=

.AED AFD ∴≌

()

2AED AFD ≌,

ED FD ∴=,

,90.AB AC BAC =∠=?

45B ACB ∴∠=∠=?, 45ACF ,

∠=? 90.BCF ∴∠=?

设.DE x =

,9.DF DE x CD x ===- 3.FC BE ==

222,FC DC DF +=

()2

2239.x x ∴+-=

解得: 5.x = 故 5.DE =

()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,

1

4.2

AH BH BC ==

= 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65. 22234DE AD ==或130.

点睛:D 是斜边BC 所在直线上一点,注意分类讨论.

4.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF ;

(2)请你判断BE +CF 与EF 的大小关系,并说明理由.

【答案】(1)详见解析;(2)BE +CF >EF ,证明详见解析 【解析】 【分析】

(1)先利用ASA 判定△BGD ?CFD ,从而得出BG=CF ;

(2)利用全等的性质可得GD=FD ,再有DE ⊥GF ,从而得到EG=EF ,两边之和大于第三边从而得出BE+CF >EF . 【详解】

解:(1)∵BG

∥AC,

∴∠DBG=∠DCF.

∵D为BC的中点,

∴BD=CD

又∵∠BDG=∠CDF,

在△BGD与△CFD中,

DBG DCF

BD CD

BDG CDF

∠=∠

?

?

=

?

?∠=∠

?

∴△BGD≌△CFD(ASA).

∴BG=CF.

(2)BE+CF>EF.

∵△BGD≌△CFD,

∴GD=FD,BG=CF.

又∵DE⊥FG,

∴EG=EF(垂直平分线到线段端点的距离相等).

∴在△EBG中,BE+BG>EG,

即BE+CF>EF.

【点睛】

本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.

5.如图1,在ABC

?中,ACB

∠是直角,60

B

∠=?,AD、CE分别是BAC

∠、BCA

的平分线,AD、CE相交于点F.

(1)求出AFC

∠的度数;

(2)判断FE与FD之间的数量关系并说明理由.(提示:在AC上截取CG CD

=,连接FG.)

(3)如图2,在△ABC

?中,如果ACB

∠不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.

【答案】(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.

【解析】

【分析】

(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;

(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;

(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出

∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.

【详解】

(1)解:∵∠ACB=90°,∠B=60°,

∴∠BAC=90°﹣60°=30°,

∵AD、CE分别是∠BAC、∠BCA的平分线,

∴∠FAC=15°,∠FCA=45°,

∴∠AFC=180°﹣(∠FAC+∠ACF)=120°

(2)解:FE与FD之间的数量关系为:DF=EF.

理由:如图2,在AC上截取CG=CD,

∵CE是∠BCA的平分线,

∴∠DCF=∠GCF,

在△CFG和△CFD中,

CG CD

DCF GCF

CF CF

=

?

?

∠=∠

?

?=

?

∴△CFG≌△CFD(SAS),

∴DF=GF.∠CFD=∠CFG

由(1)∠AFC=120°得,

∴∠CFD=∠CFG=∠AFE=60°,

∴∠AFG=60°,

又∵∠AFE=∠CFD=60°,

∴∠AFE=∠AFG,

在△AFG和△AFE中,

AFE AFG

AF AF

EAF GAF

∠=∠

?

?

=

?

?∠=∠

?

∴△AFG≌△AFE(ASA),

∴EF=GF,

∴DF=EF;

(3)结论:AC=AE+CD.

理由:如图3,在AC上截取AG=AE,

同(2)可得,△EAF≌△GAF(SAS),

∴∠EFA=∠GFA,AG=AE

∵∠BAC+∠BCA=180°-∠B=180°-60°=120°

∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-1

2

(∠BAC+∠BCA)=180°-

1

2

×120°=120°,

∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,

∴∠CFG=∠CFD=60°,

同(2)可得,△FDC≌△FGC(ASA),

∴CD=CG,

∴AC=AG+CG=AE+CD.

【点睛】

本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.

6.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.

(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)

(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、

BF',探究AF、BF'与AB有何数量关系?并证明.

②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.

【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析 【解析】 【分析】

(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .

(2)通过证明BCD ACF △≌△,即可证明AF BD =.

(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理

'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;

②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则

'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ . 【详解】

(1)AF BD = 证明如下:

ABC 是等边三角形,

BC AC ∴=,60BCA ?∠=.

同理可得:DC CF =,60DCF ?∠=.

BCA DCA DCF DCA ∴∠-∠=∠-∠. 即BCD ACF ∠=∠. BCD ACF ∴△≌△.

AF BD ∴=.

(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,

AF BD =依然成立. (3)①AF BF AB '+=

证明:由(1)知,BCD ACF △≌△.

BD AF ∴=.

同理BCF ACD '△≌△.

BF AD '∴=.

AF BF BD AD AB '∴+=+=.

②①中的结论不成立新的结论是AF AB BF '=+; BC AC =,BCF ACD '∠=∠,F C DC '=,

BCF ACD '∴△≌△. BF AD '∴=.

又由(2)知,AF BD =.

AF BD AB AD AB BF '∴==+=+. 即AF AB BF '=+. 【点睛】

本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.

7.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .

(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;

(Ⅱ)如图2,当△APM ,△BPN 都是等边三角形时,(Ⅰ)中BM ,AN 之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.

(Ⅲ)在(Ⅱ)的条件下,连接AB 得到图3,当PN =2PM 时,求∠PAB 度数. 【答案】(1)BM =AN ,BM ⊥AN .(2)结论成立.(3)90°. 【解析】 【分析】

(1)根据已知条件可证△MBP ≌△ANP ,得出MB =AN ,∠PAN =∠PMB ,再延长MB 交AN 于点C ,得出MCN 90∠=?,因此有BM ⊥AN ; (2)根据所给条件可证△MPB ≌△APN ,得出结论BM =AN ;

(3) 取PB 的中点C ,连接AC ,AB ,通过已知条件推出△APC 为等边三角形,∠PAC =∠PCA =60°,再由CA =CB ,进一步得出∠PAB 的度数. 【详解】

解:(Ⅰ)结论:BM =AN ,BM ⊥AN . 理由:如图1中,

∵MP=AP,∠APM=∠BPN=90°,PB=PN,

∴△MBP≌△ANP(SAS),

∴MB=AN.

延长MB交AN于点C.

∵△MBP≌△ANP,

∴∠PAN=∠PMB,

∵∠PAN+∠PNA=90°,

∴∠PMB+∠PNA=90°,

∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,

∴BM⊥AN.

(Ⅱ)结论成立

理由:如图2中,

∵△APM,△BPN,都是等边三角形

∴∠APM=∠BPN=60°

∴∠MPB=∠APN=120°,

又∵PM=PA,PB=PN,

∴△MPB≌△APN(SAS)

∴MB=AN.

(Ⅲ)如图3中,取PB的中点C,连接AC,AB.

∵△APM,△PBN都是等边三角形

∴∠APM=∠BPN=60°,PB=PN

∵点C是PB的中点,且PN=2PM,

∴2PC=2PA=2PM=PB=PN,

∵∠APC=60°,

∴△APC为等边三角形,

∴∠PAC=∠PCA=60°,

又∵CA=CB,

∴∠CAB=∠ABC=30°,

∴∠PAB=∠PAC+∠CAB=90°.

【点睛】

本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.

8.在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.

(1)根据题意,可求得OE=;

(2)求证:△ADO≌△ECO;

(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?

【答案】(

1)5;(2)见解析;(3)当两动点运动时间为72、17

4

、10秒时,△OPM 与△OQN 全等 【解析】 【分析】

(1)根据OA=OE 即可解决问题.

(2)根据ASA 证明三角形全等即可解决问题.

(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论. 【详解】

(1)∵A (0,5), ∴OE =OA =5, 故答案为5. (2)如图1中,

∵OE =OA ,OB ⊥AE , ∴BA =BE , ∴∠BAO =∠BEO , ∵∠CEF =∠AEB , ∴∠CEF =∠BAO , ∴∠CEO =∠DAO , 在△ADO 与△ECO 中,

CE0DA0

OA 0E

COE AOD ∠=∠??

=??∠=∠?

, ∴△ADO ≌△ECO (ASA ).

(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .

分三种情况讨论:

①当点P、Q分别在y轴、x轴上时PO=QO得:5﹣t=12﹣3t,

解得t=7

2

(秒),

②当点P、Q都在y轴上时PO=QO得:5﹣t=3t﹣12,

解得t=17

4

(秒),

③当点P在x轴上,Q在y轴上时,

若二者都没有提前停止,则PO=QO得:t﹣5=3t﹣12,

解得t=7

2

(秒)不合题意;

当点Q运动到点E提前停止时,有t﹣5=5,解得t=10(秒),

综上所述:当两动点运动时间为7

2

17

4

、10秒时,△OPM与△OQN全等.

【点睛】

本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.

9.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.

(1)若AB∥x轴,如图1,求t的值;

(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.

(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.

【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)

【解析】

【分析】

(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;

(2)根据对称的性质得:PA=PA'=PB,由∠PAB+∠PBA=90°,结合三角形内角和定理即可求得∠OA'B=45°;

(3)分类讨论:分别讨论当△ABP≌△MBP、△ABP≌△MPB、△ABP≌△MPB时,点M的坐标的情况;过点M作x轴的垂线、过点B作y轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M的坐标即可.

【详解】

(1)∵AB∥x轴,△APB为等腰直角三角形,

∴∠PAB=∠PBA=∠APO=45°,

∴△AOP为等腰直角三角形,

∴OA=OP=4.

∴t=4÷1=4(秒),

故t的值为4.

(2)如图2,∠OA′B的度数不变,∠OA′B=45°,

∵点A 关于x 轴的对称点为A ′, ∴PA =PA ', 又AP =PB , ∴PA =PA '=PB ,

∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B , 又∵∠PAB +∠PBA =90°, ∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA ' =180()PAB PBA ∠∠?-+

180=?-90° =90°,

∴∠AA 'B =45°, 即∠OA 'B =45°;

(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等, ①如图3,若△ABP ≌△MBP ,

则AP =PM ,过点M 作MD ⊥OP 于点D , ∵∠AOP =∠PDM ,∠APO =∠DPM , ∴△AOP ≌△MDP (AAS ), ∴OA =DM =4,OP =PD =3, ∴M 的坐标为:(6,-4).

②如图4,若△ABP ≌△MPB ,则AB PM =,

过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点

F ,

∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,

∴∠BAP =∠MPB=45?,PA PB = ∵139023∠+∠=?=∠+∠, ∴12∠=∠ ∴Rt

AOP Rt PGB ?

∴34BG OP PG AO ====, ∵BG ⊥x 轴BF ,⊥y 轴 ∴四边形BGOF 为矩形,

∴3OP BG ==,则431AF OA OF =-=-= 347BF OG OP PG ==+=+=

在Rt

ABF 和Rt PME 中

∠BAF =45?+1∠,∠MPE =45?+2∠, ∴∠BAF =∠MPE ∵AB PM =

∴Rt ABF Rt PME ?

∴71ME BF PE AF ====, ∴M 的坐标为:(4,7),

③如图5,若△ABP ≌△MPB ,则AB PM =,

过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点

F ,

∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45?,PA PB = ∵139023∠+∠=?=∠+∠, ∴12∠=∠ ∴Rt

AOP Rt PEB ?

∴34BE OP PE AO ====, ∵BE ⊥x 轴BF ,⊥y 轴 ∴四边形BEOF 为矩形,

∴3OP BG ==,则431AF OA OF =-=-= 347BF OE OP PE ==+=+=

在Rt

ABF 和Rt PMD 中

∵BF ⊥y 轴 ∴42∠=∠

∵42ABF PMD ∠∠∠+=∠+ ∴ABF PMD ∠∠= ∵AB PM = ∴Rt

ABF Rt PMD ? ∴17MD AF PD BF ====, ∴M 的坐标为:(10,﹣1).

综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1). 【点睛】

本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.

10.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F . (1)如图,连接AE ,

①AE 与AC 的数量关系是__________; ②设BAF α∠=,用α表示BCF ∠的大小;

(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.

【答案】(1)①AB=AE;②∠BCF=α;(2) AF-EF=CF,理由见详解.

【解析】

【分析】

(1)①根据轴对称性,即可得到答案;

②由轴对称性,得:AE=AB,∠BAF=∠EAF=α,由ABC是等边三角形,得AB=AC,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证?FCG是等边三角形,得GF=FC,再证?ACG??BCF(SAS),从而得AG=BF,进而可得到结论.

【详解】

(1)①∵点B关于射线AD的对称点为点E,

∴AB和AE关于射线AD的对称,

∴AB=AE.

故答案是:AB=AE;

②∵点B关于射线AD的对称点为点E,

∴AE=AB,∠BAF=∠EAF=α,

∵ABC是等边三角形,

∴AB=AC,∠BAC=∠ACB=60°,

∴∠EAC=60°-2α,AE=AC,

∴∠ACE=1

180(602)60

2

αα??

--=+

??,

∴∠BCF=∠ACE-∠ACB=60α

+-60°=α.(2)AF-EF=CF,理由如下:

作∠FCG=60°交AD于点G,连接BF,

∵∠BAF=∠BCF=α,∠ADB=∠CDF,

∴∠ABC=∠AFC=60°,

∴?FCG是等边三角形,

∴GF=FC,

∵ABC是等边三角形,

∴BC=AC,∠ACB=60°,

∴∠ACG=∠BCF=α.

在?ACG和?BCF中,

相关主题
文本预览
相关文档 最新文档