当前位置:文档之家› 1弹塑性力学基础

1弹塑性力学基础

1弹塑性力学基础
1弹塑性力学基础

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2 从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5 应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的, 而是相关,否则导致位移不单值,不连续。 6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形? 加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。 卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程? 协调方程和边界条件。 8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。 9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

弹塑性力学基础翻译-第七章

弹塑性力学基础翻译■第七章 7、塑性 7.1介绍 两个基本因素控制弹性的发展,一个是加载过程的完全可逆性,当一个使物体产生应变的力消失,物体就立刻回到未加载力之前;第二个因素说明在荷载作用下物体的变形或者应变只取决于最终的应力,与加载过程和路径无关,因此弹性行为可以视为一个点函数,因为任何产生的应变可以通过初始应力、终了应力以及特定的比例常数来确定。但是当塑性或者永久变形产生时这两个因素就不明显了。 为了产生塑性变形或者塑性流,应力必须超过屈服应力。如果大大超过屈服应力,许多固体(比如延性金属)的变形或尺寸会一直打到一个很大的程度。另外,当最终应变形成,一个应变元可以通过不同的加

载方式使物体达到末状态,因此当荷载消失后不仅无法观测到像弹性一样的完全可逆现象,末状态也取决于荷载的加载过程而不只是初应力和末应力状态。这个发现意味着塑性变形是一个过程函数,需要增量应变在应变过程上的累积来确定总的应变。 在研究塑性的时候至少可以采取三种很明显 的方式。 1、在考虑应力应变分布满足规定的边界条件的情况下,通过材料的性质来建立理想模型。这个被称作宏观塑性理论,很类似于长久以来的弹性理论。 2、应用于金属物理学的方法。在这种方法中,实际固体中单晶体变形方式建立于研究的基础,通过一个物体内部联系从单晶体扩展到多晶体的聚集从而形成整个构件。这种方法通常被工程师运用。这个叫做微观塑性理论。 3、技术的方法。通过寻求某些现象学的规则,运用实验观察实际物体材料在宏观尺寸上的数学表达式。这确保在一般意义上的设计上可以预测材料的属性,这可能被叫做宏观工程塑性。这种方法在本章中是重点。 7.2弹性和塑性的比较为了方便,许多上述的说明被总结成表格的形式。在这种方式有个直接的比较,很

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学1

二、计算题 1.某点的应力分量为a x 50=σ,0=y σ,a z 11=σ,a xy 3=τ,a yz 3-=τ,a zx 8-=τ。试求与各坐标轴有相等倾角的斜平面上的全应力、正应力、和切应力。 2.已知4101323542410 -???????? ???----=ij ε,求主应变的大小及方向。 3.悬臂梁的弯曲问题。如图所示,梁的两侧无外力作用,左端面受集中力F 作用,右端固定。其余尺寸如图,且h c <<,l h << 4.某一平面问题的应力表达式如下: ?? ? ????--=-=+-=y cx By Bxy Ax xy xy y x 2323223τσσ (体力0==y x f f ),求A 、B 、C 的值。 5.已知应变状态 ()()() ???????+++=++++=++++=222104422104423210C y x xy C C y x y x B B y x y x A A xy y x γε ε 求各系数之间应该满足的关系。 6.矩形截面的简支梁,受均布载荷q 作用,设矩形梁长、宽、高分别为l 2、b 2和h 2,材料的拉压屈服点为S σ,求: (1)弹性极限弯矩e M ,塑性极限弯矩p M ; (2)当p e M M M ≤≤时,弹塑性区交界面方程

二、设结构的某突出部分具有三角形截面,其底部受均布载荷q ,如图。该部分的应力表达式已求出如下 ??? ?? ???? ? ?? ? ===+-==???? ??+++-=???? ??++--=0 arctan arctan 2222222z yz xz yx xy y x y x y A B y x xy x y A C y x xy x y A σττττσσ 由边界条件确定A 、B 、C 的表达式。 三、矩形截面柱的一侧受均匀分布的剪力q 作用,不计体力,试求应力分量。 四、验证下列应变状态是否满足相容方程。 ????? ? ?===-===0 23zy zx z xy y x Dy C By Axy γγεγ εε 五、已知某点应力分量为a x 100=σ ,a y 200=σ,a z 300=σ,a xy 500-=τ,0=yz τ,0=zx τ,求主应力的大小和方向。 六、不计体力,验证下列应力分量是否能满足平衡方程。

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

弹塑性力学第十一章标准详解

第十一章习题答案 11.3使用静力法和机动法求出图示超静定梁的极限载荷。 解1:( 1)静力法 首先该超静定梁(a )化为静定结构(b )、(c )。分别求出其弯矩图,然后叠 加,得该超静定梁的弯矩图(f ) 在极限情况下 M A M s , M B M s 设C 点支反力为R C ,贝U : R C 2l Pl 1 当P 值达到上述数值时,结构形成破坏机构,故 P 为该梁的完全解。 (2)机动法 设破坏机构如图(g ),并设B 点挠度为,则: C ,(2l l 1) 21 l 1 21 11 外力功W e P (I R c (2l h) M s 由上二式得 M p 41 l 1 2l l 1 l 1 k ——

41 l 内力功 W i M AA M B B —M l 1 21 l 1 由W e W ,可得极限载荷上限为 4l l i l i 2l l i 由于在P 作用下,M s M x M s ,故上式所示载荷为完全解的极限载荷。 解2:( 1)静力法 先将该超静定梁化为静定梁(b )、(c ),分别作弯矩图,叠加得该超静定梁的 弯矩图(f ) 设A 点为坐标原点,此时弯矩方程为: M x R B l x 在极限状态时,有 M s x x-1 ,M x 1 M s 令dM X dx 0 得 q(l X i ) R B 而 R B l iql 2 1 2q (1)、(2)、(3)得 M s 2 l R B l X i 联立解 2qM s i i ql M s M s (1) (2) (3) 解得q ii2 i44 i6 M s l 2

在以上q0值作用下,梁已形成破坏机构,故其解为完全解 (2)机动法如图(g) 设在A、C两点形成塑性铰A B 内力功为 外力功为 由虚功原理W i W 该解与完全解的误差为 3% q 解3:(1)静力法 设坐标原点在C点,此时弯矩方程为: BC 段(0 x L 2)M (x) R c x qx2 1 1 AB段(L 2 x l)M (x)&X - ql x T 2 4 取较大的值,可得q011.66 处,M为极大值,设在BC段,由 dM x dx 得R c q 0 R c q (1) M s M s g2 3M s l W e 2 02q x dx 4q 得:q 12M s q0 11.66^ l2 b ----------- ----------------- H

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学总结(精华)

(一) 弹塑性力学绪论:1、定义:是固体力学的一个重要分支学科,是研究可变形固体受到外荷载或温度变化等因素的影响而发生的应力、应变和位移及其分布规律的一门科学,是研究固体在受载过程中产生的弹性变形和塑性变形阶段这两个紧密相连的变形阶段力学响应的一门科学。 2、研究对象:也是固体,是不受几何尺寸与形态限制的能适应各种工程技术问题需求的物体。3、分析问题的基本思路:受力分析及静力平衡条件 (力的分析);变形分析及几何相容条件 (几何分析);力与变形间的本构关系 (物理分析)。4、研究问题的基本方法:以受力物体内某一点(单元体)为研究对象→单元体的受力—应力理论;单元体的变形——变形几何理论;单元体受力与变形间的关系——本构理论;(特点:1、涉及数学理论较复杂,并以其理论与解法的严密性和普遍适用性为特点;弹塑性力学的工程解答一般认为是精确的;可对初等力学理论解答的精确度和可靠进行度量。)5、基本假设:物理假设: (连续性假设:假定物质充满了物体所占有的全部空间,不留下任何空隙;均匀性与各向同性的假设:假定物体内部各处,以及每一点处各个方向上的物理性质相同。力学模型的简化假设:(A )完全弹性假设 ;(B )弹塑性假设)。几何假设——小变形条件(假定物体在受力以后,体内的位移和变形是微小的,即体内各点位移都远远小于物体的原始尺寸,而且应变( 包括线应变与角应变 )均远远小于1。在弹塑性体产生变形后建立平衡方程时,可以不考虑因变形而引起的力作用线方向的改变;在研究问题的过程中可以略去相关的二次及二次以上的高阶微量;从而使得平衡条件与几何变形条件线性化。 )6、解题方法(1)静力平衡条件分析;(2)几何变形协调条件分析;(3)物理条件分析。从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决 7、应力的概念: 受力物体内某点某截面上内力的分布集度 =lim n n n A O F dF A dA σσ?→==?=lim n n nt A O F dF A dA σσ?→==?。正应力σ,剪应力τ,必须指明两点:是哪一点的应力;是该点哪个微截面的应力。7、应力的表示及符号规则:xx xy xx x στσσ?、、:第一个字母表明该应力作用截面的外法线方向同哪一个坐标轴相平行,第二个字母表明该应力的指向同哪个坐标轴 相平行。 8、三维空间应力圆:

燕山大学塑性变形力学基础与轧制原理复习大纲

"塑性变形力学基础与轧制原理" 参考书:"塑性变形力力学基础及轧制及原理"曹鸿德等主编,机械工业出版社。 学生应掌握的主要内容: 点的应力状态的张量性质:已知主方向和主应力,求斜面应力:画出主应力图示;写出主应力平面的方向余弦,主切应力平面的法应力, 主切应力;什么是八面体平面,写出八面体平面法向应力及剪应力分式:写出平衡微分方程式;推导体积应力及不可压缩性条件,画出主应变图示:试述均匀变形的定义和特点,对数应变系数和条件应变系数的关系;试述塑性表面的概念;试述最大剪应力等于常值的塑性条件,写出公式:试述单位弹性形态改变势能等于常值的塑性条件,写出公式:试述两个塑性条件的差别和联系。 试述平面问题的概念,写出平面问题的方程式:如何选定滑移线的参变量和确定滑移线的方向,对简单的实际问题能给出滑移线的正方向:推导汉基积分(4一17)式及(4一18)式:试述滑移线的几何性质;证明汉基第一定理(画图):画出窄锤头冲压厚板时的滑移线场,并求解单位压力 P;试述何为几何可能位移和静力可能的屈服应力状态;求各种典型压力加工情况的上限解。 试述在平面镦粗和轧制时的单位摩擦力的分布规律;推导卡尔曼近似平衡微分方程式(6-46)及单位压力基本平衡微分方程式(4-49)并分析求解此方程式的基本方法;推导奥洛万近似的平衡微分方程式(6 -69);画图说明各种因素对单位压力的影响;导出计算咬入角及变形区 长度的公式;试述中性角的概念;前滑的概念及前滑公式,如何测定前滑系数;写出轧件的工程常用变形系数;试述位移体积的概念及导出其表达式,导出以对数变形系数表示的体积不变条件;简述变形抗力的概念;简述各种因素对变形抗力的影响,了解强化强度,变形速度的概念;试述滑动摩擦的种类及概念,基本滑动摩擦机理;导出斯通公式;阐述轧机传动力矩的组成及概念;画图说明在简单轧制,带张力轧制及单辊传动时金属对轧辊作用力的方向。

弹塑性力学试题

弹塑性力学试题 (土木院15研) 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小题3 分,共21分) 1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。( ) 2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz z w dy y v dx x u u ??+??+??+ ( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。。 ( ) 4. 塑性力学假设卸载时服从初始弹性规律。( ) 5. 弹性力学空间问题应变状态第二不变量为2 2 2 - yz xz xy z y z x y x γγγεεεεεε--++。( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。( ) 二﹑填空及简答题(填空每小题3分,共23分) 1. 弹性力学平面问题,结构特点是( ),受力特点是( )。 2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。 2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。 3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。(5分) 三﹑计算题(共56分) 1. 写出圆形薄板轴对称弯曲的弹性曲面方程。若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。(8分) 2. 已知应力函数)(A 2 3 xy x +=?,A 为常数。试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。(8分)

应用弹塑性力学1

弹塑性力学课程总结 主要内容: 1.应力分析 2.应变分析 3.弹性与塑型应力与应变的关系 4.弹性与塑性力学的解题方法 5.旋转圆盘的分析 第一章 应力分析 1.点的应力状态:①定义——合力dP 与面积微元dS 的比值 ②描述方法(3个正应力分量与3个剪应力分量可以描述点 的应力状态); ③分解:意义、方法(m ij ij ij σδσσ+=' )、图示 2.特殊应力: ①主应力(相互正交),含义/求解? '3 '2'1'3 21321,,,,,,I I I I I I ij ij →→→σσσσσ ②最大剪应力 (主应力平面上的剪应力为零;最大剪应力位于坐标 轴分角面上,而三个最大剪应力分别等于三个主应力两两之差的一 半)且最大剪应力为: 23 1max σστ-= ③等倾面上的正应力和剪应力 等倾面即和三个主应力轴成相同角 度的面满足 12 22=++n m l ④ 平均应力(静水压力) 只产生体积缩胀,不产生形变;抑制裂 纹扩展。满足: () 321031 σσσσ++= ⑤应力偏量 ?? ?≠==j i j i ij 当当01δ 从而有 ij ij ij s +=0σδσ 3平衡微分方程:

熟悉35页公式1-39与37页1-40 第二章 应变分析 1.点的应变状态:定义、描述、分解 a 正应变(变形分布均匀) l l l x -= ε b 用位移表示应变的几何关系47页式 (2-8) 柱坐标应变的几何方程48页式 (2-9) 球坐标应变的几何方程50页式 (2-12) 2.应力、应变分析的相似性与差异性(概念、分解、表示、相容性等) 一点的应变状态可以用50页式 (2-13) 3. 应变张量和应变偏量(注意:主应变、主剪应变形式差别) 31max εεγ-= 4. 应变协调方程 见67页式 (2-40) 柱坐标的变形协调方程见68页式 (2-41) 第三章 弹性与塑性应力应变关系 应力与应变的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。 注意复习与掌握5组基本方程: 1. 应力平衡微分方程:含义:表征点的应力之间的关系(基体假设的应用,平面问题的具体形式) 2.几何方程:含义:位移-应变的关系 3.物理方程:广义虎克定律 含义:σ—ε关系 ①公式;②参数含义、关系 ()μ+= 12E G a 胡克定律用应力表示应变见85页式 (3-15) b 胡克定律用应变来表示应力见87页式 (3-18) 4.应变协调方程(相容方程,连续方程):含义,平面问题的相容方程(塑性变形连续方程:) 0321=++p p p εεε a 特雷斯卡屈服条件见90页式 (3-21) b 米泽斯屈服条件见式 (3-23) c 熟悉特雷斯卡条件(1、2、3)与米泽斯条件(1、2、3)的不同处与相同处(1、2) d 塑性应力应变关系(增量理论):莱维-米泽斯本构方程(100)(3-31) 普朗特-罗伊斯本构方程(102)(3-39) (全量理论):亨奇-伊柳辛变形理论 (111)(3-49)

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

(完整word版)弹塑性力学试卷

二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、; 五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为:

式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑 的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图 4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作 用。设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用柱坐 标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为=400MPa。试求此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M s。 (提示:Mises屈服条件:;) 填空题 6 平衡微分方程 选择ABBC

金属塑性变形的力学基础

第三章金属塑性变形的力学基础 金属在外力作用下由弹性状态进入塑性状态,研究金属在塑性状态下的力学行为称为塑性理论或塑性力学,它是连续介质的一个力学分支。为了简化研究过程,塑性理论通常采用以下假设: 1)变形体是连续的,即整个变形体内不存在任何空隙。这样,应力、应变、位移等物理量也都是连续的,并可用坐标的连续函数来表示。 2)变形体是均质的和各向同性的。这样,从变形体上切取的任一微元体都能保持原变形体所具有的物理性质,且不随坐标的改变而变化。 3)在变形的任意瞬间,力的作用是平衡的。 4)在一般情况下,忽略体积力的影响。 5)在变形的任意瞬间,体积不变。 在塑性理论中,分析问题需要从静力学、几何学和物理学等角度来考虑。静力学角度是从变形体中质点的应力分析出发,根据静力学平衡条件导出该点附近各应力分量之间的关系式,即平衡微分方程。几何学角度是根据变形体的连续性和均匀性,用几何的方法导出应变分量与位移分量之间的关系式,即几何方程。物理学角度是根据实验与假设导出应变分量与应力分量之间的关系式。此外,还要建立变形体从弹性状态进入塑性状态并使塑性变形继续进行时,其应力分量与材料性能之间的关系,即屈服准则或塑性条件。 以上是塑性变形的力学基础,也是本章的主要内容。它为研究塑性成形力学问题提供基础理论。 第一节金属塑性成形过程的受力分析 塑性成形是利用金属的塑性,在外力作用下使金属成形的一种加工方法。作用于金属的外力可以分为两类:一类是作用在金属表面上的力,称为面力或接触力,它可以是集中力,但更一般的是分布力;第二类是作用在金属每个质点上的力,称为体积力。 1. 面力 面力可分为作用力、反作用力和摩擦力。 作用力是由塑性加工设备提供的,用于使金属坯料产生塑性变形。在不同的塑性加工工序中,作用力可以是压力、拉力或剪切力,但在多数情况下是用压力来成形的,因此塑性加工又称为压力加工。 反作用力是工具反作用于金属坯料的力。一般情况下,反作用于金属的力与施加的作用力互相平行,并组成平衡力系,如图3-1a中,F=F’(F—作用力、F’—反作用力)。而在图2-1b、c中,反作用力F’’自相平衡。 a)b)c)

弹塑性理论

金属的塑性变形抗力及轧制过程的 滑动摩擦 ——弹塑性理论讨论课 学院:机械工程学院 班级:轧钢设备及工艺一班 小组成员:戴华平罗湘粤裴泽宇王奕答谢世豪 指导教师:李学通 完成时间:金属的塑性变形抗力 一、塑性变形抗力的基本概念及测定方法 塑性变形抗力:材料在一定温度、速度和变形程度条件下,保持原有状态而抵抗塑性变形的能力。在所设定的变形条件下,所研究的变形物体或其单元体能够实现塑性变形的应力强度。变形抗力与变形力数值相等方向相反。不同金属材料变形抗力不同。同一金属材料在一定变形温度、变形速度和变形程度下,以单向压缩(或拉伸)时的屈服应力的大小度量其变形抗力。 变形抗力测定方法条件:简单应力状态下,应力状态在变形物体内均匀分布。 1)拉伸试验法:。变形较均匀,均匀变形程度小。 2)压缩试验法:。能产生更大变形,与拉伸相比,变形不均匀,由 于接触摩擦,实测值较高。 3)扭转试验法:圆柱试样:。应力状态分布不均匀,为

降低不均匀性,可取空心管试样,数据换算到另外变形状态有困难,且 在大变形时,纯剪切遭到破坏等原因,未广泛应用。 二、金属的塑性变形抗力的影响因素 1.金属的化学成分及组织对塑性变形抗力的影响 1)对于各种纯金属,原子间结合力大,滑移阻力大,变形抗力也大。 2)同一种金属,纯度愈高,变形抗力愈小。 3)合金元素的存在及其在基体中存在的形式对变形抗力有显著影 响。原因:a溶入固溶体,基体金属点阵畸变增加;b形成化合物; c形成第二相组织,使增加。 4)合金元素使钢的再结晶温度升高,再结晶速度降低,因而硬化倾 向性和速度敏感性增加,变形速度高↑。 5)某些情况下改变合金的某主要成分的含量不会引起变形抗力的太 大变化。 2.组织对塑性变形抗力的影响。 1)基体金属原子间结合力大,大。 2)单相组织和多相组织单相 单相:合金含量越高,越大。原因:晶格畸变。 3)晶粒大小 d,变形抗力。 3.温度对塑性变形抗力的影响 变形抗力随温度↑的变化情况: 1)变形抗力↓例:Cu 2)情况较复杂,如:钢 随着温度↑,屈服应力↓,屈服延伸↓,至400℃消失。 <300℃:抗拉强度,塑性;>300℃:抗拉强度,塑性。 变形抗力降低的原因 1)软化效应:发生了回复和再结晶 2)其他变形机构的参与 a)温度升高,原子动能大,结合力弱,临界切应力低,滑 移系增加,由于晶粒取向不一致对变形抗力影响减弱。 b)温度升高,发生热塑性。 c)晶界性质发生变化,有利于晶间变形,有利于晶间破坏 的消除。 d)组织发生变化,如相变。 硬化随温度升高而降低的总效应决定于:

相关主题
文本预览
相关文档 最新文档