当前位置:文档之家› CRH1型动车组列车控制系统ATP控制模式概述

CRH1型动车组列车控制系统ATP控制模式概述

CRH1型动车组列车控制系统ATP控制模式概述
CRH1型动车组列车控制系统ATP控制模式概述

CRH1型动车组列车控制系统ATP控制模式

概述

一、ATP列控系统速度防护模式

ATP列控系统共有十一种速度防护模式:

(1)区间追踪运行模式。

(2)带LU2的区间追踪运行模式。

(3)机外停车模式。

(4)正线停车模式。

(5)股道停车模式。

(6)正线通过模式。

(7)经18号及以上道岔侧向通过模式。

(8)引导接车模式。

(9)正线发车模式。

(10)股道发车模式。

(11)区间反向运行模式。

二、ATP装置区间追踪运行模式在区间跟踪运行模式时,设备核对速度产生的曲线控制。

三、ATP装置带LU2的区间追踪运行模式

1.如果轨道电路信息码包含LU2(单黄码),在列车未到达LU2(单黄码)区间的情况下,是否有LU2就会不明确。

2.列卓进入了LU2(单黄码)分区后,会判明从LU2(单黄码)确定的实际停车点。重新画出新的核对速度曲线。

四、ATP装置机外停车模式

在区问内站间停车模式时的核对速度曲线。

五、ATP装置正线停车模式正线停车模式时的核对速度曲线的生成。

六、ATP装置股道停车模式

1.列车处于U2码(黄灯)区间之前的一段时间内,生成

机外停车模式曲线。

2.接收到U2码(黄灯)后,会生成形成NBP为50km的模式曲线。

3.进入列车接近的区间后,会接收UU码(双黄灯),通过进站信号机时破坏掉以前的正线Balise信息,根据进站口的Balise信息生成曲线。

4.股道停车时,在站外即使是『机控优先』通过进站信号到列车停车之间的过程自动切换到『人控优先』。正线停车时不为人控优先。

5.股道停车时收UU(双黄灯)信号后的『无信号』作为『HU』(半红半黄)信号处理。因此,在上图状态下可将TC6,TC7两个轨道电路作为一个闭塞区处理。

6.其后进入无码的区间。列车保持NBP为50km/h的限制速度。从入口的有源应答器接收应该进入的线路的数据。列车发出停止在B6的终端的核对速度图形。

7.列车进入TC7后,考虑到列车长度,在前450m保持NBP50km/h的限制速度。然后,该NBP50km/h限制被解除,曲线状的核对速度图形即有效。

七、ATP装置正线通过模式与区间跟踪运行模式相同。

运行模式时,设备核对速度产生的曲线控制。

八、ATP装置经18号及以上道岔侧向通过模式

1.对于通过18号及其以上道岔进入车站的模式与股道停车模式一样。但是股道进站时的NBP不是50km/h,而是85km/h,这一点不同。

2.列车在通过大号码道岔之前,会从前一段轨道电路人口处的应答器接收到CTCS4信息包。该信息包中包含到大号码道岔的距离(DJURNOUT)和道岔侧向列车最大允许通过速度(V_TURNOUT)数据。这种情况下不管上述如何,都会通过包含在CTCS4中的信息进行速度控制。NBP比V_TURNOUT高5km/h,EBP高10km/h。

九、ATP装置引导接车模式

引导到达模式时的核对速度曲线。

1.引导接车在列车到达HB(半红半黄闪)码区间之前,会生成机外停车模式曲线。

2.接收到HB(半红半黄闪)码后,ATP认为开通引导到达的进路,进入TC6的轨道电路后,会进入CO(引导)模式,生成NBP25km/h的核对速度。ATP按照CO模式依然保持NBP25km/h的限制速度。

3.引导到达时,车站的联锁系统有可能无法提供进路的信息(非进路引导)。这时,因为进入车站的有源应答器不可能提供引导到达的进路的图形,所以ATP设备无法生成停车点为线路的闭口控制曲线,所以要由司机决定停车地点。

十、ATP装置正线发车模式

1.在正线发车进路开通之前,从轨道电路发出HU(半红半黄)码。

2.发车进路开通后,从车站出发的信号机根据前方的区间的占用情况,显示适当的信号。

3.从轨道电路也会根据码的顺序,发出相应的低频码。车载装置在接收到该信息后根据情况进行不同的处理。

4.如果列车处在车站内的线路上,出站信号开通之前就从轨道电路接收到了HU代号,则车载装置会生成上图中的停车用核对速度曲线。

5.车载装置在发车进路构成后,会根据前方的路线数据和低频信息码生成适当的核对速度图形,司机在该图形中控制列车的速度。

接近区段开始发UU(双黄)码,为有源应答器提供编码的列控中心根据车站联锁系统给出的接车进路情况,得到列车将进入反方向股道,便控制进站有源应答器向列车发送有关载频切换的信息(具体数据定义方式正在制定过程中),列车从接近区段进入股道接车进路,收到有源应答器信息同时轨道电路信息转入无码状态,便进行载频组的切换,使STM只接收与反向运行相对应的载频组频率,进入股道后,将能够正常接收股道发送的信息码。

十三、ATP装置模式与制动指令的关系

1.模式分常用制动模式和紧急制动模式,两个独立的速度制动模式。

2.在常用制动模式上,若实际速度超过此模式时,ATP 装置发出最大常用制动。

3.另外虽设有超过常用制动模式,只接近时发出弱制动、中制动等两级制动指令。

十四、列控车载ATP装置的基本安全防护功能

1.按照有关的规范和技术条件,对ATP的基本功能要求如下:

(1)在不干扰机车乘务员正常驾驶的前提下有效地保证列车运行安全。

(2)在任何情况下防止列车无行车许可运行。

2.防止列车超速运行:

(1)防止列车超过进路允许速度。

(2)防止列车超过线路结构规定的速度。

(3)防止列车超过机车车辆构造速度。

(4)防止列车超过临时限速。

(5)防止列车超过铁路有关运行设备的限速。

(6)防止机车超过规定速度进行调车作业。

(7)防止列车超过规定速度引导进站。

3.防止列车溜逸。

4.应具有车尾限速保持功能。

5.规定范围内的车轮打滑和空转不得影响车载设备正常工作

6.人机界面的基本功能是为机车乘务员提供的必须的显示、数据输入及操作。

(1)并能够以字符、数字及图形等方式显示列车运行速度、允许速度、目标速度和目标距离。

(2)能够实时给出列车超速、制动、允许缓解等表示以及设备故障状态的报警。

(3)机车乘务员输入装置应配置必要的开关、按钮和有关数据输入装置。

(4)具有标准的列车数据输入界面。

7.检测和记录功能:

(1)具有开机自检和动态检查功能。

(2)具有关键数据和关键动作的记录功能及监测接口。

十五、列控车载系统ArlT装置待机工作模式

1.待机模式,如果预先选择了CTCS2,投入电源后,系统就直接转人待机模式。

2.在本模式下ATP车载装置的接收轨道电路信息、接收应答器信息等功能有效。但不进行速度比较等控制,同时无条件地输出制动。

十六、列控车载系统ATP装置完全监控工作模式

1.完全监控模式FS,本模式是CTCS2中最普通的模式,一般情况下,ATP车载装置工作在本模式下。

2.列车判断本身位置和应该停车位置后,产生目的制动速度模式,ATP可以安全控制列车速度(见图1l-21)。

3.ATP考虑列车静态限速停车位置或临时限速等条件,保证列车速度满足这些条件,ATP在自动输出制动的同时,对司机提示有关的各种信息。

十七、列控车载系统ATP装置部分监控工作模式

1.部分监控模式PS,本模式为股道出发,得不到应答器的线路数据、线路数据缺省时的模式(见图ll-22)。

2.列车侧线发车和引导接车时(见图11-23)。

3.在部分监控模式下,列控车载设备给出如下限速值(见图1l-24):

(1)侧线发车,列控车载设备接收到的轨道电路信息为UU(双黄)码时,限速值为45km/h,接收到的轨道电路信息为UUS(双黄闪)码时限速值为80km/h。

(2)引导接车,列控车载设备接收到的轨道电路信息为HB码时,限速值为20km/h。

(3)当列控车载设备接收到轨道电路允许行车信息,而缺少应答器提供的线路数据或限速数据时,最高限速值为45km/h。

十八、列控车载系统ATP装置反向运行工作模式

反向运行模式RO,上行列车运行在下行线,或下行列车运行在上行线时,ATP的工作模式。

十九、列控车载系统ATP装置引导工作模式

1.引导模式CO,ATP从轨道电路一接收HB码后形成NBP 为25km/h的模式曲线,越过进站信号机后,自动转入本模式。产生以NBP25km/h为恒定限速的速度模式。

2.在该模式下,如果60s之内或运行200m以前不按警惕键,ATP就输出紧急制动停车。

二十、列控车载系统ATP装置应答器故障工作模式

1.应答器故障模式,如果得不到来自应答器的线路数据,即使接收到轨道电路的正确信息,ATP也不能产生正规的目的制动速度模式。

2.当ATP在完全监控模式下正常运行时,一旦不能正确接收来自应答器的线路数据,从第一个应答器丢失没有前方线路数据的点开始,DMI提示故障信息。

3.如连续两个应答器丢失ATP车载装置输出常用制动,产生45km/h限制速度模式。

二十一、列控车载系统ATP装置目视行车工作模式

目视行车模式,如果轨道电路出现HU(半红半黄)或H(全红)码或无信号时,警惕开关被按下后,ATP转入目视行车模式。在目视行车模式下,产生以NBP25km/h为恒定限速的速度模式。在该模式下,如果60s之内或运行200m以前不按警惕开关,ATP就触动紧急制动停车。

二十二、列控车载系统ATP装置调车监控工作模式

1.调车监控模式SH,在站内等地方进行调车时,司机通过按压调车键,ATP车载装置不管有无轨道电路信息,都会生成NBP一定的核对速度曲线45km/h,列车速度一超过该限制速度,ATP就自动输出制动。

2.当收到应答器信息中的调车危险信息后应紧急制动停车。

二十三、列控车载系统ATP装置隔离工作模式

隔离模式I S,是ATP车载装置故障后,设备输出保持制动输出,此时如果需要移动必须采用本模式。

二十四、列控车载系统ATP装置机车信号工作模式

1.机车信号模式CS,是运行在CTCS2以外区段的模式。

2.另外虽然运行在CTCS2区段,但ATP车载装置故障时,用LKJ进行控制的情况也存在,在这种情况下采用本模式,ATP车载装置不会输出制动。

列车运行控制系统期末试题及参考答案

北京交通大学考试参考答案(A卷) 课程名称:列车运行控制系统学年学期:2013—2014学年第1学期 课程编号:50L274Q开课学院:交通运输出题教师:课程组 一、名词解释(共3小题,每题3分,共9分) 1.虚拟闭塞:是固定闭塞的一种特殊形式,以虚拟方式(设置通信模块和定位信标)将区间划分为若干个虚拟闭塞分区,并设置虚拟信号机进行防护。 2.准移动闭塞:基于固定闭塞的目标—距离控制方式,保留固定闭塞分区,以前方列车占用闭塞分区入口确定目标点,通过地车信息传输系统向列车传送目标速度、目标距离等信息。这种闭塞方式称为准移动闭塞。 3.最限制速度:综合考虑列车在区域各类限制速度得出的最低值(即最不利限制部分或最严格限制速度),简称最限制速度。 二、填空题(共12题,每空1分,共25分) 1.列车运行控制系统根据前方行车条件为每列车产生行车许可,并通过地面信号和车载信号的方式向司机提供安全运行的凭证。车载设备实施速度监控,当列车速度超过允许速度时控制列车实施制动,防止列车超速颠覆或与前方追尾,保证行车安全。 2.铁路信号安全的广义概念是指铁路信号设备或系统具有维护铁路列车(车列)安全运行的能力。狭义概念是指设备(或系统)应满足故障-安全设计原则的要求,当出现故障或误操作时,能远离危及行车安全的事故,或减少事故损失。 3.当轨道电路完整并空闲时,轨道电路的工作状态为调整,当轨道电路区段有车占用时,轨道电路的工作状态为分路(开路)。 4.目标距离控制方式根据列车制动模型,直接由目标距离、目标速度、线路参数及列车制动参数等信息生成列车的速度—距离模式曲线,并以此实时监控列车和运行速度保证列车运行安全。 5.列车安全位置是在高精度定位方法得出列车估计位置的基础上增加一定的安全包络得到,分车头(或列车前端)和车尾安全位置两部分。 级列控系统基于GSM-R实现车---地信息双向传输,RBC生成行车许可,轨道电路实现列车占用检查,应答器提供列车定位基准,并具备CTCS-2(或c-2)作为后备。7.CTCS-1级列控系统用于160km/h及以下的区段,由主体机车信号加上安全型运行监控记录装置组成。 8.在CTCS-3级列控系统中,RBC根据从联锁系统获得的进路信息,从车载设备获得的列车位置信息、以及接收到的股道占用、临时限速等信息生成列车控制命令。

列车运行及调度指挥复习题

列车运行及调度指挥 一、选择题(共40分,每题2分) 1. 以下不是列车在中间站的停站时间产生的原因的是(D) A技术作业 B客货运作业 C会车和越行 D技术站作业 2. 以下不属于机车交路类别的是(B) A肩回运转制交路 B点阵式交路 C半循环运转制交路 D循环运转制交路 3. 以下不是我国列车运行图的使用格式的是(B) A二分格运行图B五分格运行图C十分格运行图D小时格运行图 4. 编制新列车运行图时使用(A) A二分格运行图B五分格运行图C十分格运行图D小时格运行图 5. 编制列车运行调度调整计划和绘制实绩运行图时使用(C) A二分格运行图B五分格运行图C十分格运行图D小时格运行图 6. 编制旅客列车方案图和机车周转图时使用(D) A二分格运行图B五分格运行图C十分格运行图D小时格运行图 7. (C)是车流组织的具体体现。 A月度货运计划B列车编组计划C列车运行图D技术计划 8.技术站先到车辆等待后到车辆,直至凑满一个列车所需要的车数,这个过程称为(A)A货车集结过程B货车周转过程C货车待编过程D货车待发过程 9.铁路线以(B)划分为区段。 A客运站B技术站C中间站D货运站 10.下列作业不属于到发技术作业的是(C)。 A技术检查B摘机车C开发或关闭信号D票据交接 11.卸车作业未完成的货车按(A)统计。 A重车B空车C非运用车D备用车 12.技术直达列车是在(C)编组,通过一个及其以上编组站不进行改编作业的列车。 A装车站B卸车站C技术站D中间站 13.根据《技规》和列车编组计划的要求,将车辆选编成车列或车组,这种调车称为(B)A解体B编组C摘挂D取送 14. 运行图划分纵轴的横线的划分方式一般采用(B)方式。 A车站中心线间距离B车站中心线间纯运行时间 C车站出站、进站信号机间距离D车站出站、进站信号机间纯运行时间 15. 调度员编制阶段计划和进行调度指挥的工具是(A) A技术作业图表B列车编组顺序表C调车作业通知单D车流汇总表 16. 将车流变成列车流是(A)所要解决的问题。 A车流组织B列车运行图C调度指挥D车流调整 17. 单组列车选分车组时的编组内容,在到达解体站之前的运行途中是(B)变化。 A发生B不发生C有换挂车组D摘下部分选分车组 18. 在本站卸后又装的货车称为(A)。 A双重货物作业车B无调中转车C有调中转车D非运用车 19. 车站接发车工作要在(B)的统一指挥下进行。 A站长B值班站长C车站调度员D车站值班员 20. 列车到达车站后,接车车号员用(C)核对现车。 A货票B调车作业通知单C列车编组顺序表D司机报单

城轨列车网络控制系统第3次作业 -

一、不定项选择题(有不定个选项正确,共7道小题) 1. 程控数字电话交换机的组成包括()[不选全或者选错,不算完成] (A) 控制系统; (B) 数字交换网络; (C) 用户接口卡; (D) 外围设备。 正确答案:A B D 解答参考: 2. 数字交换网络的数字接线器包括以下哪些类型?()[不选全或者选错,不算完成] (A) 空分接线器; (B) 时分接线器; (C) 时空接线器; (D) 总线接线器 正确答案:A B C 解答参考: 3. 常规广播是在列车的正常运营过程中所使用的广播,包括()[不选全或者选错,不算完成] (A) 离开广播; (B) 运营延误; (C) 到达广播; (D) 故障延误。 正确答案:A C 解答参考: 4. 紧急广播为在运营中出现紧急情况时列车使用的广播信息,包括()[不选全或者选错,不算完成] (A) 区间清客; (B) 疏散乘客; (C) 紧急撒离; (D) 故障延误。 正确答案:A B C 解答参考: 5. 旅客信息系统按控制功能划分为:()[不选全或者选错,不算完成] (A) 信息源; (B) 中心播出控制层; (C) 车站车载播出控制层;

(D) 车站车载播出显示终端设备。 正确答案:A B C D 解答参考: 6. 旅客信息系统按结构划分为四部分:()[不选全或者选错,不算完成] (A) 中心子系统; (B) 车站子系统; (C) 网络子系统; (D) 车载子系统。 正确答案:A B C D 解答参考: 7. 实现多址连接的无线通信多址方式有()[不选全或者选错,不算完成] (A) 频分多址(FDMA); (B) 时分多址(TDMA); (C) 空分多址(SDMA); (D) 码分多址(CDMA)。 正确答案:A B C D 解答参考: 二、判断题(判断正误,共18道小题) 8. 在旅客信息系统中,紧急灾难信息的优先级最高,然后依次是列车服务信息、旅客导向信息、站务信息、公共信息和商业信息。() 正确答案:说法正确 解答参考: 9. 在旅客信息系统中,高优先级的信息可中断低优先级信息的播出,低优先级的信息也可中断高优先级信息的播出。() 正确答案:说法错误 解答参考: 10. 二级母钟自动接收标准时间信号,校准自身的时间精度,并分配精确时间给一级母钟。() 正确答案:说法错误 解答参考: 11. 当一级母钟不能正常接收GPS信号时,则通过自身高稳晶振运作提供时间信号给二级母钟等终端用户,以满足地铁运营的要求。() 正确答案:说法正确 解答参考:

CRH1型动车组列车控制系统ATP控制模式概述

CRH1型动车组列车控制系统ATP控制模式 概述 一、ATP列控系统速度防护模式 ATP列控系统共有十一种速度防护模式: (1)区间追踪运行模式。 (2)带LU2的区间追踪运行模式。 (3)机外停车模式。 (4)正线停车模式。 (5)股道停车模式。 (6)正线通过模式。 (7)经18号及以上道岔侧向通过模式。 (8)引导接车模式。 (9)正线发车模式。 (10)股道发车模式。 (11)区间反向运行模式。 二、ATP装置区间追踪运行模式在区间跟踪运行模式时,设备核对速度产生的曲线控制。

三、ATP装置带LU2的区间追踪运行模式 1.如果轨道电路信息码包含LU2(单黄码),在列车未到达LU2(单黄码)区间的情况下,是否有LU2就会不明确。 2.列卓进入了LU2(单黄码)分区后,会判明从LU2(单黄码)确定的实际停车点。重新画出新的核对速度曲线。 四、ATP装置机外停车模式 在区问内站间停车模式时的核对速度曲线。 五、ATP装置正线停车模式正线停车模式时的核对速度曲线的生成。 六、ATP装置股道停车模式 1.列车处于U2码(黄灯)区间之前的一段时间内,生成

机外停车模式曲线。 2.接收到U2码(黄灯)后,会生成形成NBP为50km的模式曲线。 3.进入列车接近的区间后,会接收UU码(双黄灯),通过进站信号机时破坏掉以前的正线Balise信息,根据进站口的Balise信息生成曲线。 4.股道停车时,在站外即使是『机控优先』通过进站信号到列车停车之间的过程自动切换到『人控优先』。正线停车时不为人控优先。 5.股道停车时收UU(双黄灯)信号后的『无信号』作为『HU』(半红半黄)信号处理。因此,在上图状态下可将TC6,TC7两个轨道电路作为一个闭塞区处理。 6.其后进入无码的区间。列车保持NBP为50km/h的限制速度。从入口的有源应答器接收应该进入的线路的数据。列车发出停止在B6的终端的核对速度图形。 7.列车进入TC7后,考虑到列车长度,在前450m保持NBP50km/h的限制速度。然后,该NBP50km/h限制被解除,曲线状的核对速度图形即有效。

调度集中和列车调度指挥系统

调度集中和列车调度指挥系统 课程设计 专业:铁道通信信号 班级: 姓名 学号: 指导教师: 华东交通大学轨道交通学院

TDCS系统介绍 一、摘要:TDCS(Train Operation Dispatching Command System)是覆盖全路的调度指挥管理系统,能及时、准确地为全路各级调度指挥管理人员提供现代化的调度指挥管理手段和平台。TDCS 以现代计算机技术、计算机网络技术、通信技术、多媒体技术、数据库技术为基本技术手段,实现对列车在车站和区间运行的实时监视,动态调整、自动生成列车运行三小时阶段计划,实现列车调度命令的自动下达和实迹运行图的自动描绘;实现分界口交接列车数、列车运行正点率、行车密度、早晚点原因、重点列车跟踪等实时宏观统计分析并形成相关统计报表;为各级调度人员提供列车的动态运行情况,便于机车合理调配,提高运输能力和安全程度;显示铁路路网、沿线线路、车站、重要列车和救援列车分布等主要信息,为铁路事故救援、灾害抢险、防洪等提供决策参考。 关键字:调度指挥系统、技术、计算机网络、安全程度 二、系统结构 中心局域网采用高性能的交换机组成双100M 高速以太网,所有设备通过双网卡连接到双局域网上,确保各节点数据传输的可靠性。车站局域网采用高性能的交换机组成双100M 高速以太网,所有车站设备通过双网卡连接到双局域网上,确保各节点数据传输的可靠性调度中心子系统中各子系统之间为通过双冗余局域网实现的以太网网络接口,接口为RJ45 接口规范、网络介质为 5 类双绞线,速率为100M。 调度中心子系统的局域网底层网络协议均符合IEEE802.3 标准。网络节点之间的通信高层协议采用国际通用的互联网TCP/IP 协议。 调度中心与车站之间的网络子系统为双环路广域网连接方式,中心到车站以及车站之间通过高性能的路由器组成双环路的广域网,接口转为V.35 / G.703 ,速率为2M。 调度中心与车站之间的网络子系统的广域网协议为国际互联网协议族中的OSPF协议。网络节点之间的通信高层协议采用国际通用的互联网TCP/IP 协议。

CRA型动车组和CRA型动车组列车网络控制系统的技术特点

CRH2A型动车组和CRH1A型动车组列车网络控制系统的技术特点 一、CRH2A型动车组网络控制系统: 1、网络控制概述: CRH2动车组列车网络控制系统采用贯穿全车的总线来传送信息,从而减轻了列车的重量,并且通过对列车运行以及车载设备动作的运行信息进行集中管理,可以有效地实现对司机和乘务员的辅助作用,加强对设备的保养和提高对乘客的服务质量。 2、网络控制系统的组成: CRH2动车组列车网络控制系统由监控器和控制传输部分两部分组成。硬件一体化装置,但各自独立构成网络,系统为自律分散型。 控制传输部分为双重系统,确保系统的冗余性。通信采用ARCNET网络标准。头车设置的中央装置为双重系统构成,确保其可靠性。前后中心的控制单元采用母线仲裁。 CRH动车组网络控制系统中引用额车载信息装置和类车信息终端装置构成,同时还有监控显示器以及显示控制器、车内信息显示器、IC读卡器等附属设施。 3、网络控制系统的功能: 1)牵引、制动指令传输; 2)设备启动、关闭指令的传输;3)显示灯/蜂鸣器控制指令传输;4)乘务员支持信息传输;5)服务设备控制信息传输;6)数据记录功能;7)车上试验;8)自我诊断传送线;9)远程装载功能;10)列车信息装置的自我诊断功能;11)信息显示功能。 4、网络控制系统的拓扑结构: CRH2动车组网络控制系统采用列车和车辆两级网络结构。列车网络为连接编组各车辆的通信网络,以列车运行控制为目的,以光纤和双绞线为传输介质,连接各中央装置和终端装置,采用双重环结构。车辆级网络结构为连接车厢内设备的通信网络,主要传输介质为光纤和电流环传输线。 1)列车总线 列车总线有两种类型:其一为列车信息传输线,以光纤为传输介质,连接所有中央装置和终端装置,采用ARCNET协议,传送速度为2.5Mb/s;其二为自我诊断传输网,以双绞线作为传输介质,连接中央装置和终端装置,采用HLC作为通信协议。 列车总线的设备由中央装置、终端装置、显示器、显示控制装置、IC卡架以及车内信息显示器构成。在光纤网中,中央装置和终端装置由双重环形构成的光纤连接,采用不易发生故障的双向环形网络方式。它具有向左和向右两条线路,是一种分散型的系统。如果在一个方向的环绕中检测到没有应答的情况,就向另一个方向的环绕传送,即使在2处以上的线路发生故障,环路网络断开时,也可以继续有其他连接着的正常线路进行传送,避开故障部位。 2)车辆总线: 车辆总线是指中央装置/终端装置与车辆内设备之间信息交换通道。各车的中央/终端装置与车辆设备之间的接口以光传送、电流环传送,DIO等形式传送,他们构成信息网络节点与车载设备的联系通道,车载设备与网络控制系统节点之间爱用点对点通信方式,有多种通信规格,总结如下: 终端装置——设备(牵引变流器/制动控制装置)之间的传送: ①通过点对点连接进行的光纤2线式半双工传送; ②轮询方式; ATC检查记录部和车内引导显示器、空调显示器、自动播放装置、辅助电源装置—监视器部之间的传送。

中国列车运行控制系统-ctcs系统

中国列车运行控制系统 CTCS- Chinese Train Control System CTCS概述 地面子系统可由以下部分组成:应答器、轨道电路、无线通信网络(GSM-R)、列车控制中心(TCC)/无线闭塞中心(RBC)。其中GSM-R不属于CTCS设备,但是重要组成部分。 应答器是一种能向车载子系统发送报文信息的传输设备,既可以传送固定信息,也可连接轨旁单元传送可变信息。 轨道电路具有轨道占用检查、沿轨道连续传送地车信息功能,应采用UM系列轨道电路或数字轨道电路。 无线通信网络(GSM-R)是用于车载子系统和列车控制中心进行双向信息传输的车地通信系统。 列车控制中心是基于安全计算机的控制系统,它根据地面子系统或来自外部地面系统的信息,如轨道占用信息、联锁状态等产生列车行车许可命令,并通过车地信息传输系统传输给车载子系统,保证列车控制中心管辖内列车的运行安全。 车载子系统可由以下部分组成:CTCS车载设备、无线系统车载模块。 CTCS车载设备是基于安全计算机的控制系统,通过与地面子系统交换信息来控制列车运行。 无线系统车载模块用于车载子系统和列车控制中心进行双向信息交换。 CTCS - 简介 TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,还句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。 中国铁路调度指挥系统

参考欧洲ETCS规范,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。如何吸收ETCS规范并结合中国国情更好地再创新,是值得深入研究的课题。 铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。为了满足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。 为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System的缩写“CTCS”) CTCS - 产生背景 由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网内跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。 2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规范。ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规范的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。经过长期的发展,ETCS系统目前已经比较成熟,得到了欧洲各国铁路公司和供货商的广泛认可。 中国人口密集,资源紧张,城市化发展非常迅速。一直处于发展中的中国铁路,始终存在着运量与运能之间的突出矛盾。铁路运输至今仍相当程度地制约着国民经济的快速发展,铁路仍是我国国民经济发展中的一个薄弱环节。为了缓解铁路运输的压力,铁路部门先后实行了六次大提速。 与此同时,高速铁路的蓬勃发展,对铁路的中枢神经——信号系统也提出了新的技术要求。但由于历史及技术原因,中国铁路存在多种信号系统,严重影响了运输效率。铁路信号系统迫切需要建立统一的技术标准,确立数字化、网络化、智能化、一体化发展方向,国产高速铁路列车运行控制系统标准的制定迫在眉睫。为实现高铁战略,铁道部组织相关专家开始制定适合我国国情的中国列车控制系统CTCS(Chinese Train Control System)。 在CTCS 技术规范中,根据系统配置CTCS按功能可划分为5 级。为满足客运专线和高速铁路建设需求,通过对ETCS标准的引进、消化、吸收,并结合成功应用的CTCS-2级列车运行控制系统的建设和运营经验,我国构建了具有自主知识产权的CTCS-3级列控系统标准。CTCS-3级列车运行控制系统是基于GSM-R无线通信的重要技术装备,是中国铁路技术体系和装备

列车运行控制系统毕业设计

列车运行控制系统 铁路通信信号系统是铁路运输的基础设施,是实现铁路统一指挥调度,保证列车运行安全、提高运输效率和质量的关键技术设备,也是铁路信息化技术的重要技术领域。 现代信息类技术的迅速发展。对铁路信号、通信产品和服务产生了重要影响。铁路通信和信号技术,以及现代铁路信息化系统之间的关系和作用变得密不可分。车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。 在列车运行控制技术方面,计算机、通信、控制技术与信号技术集成为一个自动化水平很高的列车运行自动控制系统(简称列控系统)。列控系统不仅在行车安全方面提供了根本保障,而且在行车自动化控制、运营效率的提高及管理自动化等方面,提供了完善的功能,并向着运输综合自动化的方向发展。列控系统技术是现代化铁路的重要标志之一。 随着列车速度的提高,列车的运行安全除了以进路保证外,还必须以专用的安全设备,监督、强迫列车(司机)执行。这些安全设备从初级的列车自动停车装置、自动告警装置、列车速度自动监督系统(或列车速度自动检查装置)发展到列车速度自动控制系统。 列车自动控制系统(A TC)—般指系统设备(包括地面设备和车载设备),同时也是一种闭塞方式,主要包括: 1.以调度集中系统CTC为核心,综合集成为调度指挥控制中心。 2.以车站计算机联锁系统为核心,综合集成为车站控制中心。 3.以列车速度防护与控制为核心,综合集成为列车(车载)运行控制系统。 4、以移动通信(例如GSM-R)平台,构建通信信号一体化的总成系统(例如CTCS)。 列车自动控制系统(A TC)的主要功能有四项: ·检查列车在线路上的位置(列车检测)。 ·形成速度信号(调整列车间隔)。 ·向列车发送速度信号或目标距离信号(信号传输)。 ·按速度或目标距离信号控制列车制动(制动控制)。 上述一至三项功能由地面没备完成,第四项功能由车载设备完成。 本章主要内容为200km/h动车组司机驾驶所需要的列控ATP技术和GSM-R系统中的无线列调功能。 第一节列控ATP系统技术原理 一.列控ATP系统的组成与功能 列控ATP是列车超速防护和机车信号系统的一体化系统,列控ATP系统主要由车载设备及地面设备两大部分组成,地面设备与车载设备一起才能完成列车运行控制的功能。 图7.1.1是列车运行控制系统地面设备原理框图。

铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法

铁路列车调度指挥系统(TDCS)、调度集中系统 (CTC)维护管理办法 第一章总则 第一条铁路列车调度指挥系统(以下简称TDCS)和调度集中系统(以下简称CTC)是全路各级调度指挥的基础装备,是重要的行车设备。为规范TDCS/CTC系统的维护管理,提高系统的稳定可靠性,确保系统正常运行,制定本办法。 第二条 TDCS/CTC系统由中国铁路总公司(以下简称总公司)、铁路局、车站三级构成,综合了铁路信号、计算机、网络通信和现代控制技术,具有点多线长、布局成网、分散维护和集中管理的特点。 第三条 TDCS/CTC系统直接涉及行车安全,必须自成体系,单独成网,独立运行,严禁与其它系统直接联网。对外提供信息和增加标准用户外终端时,应经总公司运输局电务部批准。 第四条 TDCS/CTC系统应采用网络安全技术,在与其它系统交换信息时,应采用安全可靠的网络隔离设备和措施,确保系统网络安全和信息安全。 第五条本办法适用于普速铁路TDCS/CTC、高速铁路CTC系统的维护管理。 第二章组织机构与职责

第一节组织机构 第六条 TDCS/CTC系统维护管理实行总公司、铁路局、电务段三级管理。 第七条总公司运输局电务部是全路TDCS/CTC系统的业务主管部门。电务部电务试验室负责总公司TDCS/CTC中心系统的维护管理,并指导全路TDCS/CTC系统维护工作。 第八条铁路局电务处是铁路局TDCS/CTC系统的业务主管部门。 第九条铁路局TDCS/CTC中心机房所在地应设立TDCS/CTC维护机构,维护机构一般设置在电务段,也可设置在铁路局。 第十条电务段是TDCS/CTC系统的维护单位,应设置专业技术主管人员。 第二节工作职责 第十一条总公司运输局电务部负责制定TDCS/CTC系统技术政策、技术标准及规章制度,负责全路TDCS/CTC系统网络的规划。 第十二条总公司电务部电务试验室职责: (一)负责总公司TDCS/CTC中心系统的日常维护和管理。 (二)指导和协调铁路局TDCS/CTC系统维护工作。 (三)审核铁路局对总公司及相邻局间通道变更、扩大

城市轨道交通列车自动控制系统简介-精选文档

城市轨道交通列车自动控制系统简介 、前言 随着城市现代化的发展,城市规模的不断扩大,城市轨道交通的发展已成为解决现代城市交通拥挤的有效手段,其最大特点是运营密度大、列车行车间隔时间短、安全正点。城市轨道交通列车自动控制系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 二、列车自动控制系统的组成 列车自动控制(ATC系统由列车自动防护系统(ATP、列车自动驾驶系统(ATO和列车自动监控系统(ATS三个子系统组成。 一列车自动防护( ATP-Automatic Train Protection 系统 列车自动控制系统中的ATP的子系统通过列车检测、列车间 隔控制和联锁(联锁设备可以是独立的,有的生产厂商的系统也可以包含在ATP系统中)控制等实现对列车相撞、超速和其他危险行为的防护。 二列车自动驾驶系统 ( AT0?CAutomatic Train Operation 列车自动驾驶子系统(ATO与ATP系统相互配合,负责车 站之间的列车自动运行和自动停车,实现列车的自动牵引、制动 等功能。ATP轨旁设备负责列车间隔控制和报文生成;通过轨道

电路或者无线通信向列车传输速度控制信息。ATP与ATO车载系 统负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 三)自动监控(ATS-Automatic Train Super -vision )系统 列车自动监控子系统负责监督列车、自动调整列车运行以保证时刻表的准确,提供调整服务的数据以尽可能减小列车未正点运行造成的不便。自动或由人工控制进路,进行行车调度指挥, 并向行车调度员和外部系统提供信息。ATS功能主要由位于OCC 控制中心)内的设备实现。 三、列车自动控制系统原理 一)列车自动防护(ATP) ATP是整个ATC系统的基础。列车自动防护系统(ATP亦 称列车超速防护系统,其功能为列车超过规定的运行速度时即自动制动,当车载设备接收地面限速信息,经信息处理后与实际速度比较,当列车实际速度超过限速后,由制动装置控制列车制动系统制动。 ATP通过轨道电路或者无线GPS系统检测列车实际运行位 置,自动确定列车最大安全运行速度,连续不间断地实行速度监督,实现超速防护,自动监测列车运行间隔,以保证实现规定地行车间隔。防止列车超速和越过禁止信号机等功能。 按工作原理不同,ATP子系统可分为“车上实时计算允许速

列车网络系统

目录 列车网络控制系统 (2) 一、列车网络控制系统概述 (2) 1. 列车网络系统的发展 (2) 2. 列车网络控制系统的功能 (4) 二、我国城市轨道交通列车网络控制系统的应用 (5) 1. SIBAS系统 (5) 2. MITRAC.系统 (6) 3. AGATE系统 (9) 4. TIS信息系统 (13) 5. DETECS系统 (15)

列车网络控制系统 一、列车网络控制系统概述 列车网络控制系统是列车的核心部件,它包括以实现各功能控制为目标的单元控制机、实现车辆控制的车辆控制机和实现信息交换的通信网络。列车网络系统的发展过程从系统功能来看经历了由单一的牵引控制到车辆(列车)控制,再到现在已经进入分布式控制系统的发展阶段。 1. 列车网络系统的发展 70年代末至80年代初,车载微机的雏形分别在西门子公司和BBC公司出现。开始仅仅是用于传动装置的控制,随着控制、服务对象的增多,人们把铁道系统依次划分为 6 个层次:公司管理、铁路运营、列车控制、机车车辆控制、传动控制和过程驱动,于是列车通信网络在初期的串行通信总线的基础上应运而生,并从原来不同公司的企业标准推向国际标准,逐步形成了列车通信与控制系统的标准化、模块化的硬件系列和全方位的开发、调试、维护、管理软件工具。 1988年IEC第9 技术委员会TC9成立了第22工作组WG22,其任务是制订一个开放的通信系统,从而使得各种铁道机车车辆能够相互联挂,车上的可编程电子设备能够互换。 1992年6 月, TC9WG22以委员会草案CD(committee Draft)的形式向各国发出列车通信网TCN(Train Communication Network)的征求意见稿。该稿分成4个部分:第1 部分总体结构,第 2 部分实时协议,第 3 部分多功能车辆总线MVB,第4部分绞式列车总线WTB。 总体结构把列车通信网规定为由多功能车辆总线MVB和绞式列车总线WTB 组成。MVB的传输介质可以是双绞线,也可以是光纤。在后一种场合,其跨距为2000m,最多可连接256个职能总线站。数据划分为过程数据、消息数据和监管数据。对过程数据的传输作了优化。发送的基本周期是lms或2ms。 WTB的传输介质为双绞线,最多可连接32个节点,总线跨距860m。WTB 具有列车初运行和接触处防氧化功能。发送的基本周期是25ms。 1994年5 月至1995年9 月,欧洲铁路研究所(ERRI)耗资300万美元,在瑞士的Interlaken至荷兰的阿姆斯特丹的区段,对由瑞士SBB、德国DB、意大利FS、荷兰NS的车辆编组成的运营试验列车进行了全面的TCN试验。 1999年6 月,TCN标准草案正式成为国际标准,即IEC61735。该标准对列

《铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法》(2014)330

TG /XH 211 -2014 铁路列车调度指挥系统(TDCS)、调度集中系统(CTC) 维护管理办法 第一章总则 第一条铁路列车调度指挥系统(以下简称TDCS)和调度集中系统(以下简称CTC)是全路各级调度指挥的基础装备,是重要的行车设备。为规范TDCS/CTC系统的维护管理,提高系统的稳定可靠性,确保系统正常运行,制定本办法。 第二条 TDCS/CTC系统由中国铁路总公司(以下简称总公司)、铁路局、车站三级构成,综合了铁路信号、计算机、网络通信和现代控制技术,具有点多线长、布局成网、分散维护和集中管理的特点。 第三条 TDCS/CTC系统直接涉及行车安全,必须自成体系,单独成网,独立运行,严禁与其它系统直接联网。对外提供信息和增加标准用户外终端时,应经总公司运输局电务部批准。 第四条 TDCS/CTC系统应采用网络安全技术,在与其它系统交换信息时,应采用安全可靠的网络隔离设备和措施,确保系统网络安全和信息安全。 第五条本办法适用于普速铁路TDCS/CTC、高速铁路CTC系统的维护管理。 第二章组织机构与职责 第一节组织机构 第六条 TDCS/CTC系统维护管理实行总公司、铁路局、电务段三级管理。 第七条总公司运输局电务部是全路TDCS/CTC系统的业务主管部门。电务部电务试验室负责总公司TDCS/CTC中心系统的维护管理,并指导全路TDCS/CTC系统维护工作。 第八条铁路局电务处是铁路局TDCS/CTC系统的业务主管部门。 第九条铁路局TDCS/CTC中心机房所在地应设立TDCS/CTC维护机构,维护机构一般设置在电务段,也可设置在铁路局。 第十条电务段是TDCS/CTC系统的维护单位,应设置专业技术

铁路运营列车调度指挥系统TDCS试验办法

铁路运营列车调度指挥系统TDCS试验办法 第一章总则 为适应列车调度指挥系统(TDCS)的大量运用,进一步规范列车调度指挥系统(以下简称TDCS系统)试验,特制定TDCS 系统试验办法。 第一条凡新建、改建、大修及更改后引起TDCS系统应用软件及数据变化的,在交付运用前必须按本办法进行试验。其试验要求: 1.系统设备集成商必须提供TDCS系统试验良好的测试报告。 2.TDCS系统试验分为仿真试验检查和现场试验检查两个阶段。 3.仿真试验检查必须包括所有TDCS系统功能。 4.现场TDCS系统试验:新建、大修车站必须包含所有TDCS 系统功能。局部修改可根据设备供货商出具书面的现场试验范围及项目进行试验。 5. TDCS系统软件及数据修改后,在上道运行前维管部必须安排施工技术负责人员在电务处TDCS维护站进行全面的仿真试验,每次仿真试验必须由TDCS系统软件研制单位和设备管理单位共同出具仿真试验书面报告,内容应包括:车站名称、试验日期、双方参加试验人、试验项目及内容、发现的主要问题及原因、处理的结果等,并由双方单位试验人签字。 6.维管部应安排具备II级以上联锁试验资质的工程技术人员 —1—

进行TDCS系统试验,所有试验应填写TDCS系统试验记录,其原始记录表格及数据应保存一个大修周期。 第二条发现TDCS系统软件及数据失效、危及行车安全的情况,应按照规则立即停止使用并逐级上报,确保行车安全。 第三条TDCS系统软件和数据的修改、审批。 1.运用中的TDCS系统软件及数据需要修改时,由系统集成商拟定修改方案,说明修改原因、修改内容、影响范围、试验要求等,经集团公司批准后方可实施。 2.TDCS系统集成商负责软件及数据的修改、编制、升级、检验、测试,对软件及数据终身维护并保证安全运行。 3.在使用及维修工作中发现的TDCS系统软件、数据问题产生变化时,维管部应及时向电务处报告(按附件3),由集团公司向系统集成商发函要求解决。 4.TDCS系统软件及数据软件修改的试验方案由维管部制定、审批,报集团公司批准后实施。 第四条TDCS系统联锁试验管理。 1.为了加强TDCS系统联锁试验管理,维管部应设专职(兼职)技术人员负责TDCS系统联锁管理工作。 2.对有关违反TDCS系统联锁管理规定的要求,TDCS系统联锁管理人员有权抵制,不予执行。 3.TDCS系统联锁管理人员应熟悉管内TDCS系统设备情况。 4.维管部应建立详细的TDCS系统档案。内容应包括所有的—2—

列车运行控制系统

列车运行控制系统

列车运行控制系统 -03-25 14:52:17| 分类:铁路基础知识 | 标签: |字号大中小订阅 根据列车在铁路线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整的技术装备。系统包括地面与车载两部分,地面设备产生出列车控制所需要的全部基础数据,例如列车的运行速度、间隔时分等;车载设备经过媒体将地面传来的信号进行信息处理,形成列车速度控制数据及列车制动模式,用来监督或控制列车安全运行。系统改变了传统的信号控制方式,能够连续、实时地监督列车的运行速度,自动控制列车的制动系统,实现列车的超速防护。列车控制方式能够由人工驾驶,也可由设备实行自动控制,使列车根据其本身性能条件自动调整追踪间隔,提高线路的经过能力。 新一代铁路信号设备是由列车调度控制系统及列车运行控制系统两大部分组成的。从技术发展的趋势看是向着数字化、网络化、自动化与智能化的方向发展。它的作用是保证行车安全、提高运输效率、节省能源、改进员工劳动条件。 发展中的列车控制系统将成为一个集列车运行控制、行车调度指挥、信息管理和设备监测为一体的综合业务管理的自动化系统。

列车运行控制系统的内容是随着技术发展而提高的,从初级阶段的机车信号与自动停车装置,发展到列车速度监督系统与列车自动操纵系统。 进入20世纪90年代,世界上已有许多国家开发了各自的列车运行控制系统,其中,在技术上具有代表性且已投入使用的主要有:德国的LZB系统,法国的VM300和TVM430系统,日本新干线的ATC系统等。这些系统的共同特点是:能够实现自动连续监督列车运行速度,可靠地防止人为错误操作所造成的恶性事故的发生,保证列车的高速安全运行。它们之间的主要区别体现在控制方式、制动模式及信息传输等形式方面。 中国近几年来,对国外列车控制系统进行了较深入的研究,对列车控制模式、轨道电路信息传输、轨道电缆信息传输等方面都已取得不少的成果。在开发过程中,还可借鉴欧洲列车控制系统“功能叠加”、“滚动衔接”的经验,从保证基本安全着手,分步完成并真正达到安全、高效、舒适的目标。 中国列车运行控制系统(CTCS)介绍 CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS概述

(完整版)列车运行控制系统期末考试重点总结

m d i n 列控定义:列车运行全过程或一部分作业实现自动控制的系统,可以根据列车在线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整。 列控作用:(1)保障行车安全。识别、消除或减弱危及安全的因素。发现时,向列车发出停车或降速命令(2)保证运输效率。列控系统确定列车最小安全制动距离,最大限度提高线路通过能力。 列控原理:地面设备根据前方行车条件,包括轨道占用情况、进路状态、线路状况以及调度命令,生成行车许可,通过车地通信技术传给车载设备,结合列车数据,车载设备自动计算生成超速防护曲线,并实时与列车运行速度进行比较,超速(允许速度)后及时进行控制,防止列车超速脱轨或与前行列车追尾。列控功能:1.给司机显示允许列车运行的信号、目标距离、目标速度、允许速度等。2.防止列车超过规定的限制速度运行,包括信号显示规定的限制速度、线路限速、车辆限速、临时限速等。3.自动实施速度控制,一旦列车速度超过允许速度,应实施制动控制,使列车减速甚至停车。4.防止与同一轨道运行的列车相撞或追尾。 分级特点:1.CTCS-0干线铁路装备的既有铁路信号设备;地面设备:国产轨道电路构建三显示/四显示自动闭塞,轨道电路实现;车载设备:通用机车信号,列车运行监控记录装置LKJ ;固定闭塞 2.CTCS-1由主体机车信号+安全型运行监控装置组成,面向160km/h 及以下的区段,在既有设备基础上强化改造,增加点式设备,实现列车运行安全监控功能。 3.CTCS-2提速干线、高速铁路;应答器、ZPW-2000A 轨道电路共同完成车地通信;配置车站列控中心TCC ,根据地面信号系统计算列车移动授权凭证;车载ATP+LKJ2000,凭车载信号行车;可下线在CTCS1/0线路;准移动闭塞,地面可不设区间通过信号机 4.CTCS-3主要面向高速铁路;车载配置ATP ,凭车载信号行车;RBC 基于地面信号系统计算列车移动授权;无线通信(GSM-R )传输车地信息;轨道电路检查列车占用,应答器为列车定标;地面可不设区间通过信号机;可下线在CTCS2线路;准移动闭塞;等同于ETCS-2 5.CTCS-4面向高速铁路;CTCS 车载设备ATP ,凭车载信号行车;车载设备发送列车参数,无线闭塞中心RBC 跟踪;列车位置并计算列车移动授权;取消区间轨道电路和通过信号机(移动闭塞);无线通信(例如:GSM-R 、LTE-R 等);列车完整性检查由地面RBC 和列车完整性验证系统完成; 等同于ETCS-3 加速牵引:C=F-W 匀速惰行:C=-W 减速制动:C=-(B+W) F 牵引力,B 制动力,W 阻力 牵引力分析:轮轨间的纵向水平作用力超过最大静摩擦力时,轮轨接触点将发生相对滑动,机车动轮在强大力矩的作用下快速转动,轮轨间的纵向水平作用力变成了滑动摩擦力,其数值比最大静摩擦力小很多,而列车运行速度很低,这种状态称为“空转”。 空转的危害:局部与车轮接触的钢轨将受到严重摩擦,造成严重耗损钢轨,甚至导致车轮陷入钢轨磨损产生的深坑内。该状态下牵引力反而大幅降低,钢轨和车轮都将遭受剧烈磨损。

列车调度指挥系统(TDCS)

列车调度指挥系统(TDCS) 列车调度指挥系统(TDCS) 一TDCS概念 TDCS:列车调度指挥系统 TDCS以行车调度指挥为核心,服务于铁路运输生产各部门 TDCS是铁路运输指挥信息化自动化的基础 二TDCS体系结构 1 TDCS系统目标 ? 实现铁路行车调度指挥管理现代化 ? 提高运输效率 ? 协调分界口交接工作 ? 改善调度员及车站值班员工作条件 ? 建立客货服务信息系统,提高服务质量 ? 为铁道部指挥中心提供决策依据 2 TDCS系统特点 ? 调度办公----无纸化 ? 流程管理----程序化 ? 安全检测----智能化 ? 信息交换----网络化 ? 计划调整----自动化 ? 调度指挥----无声化 ? 调度控制----集中化 3 TDCS主要功能 ? TDCS功能非常丰富,已经参与了制订列车运行计划、列车运行自动采点、自动绘制实际运行图、阶段计划自动调整、阶段计划和调度命令向车站/机车下达、自动生成车站行车日志、无线车次号较核等调度工作全过程。 4 TDCS体系结构 ? 中心逻辑处理子系统 ? 调度终端子系统 ? 车站子系统 ? 网络子系统 ? 外围接口子系统 ? 列车运行信息的宏观监视 三调度终端子系统 1 调度终端类型 ? 行调台 –单调度区段管理 ? 计划员台 –编制基本图、调阅各区段运行图 ? 值班主任台 –查询各区段运行图、查看各区段调监显示 ? 机调、货调台

–查看相应区段的调监显示 2 调度终端子系统功能 ? 站场图调监显示 ? 运行图显示 ? 阶段计划编制、调整 ? 调度命令编制、查询、下达 ? 阶段记事编制、下达 ? 车站运用车信息查询 ? 列车速报(编组简报)查询 3 调度终端系统组成 ? 调监显示子系统 ? 运行图子系统 ? 调度命令管理子系统 ? 车站信息管理子系统 ? 打印子系统 4 调监显示系统功能 ? 支持区段、单站、多站三种模式显示各车站的实际站场情况–信号状态(进站、出站、调车、区间) –列车进路状态(股道、道岔) –区间状态 ? 车次号输入、修改、删除 ? 车次早晚点显示 ? 站场图回放 5 调监显示系统原理 ? 信息来源 –静态:站场元素组成以及各元素的位置、大小 –动态:站场元素的状态编码 ? 信息解析模块 –根据静态与动态信息解析得到站场元素的实时状态 ? 显示模块 –将实时状态以直观的图形方式绘制在计算机屏幕上 6 运行图系统功能 ? 显示当前班次的实际运行图 ? 阶段计划编制、下达 ? 阶段计划调整(自动、人工) ? 修改编辑实际运行图 ? 调阅基本图 ? 绘制图形、文字注解 7 调度命令系统功能 ? 调度命令编制、存储、下达 ? 无线调度命令编制、存储、下达 ? 接收调度命令的签收回执 ? 历史调度命令查询 ? 调度命令模板编辑

中国列车运行控制系统(CTCS)

CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS系统有两个子系统,即车载子系统和地面子系统。CTCS 根据功能要求和设配置划分应用等级,分为0~4级。 1. CTCS概述 TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。 中国铁路调度指挥系统 参考欧洲ETCS规,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。如何吸收ETCS规并结合中国国情更好地再创新,是值得深入研究的课题。 铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。为了满

足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。 为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System的缩写“CTCS”) 2. 产生背景 由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。 2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规。ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。经过长期的发展,ETCS系统目前已经比较成熟,得到了欧洲各国铁路公司和供货商的广泛认可。 中国人口密集,资源紧,城市化发展非常迅速。一直处于发展中的中国铁路,始终存在着运量与运能之间的突出矛盾。铁路运输至今仍相当程度地制约着国民经济的快速发展,铁路仍是我国国民经济发展中的一个薄弱环节。为了缓解铁路运输的压力,铁路部门先后实行了六次大提速。 与此同时,高速铁路的蓬勃发展,对铁路的中枢神经——信号系统也提出了新的技术要求。但由于历史及技术原因,中国铁路存在多种信号系统,严重影

相关主题
文本预览
相关文档 最新文档