当前位置:文档之家› 焊接熔滴

焊接熔滴

焊接熔滴
焊接熔滴

1、熔滴上的作用力有哪些?

答:焊条端头的金属熔滴受以下几个力的作用:表面张力、重力、电磁收缩力、斑点压力、等离子流力和其他力。

2、什么是熔滴和熔滴过渡?

答:电弧焊时,在焊条(或焊丝)端部形成的,并向熔池过渡的液态金属滴即熔滴。熔滴通过电弧空间向熔池转移的过程即熔滴过渡。

3、熔滴过渡分为哪几种类型?各自的特点是什么?

答:熔滴过渡形式大体上可分为三种类型,即自由过渡、接触过渡和渣壁过渡。

自由过渡是指熔滴经电弧空间自由飞行,焊丝端头和熔池之间不发生直接接触。

接触过渡是焊丝端部的熔滴与熔池表面通过接触而过渡。在熔化极气体保护焊时,焊丝短路并重复地引燃电弧,这种接触过渡亦称为短路过渡。TIG 焊时,焊丝作为填充金属,它与工件间不引燃电弧,也称为搭桥过渡。

渣壁过渡与渣保护有关,常发生在埋弧焊时,熔滴是从熔渣的空腔壁上流下的。

4、什么是喷射过渡?它可分为哪几种过渡形式?

答:在纯氩或富氩保护气体中进行直流负极性熔化极电弧焊时,若采用的电弧电压较高(即弧长较长),一般不出现焊丝末端的熔滴与熔池短路现象,会出现喷射过渡。熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。根据不同的焊接条件,这类过渡可分为射滴、亚射流、射流及旋转射流等形式。

5、什么是短路过渡?它有哪些焊接特点?

答:在较小电流、低电压时,熔滴未长成大滴就与熔池短路,在表面张力及电磁收缩力的作用下,熔滴向母材过渡的过程称短路过渡。这种过渡形式电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形较好,广泛适用于薄板焊接和全位置焊接。

短路过渡的主要焊接特点有:

(1)由于采用较低的电压和较小的电流,所以电弧功率小,对焊件的热输入低,熔池冷凝速度快。这种熔滴过渡方式适宜于焊接薄板,并易于实现全位置焊接。

(2)由于采用细焊丝,电流密度大。例如:直径为1.2mm的碳钢焊丝,当焊接电流为160A 时,电流密度可达141A/mm2,是通常埋弧焊电流密度的2倍多,是焊条电弧焊的8~10倍,因此对焊件加热集中,焊接速度快,可减小焊接接头的热影响区的焊接变形。短路过渡是气体保护焊的一种典型过渡方式,焊条电弧焊也常常采用。

CO

2

6、什么是渣壁过渡?焊条电弧焊时可出现哪几种过渡形式及如何选用焊条药皮厚度?

答:渣壁过渡是指在焊条电弧焊和埋弧焊时的短路过渡形式。使用焊条电弧焊时,可以出现

四种过渡形式:渣壁过渡、大颗粒过渡(大滴状过渡)、细颗粒过渡(小滴状过渡)和短路过渡。过渡形式决定于药皮成分和厚度、焊接工艺参数、电流种类和极性等。用厚药皮焊条焊接时,焊条端头形成带一点角度的药皮套筒,它可以控制气流的方向和熔滴过渡的方向。套筒的长短与药皮厚度有关,通常药皮越厚,套筒越长,吹送力也强。但药皮层厚度应适当,过厚和过薄都不好,均可产生较大的熔滴。当药皮厚度为1.2mm时,熔滴的颗粒最小,用薄药皮焊条焊接时,不生成套筒,熔渣很少,不能包围熔化金属,而成为大颗粒或短路过渡。焊条电弧焊通常使用的焊条都是厚药皮焊条。

7、碱性焊条在大电流范围内施焊时,熔滴为哪种过渡形式?

答:碱性焊条在大电流范围内均为大颗粒或短路过渡。这种过渡特点首先是因为液体金属与熔渣的界面有很大的表面张力,不易产生渣壁过渡,同时在电弧气氛中含有30%以上的CO

2气体保护焊相似,在低电压时弧长较短,熔滴还没有长大就发生短路而出现短路气体,与CO

2

过渡。当弧长增加时,熔滴自由长大,将呈颗粒过渡。

8、酸性焊条施焊时熔滴为哪种过渡形式?为什么?

答:使用酸性焊条焊接时熔滴为细颗粒过渡,这是因为熔渣与液体金属都含有大量的氧,熔渣与液体金属的界面上表面张力较小。焊条熔化时,熔滴尺寸受电流影响较大。部分熔化金属沿着套筒内壁过渡,另一部分直接过渡。如果进一步增加电流,将提高熔滴温度,同时降低表面张力,在大电流密度时,将产生更细的熔滴过渡。这时电弧电压在一定范围内变化,对熔滴过渡影响不大。当金属与熔渣产生的气体(CO2、H2等)较多时,由于气体的膨胀,造成熔渣与液体金属爆炸,飞溅增大。

9、熔滴尺寸大小与哪些因素有关?

答:熔滴尺寸大小主要与焊接电流、弧长、极性和焊条直径、焊接材料(焊丝和药皮)等因素有关。

10、熔滴温度与哪些因素有关?

答:熔滴温度因电极材料、电源极性、焊接方法和焊接工艺参数的不同而不同。

11、控制熔滴过渡的形式及过程有哪些方法?

答:控制熔滴过渡形式及过程最常用的方法是控制焊接工艺参数。例如焊条电弧焊的短路过渡是靠压低电弧和采用较小的电流,同时还要靠人工智能和操作技巧来实现;熔化极气体保护焊,除调整气体成分和工艺参数外,尚可采用下列方法进行控制:(1)脉冲电流控制法;(2)脉动送丝控制法;(3)机械振动控制法。

什么是熔滴和熔滴过渡

弧焊时,在焊条(或焊丝)端部形成的和向熔池过渡的液态金属滴称为熔滴。熔滴通过电弧空间向熔池转移的过程称为熔滴过渡。

根据国际焊接学会(IIW)的分类,熔滴过渡主要有自由过渡、短路过渡和混合过渡三大类。

什么是熔滴的自由过渡?

熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。

⑴滴状过渡焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。滴状过渡有两种形式:

1)轴向滴状过渡手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a。

2)非轴向滴状过渡在多原子气氛中(CO

2、N

2

、H

2

),阻碍熔滴过渡的力大于熔滴的重

力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。

⑵喷射过渡熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。喷射过渡还可分为射滴过渡和射流过渡两种形式:

1)射滴过渡在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a。

2)射流过渡在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b。

什么是熔滴的短路过渡?

焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为短路过渡,见图30。熔滴的短路过渡频率可达20~200次/s。

什么是熔滴的混合过渡?

在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡。例如,管状焊丝气体保护电弧焊及大电流CO

2

气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。

试述熔滴过渡时产生飞溅的原因。

熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅。

产生飞溅的原因有以下几个方面:

⑴气体爆炸引起的飞溅用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。

⑵斑点压力引起的飞溅电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO

2气体保护焊采用直流正接时经常会发生这种类型的飞溅。

⑶短路过渡引起的飞溅 CO

气体保护焊采用短路过渡时,在短路的最后阶段,如果还继

2

续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。

焊接熔池结晶的一般规律

焊接熔池结晶的一般规律 焊接时,熔池金属的结晶与一般炼钢时钢锭的结晶一样,也是在过冷的液体金属中,首先形成晶核和晶核长大的结晶过程。生核热力学条件是过冷度而造成的自由能降低;生核的动力学条件是自由能降低的程度。 从金属学的结晶理论可知:金属的结晶过程必须是液态金属的温度降低到“理论结晶温度”以下才能进行。液态金属缓慢冷却时,当温度降到某一点便开始结晶,直到全部结晶成固态金属为止。在缓慢冷却条件下,结晶时由于放出“结晶潜热”,补偿了热的损失,所以在冷却曲线上便出现了一个水平台,平台对应的温度即为纯金属的“理论结晶温度”T。在实际生产中,总是具有一定的冷却速度,有时甚至很大,在这种情况下,纯金属的结晶过程在一定的温度过冷下才能进行。T1低于T0过冷度,冷却速度越大,则所测得的实际结晶温度越低,过冷度越大。 从图中还可以看出,液态金属座结晶开始到结晶完了是需要一定时间,这就体金属中产生一批晶核,然后这些晶核就吸附周围液体中的原子面成长,同时,还会有新的晶核不断从液体金属中产生,长大,直到全部液体都转变为固体,最后形成由许多外形不规则的晶粒所组成的多晶体。 结晶过程就是由晶核的产生和成长两个基本过程所组成。

1、 生核 熔池中晶核的生成分为:非自发晶核、自发晶核。 形成两种晶核都需要能量 1) 自发晶核 自发临界晶核所需的能量 23316Fr Er ?= πσб:新相与液相间的表面张力系数。 ΔFr :单位体积内液固两相自由能之 差。 2) 非自发形核 () 4cos cos 32316`323 θθπσ+-?=r F k E ? θ:非自发晶核的浸润角 见图3-3 θ=0℃ E K `=0 液相中早有悬浮的质点或现成表面。 它们本身就是晶核。 当θ=180°,E K `= E K 自发晶核θ=0 ~180°时,E K `/ E K =0~1说明非自发形核所需能量小于自发晶核。θ角的大小决定新相晶核与现成表面之间的表面张力。若新核与液相中厚有现成表面固体粒子的晶体结构越相似表面张力越小,θ越小,E K `越小。

焊接熔滴

1、熔滴上的作用力有哪些? 答:焊条端头的金属熔滴受以下几个力的作用:表面张力、重力、电磁收缩力、斑点压力、等离子流力和其他力。 2、什么是熔滴和熔滴过渡? 答:电弧焊时,在焊条(或焊丝)端部形成的,并向熔池过渡的液态金属滴即熔滴。熔滴通过电弧空间向熔池转移的过程即熔滴过渡。 3、熔滴过渡分为哪几种类型?各自的特点是什么? 答:熔滴过渡形式大体上可分为三种类型,即自由过渡、接触过渡和渣壁过渡。 自由过渡是指熔滴经电弧空间自由飞行,焊丝端头和熔池之间不发生直接接触。 接触过渡是焊丝端部的熔滴与熔池表面通过接触而过渡。在熔化极气体保护焊时,焊丝短路并重复地引燃电弧,这种接触过渡亦称为短路过渡。TIG 焊时,焊丝作为填充金属,它与工件间不引燃电弧,也称为搭桥过渡。 渣壁过渡与渣保护有关,常发生在埋弧焊时,熔滴是从熔渣的空腔壁上流下的。 4、什么是喷射过渡?它可分为哪几种过渡形式? 答:在纯氩或富氩保护气体中进行直流负极性熔化极电弧焊时,若采用的电弧电压较高(即弧长较长),一般不出现焊丝末端的熔滴与熔池短路现象,会出现喷射过渡。熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。根据不同的焊接条件,这类过渡可分为射滴、亚射流、射流及旋转射流等形式。 5、什么是短路过渡?它有哪些焊接特点? 答:在较小电流、低电压时,熔滴未长成大滴就与熔池短路,在表面张力及电磁收缩力的作用下,熔滴向母材过渡的过程称短路过渡。这种过渡形式电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形较好,广泛适用于薄板焊接和全位置焊接。 短路过渡的主要焊接特点有: (1)由于采用较低的电压和较小的电流,所以电弧功率小,对焊件的热输入低,熔池冷凝速度快。这种熔滴过渡方式适宜于焊接薄板,并易于实现全位置焊接。 (2)由于采用细焊丝,电流密度大。例如:直径为1.2mm的碳钢焊丝,当焊接电流为160A 时,电流密度可达141A/mm2,是通常埋弧焊电流密度的2倍多,是焊条电弧焊的8~10倍,因此对焊件加热集中,焊接速度快,可减小焊接接头的热影响区的焊接变形。短路过渡是气体保护焊的一种典型过渡方式,焊条电弧焊也常常采用。 CO 2 6、什么是渣壁过渡?焊条电弧焊时可出现哪几种过渡形式及如何选用焊条药皮厚度? 答:渣壁过渡是指在焊条电弧焊和埋弧焊时的短路过渡形式。使用焊条电弧焊时,可以出现

焊接的过渡方式

影响熔化极氩弧焊焊缝成形的因素 影响熔化极氩弧焊焊缝成形的因素 熔化极氩弧焊是得用氩气或富氩气体作为保护介质,以燃烧于焊丝工件之间的电弧作为热源的电弧焊。利用氩气或氩气与氦气的混合气体作保护气体时,称熔化级惰性气体保护焊,简称MIG(Metal Inert Gas Welding)焊;利用氩气+氧气,氩气+二氧化碳,或氩气+二氧化碳+氧气等作保护气体时,称活性气体保护焊,简称MAG(Metal Active Gas Welding)焊。一,熔化极氩弧焊熔滴过渡对焊缝成形的影响 MIG焊熔滴过渡形态可以分为短路过渡,喷射过渡,亚射流过渡,脉冲过渡等, 依据材质,焊件尺寸,焊接姿势而使用。 1.短路过渡 MIG焊熔滴短路过程与二氧化碳电弧焊熔滴短路过渡是相同的,也是使用较细的焊丝在低电压,小电流下产生的一种可得用的熔滴过渡方式,区别在于MIG焊熔滴短路过渡是在更低的电压下进行并且过渡过程稳定,飞溅少,适合进行薄板高速焊接或窨位置焊缝的焊接。其特点是采用小电流和低电压焊接时,熔滴在未脱离焊丝端头前就与熔池直接接触,电弧瞬时熄灭短路,熔滴在短路电流产生的电磁收缩力用液体金属的表面张力作用下过渡到熔池中。短路过渡形式的电弧稳定,飞溅较小,成形良好,不过熔深较浅。 2.喷射过渡 MIG焊接熔滴喷射过渡主要用于中等厚度和大厚度板水平对接和水平角接。MIG电弧能够产生熔滴喷射过渡的原因是电弧形态比较扩展。 MIG焊一般采用焊丝为阳极,而把焊丝接负或采用交流的较少。其原因有两项,一是要充分利用电弧对母材的清理作用,另一原因是为了使熔滴细化,并且能形成平稳过渡。 在小电流时,由于电磁拘束力小,熔滴主要受重力的作用而产生过渡,其颗粒较焊丝直径更大。这种焊接过渡工艺形成的焊缝易出现熔合不良,未焊透,余高过大等缺陷,因此在实际焊接中一般不用。当增大电流后,电极前端被削成尖状,熔滴得以细颗粒化,这时的熔滴过渡形态称作“喷射过渡”。 1)射滴过渡 射滴过渡时的电弧是钟罩形。铝及合金熔化极氩弧焊及钢焊丝的脉冲焊经常是射滴过渡形式。易形成未熔透等缺陷。 2)射流过渡 焊丝前端在电弧中被削成铅笔状,熔滴从前端流出,以很细小的颗粒进行过渡。其过渡频度最大可以达到每秒500次。此时强大的等离子流力和高速熔滴的冲击力在熔池中部产生很大的挖掘作用,将熔池中部的液体金属排向两边和后侧,使得电弧直接加热熔池底部的金属。于是在熔池中部形成了犹如指状的熔池凹陷,通常称为指状熔深。这种焊缝在其根部易于形成气孔,未熔通等缺陷,当面氩中加入少量二氧化碳,氧气,氦气时,可使这种指状熔深得到改善。另外,在焊接铝及铝合金时,易出现焊缝起皱现象,这需要控制好保护气体和焊接电流来避免。 3,亚射流过渡 这是介于短路过渡与射滴过渡之间的一种过渡形式。电弧特征是弧长较短。这种过渡形式主要用于平焊及横焊位置的铝及铝合金焊接。其优点是焊缝外形用熔深非常的均匀一致,可避免指状熔深。 4,脉冲过渡 在平焊位置通过脉冲参数的调整,使熔滴过渡按照所希望的方式进行。进行空间位置焊缝焊

电熔焊接操作规程通用版

操作规程编号:YTO-FS-PD171 电熔焊接操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电熔焊接操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 焊接工艺 电熔焊接的焊接参数,已由管件生产厂对所有规格的电熔管件和电熔鞍形管件在设计生产时已逐一进行了焊接工艺工艺评定,其焊接参数按照管件说明书上的参数进行焊接。 2.2.2焊接操作步骤 焊接前的准备 检查电源电压在焊机要求的范围之内,特别是发电机电压。 导线容量达到焊机输出功率的要求。 地线接地。 自动模式焊接 (1)开机。 (2)截取管材;管材端面应垂直轴线,截取误差< 5mm。 (3)去氧化皮;需焊接的管材/管件表面必须刮去>0.1mm厚度。

(4)划线;量取电熔管件的焊接深度,标在需焊接的管材/管件上。 (5)承插电熔管件;将清洁的电熔管件套在需焊接的管材/管件上。 (6)安装电熔卡具;保证同轴度。 (7)插接输出电源接头;插牢焊机输出接头,防止虚接。 (8)调整程序;调整焊接模式到‘自动’模式 (9)读取数据;用扫描器读取条码,参数在显示屏上显示。 (10)起动焊接焊接,显示屏显示焊接参数及焊接情况。,同时焊机自动计时储存。 (11)焊接完成;焊机提示,拔去焊机输出电源接头;复位后,进行下一循环。 手动模式焊接 (1-7)步骤同自动模式 (8)调整焊机到‘手动’模式。 (9)按焊机说明和管件要求的参数正确输入焊焊机。 (10)起动焊接焊接,显示屏显示焊接参数及焊接情况。,同时焊机自动计时储存。

焊接方法及自动控制

焊接方法及自动控制 一、实验目的 1. 了解弧焊机器人的组成及结构。 2. 了解示教器的各种功能,初步掌握示教器的操作方法。 3. 掌握CO2气体保护焊和富氩混合气体保护焊电弧的特性,熔滴过渡特点和焊接成形规律。 二、实验原理 弧焊机器人基本工作原理是示教再现,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数、焊接参数等,并自动生成一个连续执行全部操作的程序。完成示教后,只需给机器人一个起动命令,机器人将精确地按示教动作,一步步完成全部操作,实际示教与再现。弧焊机器人可以应用在所有电弧焊、切割技术及类似的工业方法中。最常用的范围是结构钢和不锈钢的熔化极活性气体保护焊(CO2焊、MAG 焊)、铝及特殊合金熔化极惰性气体保护焊(MIG焊)。 一套完整的弧焊机器人系统,应包括机器人机械手、焊接控制系统、变位机系统、焊件夹持装置。 三、实验设备及器材 1. 弧焊机器人一台 2. 钢板若干 3. φ1.2H0.8Mn2Si焊丝若干 4. CO2、80%Ar+20%CO2气各一瓶 5.钳子、钢板尺、工装夹具等。 四、实验方法及步骤 1. 打开机器人控制器、焊机等电源,检查焊接气体。

2. 确认机器人的动作范围内没有人员后打开伺服电源。 3. 固定工件,在示教模式下进行焊接程序的编写、跟踪、测试,进行焊接。 (1)CO2气体保护焊 调节电流、电压,进行焊接,观察电弧形态,电弧的声响、飞溅程度以及焊接成形,将焊接过程观察到的现象填入表1中。 (2)富氩混合气体保护焊 按80%Ar+20%CO2进行气体混合,采用不同的电流、电压,进行焊接,观察电弧形态,电弧声响以及焊缝成形,将其记录于表1中。 五、实验数据记录 表1 实验数据表 六、实验结果分析 1. 根据CO2气体保护焊实验结果,分析电流、电压对焊接成形的影响。 2. 对比CO2气体保护与富氩混合气体保护焊接成形的特点。

4.点焊规范参数对熔核尺寸及接头机械性能的影响(1)

点焊规范参数对熔核尺寸及接头机械性能的影响 一、实验目的 (一)研究规范参数对于熔核尺寸及接头强度的影响; (二)掌握选择点焊规范参数的一般原则和方法; (三)了解熔核的形成过程; 二、实验装置及实验材料 (一)交流点焊机(DN——200型)1台 (二)电焊电流测量仪(HDB——1型)1台 (三)拉力试验机(LJ——5000型)1台 (四)测量显微镜(15J型)4台 (五)砂轮切割机1台 (六)吹风机1台 (七)试片150×25×1.5mm,冷轧低碳钢140对 三、实验原理 电阻点焊是将准备焊接的工件放在两个电极之间,然后利用电极压紧工件,在点击压力的作用下通过焊接电流,利用工件自身电阻所产生的焦耳热来加热金属,并使焊接区中心部位的金属熔化,形成熔核。断电后,在电极压力的作用下,受热熔化的金属冷却结晶,形成焊点核心。在形成熔核的同时,熔核周围金属也被加热到高温,在点击压力作用下产生塑性变形及强烈的再结晶过程,并在结合面上形成共同晶粒。熔核周围这一环形塑性区称为塑性环;它也有助于点焊接头承受载荷。由此可知,电焊工艺过程是被焊金属受到热和机械力共同作用的过程,而施加焊接压力和通以焊接电流时形成点焊接头的基本条件。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 (一)焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IRt(J)(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2) 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。

全自动电熔焊安全操作规程

全自动电熔焊操作规程 1、操作前准备 1.1将电熔管件与管材安装对接; 1.2将焊机输出插头插入电熔管件电极; 2、接通电源 电源打开后屏幕上显示“欢迎使用永通焊机”,延时后显示输入电源电压、频率、环境温度及系统时间,延时2秒后进入主菜单,主菜单包括:一次焊接、分段焊接、数据处理、系统设置:主菜单上按上下键选择各子菜单。 一次焊接:整个焊接过程中只设定一个电压值; 分段焊接:多段焊接,焊接过程中最多可以设置五个焊接电压值; 数据处理:对焊接数据进行处理; 系统设置:设置系统必要参数。 2.1一次焊接:在主菜单上选择一次焊接,按确定键,显示一次焊接参数,如果参数无需更改,按确定键进入焊接菜单,再按确定键启动自动焊接程序。在焊接过程中按取消键,焊接中止,数据不保存。 参数设置有两种方法:手工设置及条码设置。 2.2分段焊接:在主菜单上选择分段焊接,按确定键,显示分段焊接参数,最多可选择五段焊接,分两屏显示,按上下键预览焊接参数,如无需更改,按向左键进入焊接菜单,按确定键启动自动焊接程序。 中止焊接同上,参数设置有两种方法:手工设置及条码设置。

2.3数据处理:主菜单下选择数据处理,按确定键进入数据处理菜单,数据处理菜单中可以对焊接记录数据进行处理,包括:数据查询、数据打印、数据导出、数据删除。 2.3.1数据查询:在焊机上查询选择的焊接记录数据,选择数据查询菜单,按确定键进入子菜单;选择查询的序号,按确定键进入记录数据显示菜单,用上下键翻页显示焊接记录数据; 2.3.2数据打印:打印选择的焊接记录。选择数据打印菜单,按确定键进入数据打印子菜单,输入打印起始序号,打印数量,选择打印,打印过程中如需中止打印,按取消键。 2.3.3数据导出:将所有的焊接记录以文本格式写入移动盘,导出数据文件可以通过电脑查询,编辑打印。选择数据导出菜单,按确定键进入数据导出子菜单,按照液晶屏显示提示操作。数据导出完成后,移除移动盘。 2.3.4数据删除:删除焊机中所有焊接记录,选择数据删除菜单,按确定键进入数据删除子菜单,按照液晶显示提示操作,数据删除完成后,自动退出。 2.4系统设置:主菜单中选择系统设置,按确定键进入系统设置子菜单,在系统设置子菜单中可以设置系统日期、时间、焊接补偿参数、显示环境温度。 3、操作完成 将焊接输出插头从电熔管件电极中拔出,切断焊接机电源。

PE电熔焊机操作规程

P E电熔焊机操作规程 Prepared on 24 November 2020

PE电熔焊机操作规程 一.操作面板说明 1.液晶显示屏:可显示操作提示.故障信息及时间参数。 2.递加键:数字加1或字符加值1。 3.递减键:数字减1或字符减值1。 4.右移键:光标右移一个字符。 5.下移键:光标移到下一行。 6.功能键:回到主菜单。 7.确认键:选择某一功能后按确认。 8.启动键:熔接操作的启动键。 9.急停键:可强制快速停止熔焊过程,中断主机运行。 10.绿指示灯:正常熔接过程为亮,否则灭。 11.红指示灯:电源指示灯。 12.打印机接口:用于连接打应机。 13.条码输入接口:用于连接条码输入阅读器。 14.电源开关。 二.熔接操作 1.操作前准备,将电熔管件与管材安装对接,将焊机输出插头插 入电熔管件电机。 2.接通电源,显示器显示主菜单在按↓键可以选择机器的某一项 功能,再按确认键进入该项子菜单。

(1)参数设置功能,在主菜单中选中设置项(使该项反色显示),按确认后进入参数设置菜单,此时可以对焊接参数进行设置。按↓键先选择其中某一项参数的设置,按→键可以选择某一位,按+、一键对光标烁位进行修改。焊接时间单位为 秒,冷却时间单位为分。打印功能按+号,显示器显示是,即打开打印功能,这时在焊接过程中,打印机每隔5秒,打印一次焊接参数,按-号关闭打印功能。 (2)焊接运行操作,在对机器各项参数正确设置后,可以对管件进行焊接操作,即在主菜单中选择第5项,即“运行”项,此时机器显示设置的参数,确认无误后,按下启动键,机器开始焊接操作。 (3)正常焊接时,机器从预置时间开始倒计数,当显示为 0000时,焊接完毕,机器将进行报警。此时,按下任一键后,机器自动进入冷却状态,冷却完毕后,机器同样进行报警。此时按下任一键结束报警,并返回主菜单。 (4)当其中有一路故障,将自动停机并显示出错信息。其中电流错误,检查输出插头与管件连接是否良好;电压错误,检查电源电压是否超出175-250V范围;温度错误,检查温度传感器是否断开。 (5)若要进行第二次焊接,只要重复以上过程。 三.安全注意事项 1.焊接插头与电熔管件的连接必须牢固可靠,绝对不允许松动。

交流脉冲MIG焊接电弧及其控制

交流脉冲MIG焊接电弧及其控制 杭争翔,李利 (沈阳工业大学,沈阳110023) 摘要在分析DCEP MIG焊及DCEN MIG焊电弧行为的基础上设计AC PMIG焊的控制模式。AC PMIG焊由EP极性及EN极性交替切换构成。EN极性时只是基值电流,电弧在焊丝端存在跳动及上爬现象。随着EN极性时间增加,焊丝端液体金属聚集、直径增加,显示出EN极性电弧对焊丝的熔化作用。控制合适的EN极性时间及电流值,不形成熔滴过渡现象,焊接过程稳定。EP极性时由基值时间及脉冲时间构成,脉冲电流时,电弧烁亮区呈现典型的钟罩形烁亮区,脉冲电流促使熔滴柔顺过渡,能够实现一脉一滴控制效果。在一定的送丝速度及焊接速度的条件下,AC PMIG焊接铝合金的焊缝熔深随EN比率增加而减小。关键词:交流;MIG;电弧;控制 0 前言 交流MIG焊接工艺早就被提出并且有一些研究工作,比较近期的研究工作是双凹形焊接电流控制方案,解决的主要问题是以交流电弧克服直流电弧的磁偏吹[1][2]。 关于直流且焊丝为正(DCEP)的MIG焊的电弧物理、熔滴过渡特性及焊接工艺特性已经有很多的研究工作。关于直流且焊丝为负(DCEN)MIG焊的电弧物理、熔滴过渡特性及焊接工艺特性的研究工作也有一些[3]。 DCEP 脉冲MIG(PMIG)电弧稳定,电弧力有利于熔滴过渡,电弧穿透力强,焊缝熔深大,焊接薄板时容易出现熔池下塌现象。DCEN MIG焊由于焊丝是阴极,阴极斑点在焊丝端上下跳动,电弧稳定性不好,电弧力不利于熔滴过渡,焊缝熔深浅,容易产生融合不良、凸焊道等焊接缺陷,不能稳定焊接[3]。 交流脉冲熔化极氩弧焊(AC PMIG)电弧由EP极性及EN极性构成,可以看成是交替切换DCEP PMIG电弧及DCEN MIG电弧形成的。合理利用DCEP PMIG及DCEN MIG电弧的优势,设计AC PMIG焊接电弧的控制模式,保证焊接电弧的稳定性及熔滴过渡过程的稳定性,保证焊接过程的稳定性。切换DCEP PMIG与DCEN MIG构成的AC PMIG焊,其电弧力及电弧热的特点应该介于DCEP PMIG及DCEN MIG之间,其焊缝熔深应该介于二者之间,其最大的焊缝熔深是DCEP PMIG的焊缝熔深,这样这种焊接工艺将有利于焊接薄板。随着时代发展,应产品轻量化要求,薄板特别是铝合金薄板被大量应用,其制造过程中有很多薄板需要电弧焊。焊接薄板时最容易出现的质量问题是熔池下塌。为此需要研究焊接熔池

电阻焊点焊方法和工艺

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电

全自动电熔焊操作规程

全自动电熔焊操作规程 1、操作前准备1.1将电熔管件与管材安装对接;1.2将焊机输出插头插入电熔管件电极; 2、接通电源电源打开后屏幕上显示欢迎使用永通焊机,延时后显示输入电源电压、频率、环境温度及系统时间,延时2秒后进入主菜单,主菜单包括:一次焊接、分段焊接、数据处理、系统设置:主菜单上按上下键选择各子菜单。一次焊接:整个焊接过程中只设定一个电压值;分段焊接:多段焊接,焊接过程中最多可以设置五个焊接电压值;数据处理:对焊接数据进行处理;系统设置:设置系统必要参数。2.1一次焊接:在主菜单上选择一次焊接,按确定键,显示一次焊接参数,如果参数无需更改,按确定键进入焊接菜单,再按确定键启动自动焊接程序。在焊接过程中按取消键,焊接中止,数据不保存。参数设置有两种方法:手工设置及条码设置。2.2分段焊接:在主菜单上选择分段焊接,按确定键,显示分段焊接参数,最多可选择五段焊接,分两屏显示,按上下键预览焊接参数,如无需更改,按向左键进入焊接菜单,按确定键启动自动焊接程序。中止焊接同上,参数设置有两种方法:手工设置及条码设置。2.3数据处理:主菜单下选择数据处理,按确定键进入数据处理菜单,数据处理菜单中可以对焊接记录数据进行处理,包括:数据查询、数据打印、数据导出、数据删除。2.3.1数据查询:在焊机上查询选择的焊接记录数据,选择数据查询菜单,按确定键进入子菜单;选择查询的序号,按确定键进入记录数据显示菜单,用上下键翻页显示焊接记录数据;2.3.2数据打印:打印选择的焊接记录。选择数据打印菜单,按确定键进入数据打印子菜单,输入打印起始序号,打印数量,选择打印,打印过程中如需中止打印,按取消键。2.3.3数据导出:将所有的焊接记录以文本格式写入移动盘,导出数据文件可以通过电脑查询,编辑打印。选择数据导出菜单,按确定键进入数据导出子菜单,按照液晶屏显示提示操作。数据导出完成后,移除移动盘。2.3.4数据删除:删除焊机中所有焊接记录,选择数据删除菜单,按确定键进入数据删除子菜单,按照液晶显示提示操作,数据删除完成后,自动退出。2.4系统设置:主菜单中选择系统设置,按确定键进入系统设置子菜单,在系统设置子菜单中可以设置系统日期、时间、焊接补偿参数、显示环境温度。 3、操作完成将焊接输出插头从电熔管件电极中拔出,切断

熔化极CO2焊接过程熔滴过渡

熔化极CO2焊接过程熔滴过渡 成型二班 一、实验目的 通过实验了解CO2气体保护焊设备的组成,熟悉CO2气体保护操作过程和焊接规范调整方法,对几种典型熔滴过渡的形成条件及其对焊缝成形和焊接飞溅的影响有更深入的了解。 二、概述 在熔化极气体保护电弧焊接方法中,惰性气体保护焊(MIG焊)和二氧化碳气体保护焊(CO2焊)占有重要地位。在熔化极电弧焊过程中,焊丝端部金属受热熔化形成熔滴,并在多种力联合作用下向熔池过渡。熔滴过渡(Metal Transfer)对焊接过程稳定性、焊缝成形、焊接飞溅等有显著影响。在不同的弧焊工艺条件下,化极气体保护焊熔滴过渡呈现不同的形式: 自由过渡一一熔滴经电弧空间飞行至熔池,焊丝端部与熔池不发生直接接触; 接触过渡一一焊丝端部熔滴与熔池表面发生触进而过渡; 在细丝小电流低电压CO2焊接过程中,短路过渡是典型的熔滴过渡方式,属于接触过渡类型。短路过渡CO2焊接的规范参数参见表2-1和图2-1。在焊接过程中,不断重复燃弧、短路、液桥收缩和熔滴过渡、电弧复燃几个阶段,如图2-2所示。 当电弧电压较高时,焊丝端部熔化后不能接融到熔池形成短路,熔滴长大,电弧力的作用使熔滴产生大滴排斥过渡。 表2-1 低碳钢CO焊短路过渡焊接规范参数 序号焊丝直径/mm 电弧电压/V 焊接电流/A 1 0.8 18 100-110 2 1.2 19 120-135 3 1.6 20 140-180

三、实验系统 1)熔化极气体保护电弧焊设备 熔化极气体保护电弧焊接实验系统由弧焊电源、送丝机构、供气系统、焊枪、防止被焊工件的移动工作台等几部分组成,如图2-3所示。选用全数字熔化极气体保护电弧焊机(可焊材料:碳钢、不锈钢;适用直径:12/1.4/1.6mm;弧焊电源输出特性:恒压;输出电压可调范围17-41V;额定输出电流:500A)。 图2-3 熔化极气体保护电弧焊基本装置示意图 2)弧焊过程波形/数据采集系统 波形采集系统如图2-4所示。实验者可以从示波器面上直接实时观察熔滴过渡的波形,也可用计算机存储过渡电压电流参数,离线观察。

电阻焊常用方法

电阻焊常用方法:点焊、缝焊、凸焊、对焊 一、点焊 点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。 点焊的工艺过程: 1、预压,保证工件接触良好。 2、通电,使焊接处形成熔核及塑性环。 3、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。 二、缝焊 缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。

缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。 三、对焊 对焊是使焊件沿整个接触面焊合的电阻焊方法。 四、凸焊 凸焊是点焊的一种变型形式;在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。 1、电阻对焊 电阻对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法, 电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。

2、闪光对焊 闪光对焊是将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。 闪光焊的接头质量比电阻焊好,焊缝力学性能与母材相当,而且焊前不需要清理接头的预焊表面。闪光对焊常用于重要焊件的焊接。可焊同种金属,也可焊异种金属;可焊0.01mm 的金属丝,也可焊20000mm的金属棒和型材。 电阻焊接的品质是由以下4个要素决定的: 1.电流, 2.通电时间, 3.加压力, 4.电阻顶端直径

电熔焊接操作规程

电熔焊接操作规程 Through the process agreeme nt to achieve a uni fied action policy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly.

编制:____________________ 审核:____________________ 批准:____________________

电熔焊接操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 焊接工艺 电熔焊接的焊接参数,已由管件生产厂对所有规格的电 熔管件和电熔鞍形管件在设计生产时已逐一进行了焊接工 艺工艺评定,其焊接参数按照管件说明书上的参数进行焊接。 222焊接操作步骤 焊接前的准备 检查电源电压在焊机要求的范围之内,特别是发电机电压。 导线容量达到焊机输出功率的要求。 地线接地。 自动模式焊接 (1 )开机。 (2)截取管材;管材端面应垂直轴线,截取误差v 5mm (3)去氧化皮;需焊接的管材/管件表面必须刮去〉

0.1mm厚度。 (4)划线;量取电熔管件的焊接深度,标在需焊接的管材/管件上。 (5)承插电熔管件;将清洁的电熔管件套在需焊接的管材/管件上。 (6 )安装电熔卡具;保证同轴度。 (7)插接输出电源接头;插牢焊机输出接头,防止虚接。 (8 )调整程序;调整焊接模式到‘自动’模式 (9)读取数据;用扫描器读取条码,参数在显示屏上显示。 (10)起动焊接焊接,显示屏显示焊接参数及焊接情况。同时焊机自动计时储存。 (11 )焊接完成;焊机提示,拔去焊机输出电源接头;复位后,进行下一循环。 手动模式焊接 (1 - 7 )步骤同自动模式 (8 )调整焊机到‘手动’模式。

热熔连接、电熔连接操作规程

热熔对接连接操作规程 1、目的 为规范热熔连接操作程序,提高PE管道连接的可靠性,保证焊接质量,特制 定本规程。 2、焊接准备 焊接准备是焊接前必须进行的步骤,操作人员必须予以充分的重视。 设备应置于平整、干燥、并有足够操作空间的场地,否则,应采取相应的措施。检查整个机具各个部位的紧固件有无脱落或松动,并予以必要处理。 检查整机电器线路有无损坏,并予以必要处理。 检查液压箱内液压油是否充足。 确认电源与机具输入要求相匹配。 将与管材规格一致的卡瓦装入机架。 准备足够的支撑物,以保证待焊接管材可与机架中心线处于同一高度,并能方便移动。 将焊机各部件按照要求插装连接好并检查无误。 设定加热板温度至220±10℃。 接通焊机电源,打开加热板、铣刀和油泵开关并试运行,检查各自工作是否正常。 3、焊接过程 在焊接过程中,操作人员应参照焊接工艺卡各项参数进行操作。特殊情况下,应根据天气、环境温度等变化对其作适当调整。 核对欲焊接的管材规格、压力等级是否正确,检查其表面是否有磕、碰、划伤,如伤痕深度超过管材壁厚的10%,应予以局部切除后方可使用。 用干净的布清除两管端的油污或异物。 将欲焊接的管材置于机架卡瓦内,使两端伸出的长度相当(在不影响铣削和加热的情况下应尽可能短),管材机架以外的部分用支撑物托起,使管材轴线与机架中心线处于同一高度,然后用卡瓦紧固好。 置入铣刀,先打开铣刀电源开关,然后在合拢管材两端,并加以适当的压力,直到两端均有连续的切屑出现后,撤掉压力,略等片刻,再退开活动架,关掉铣刀电源。切屑厚度应为左右,通过调节铣刀片的高度可调节切屑厚度。 取出铣刀,合拢两管端,检查两端对齐情况。管材两端的错位量不应超过壁厚的10%,通过调整管材直线度和松紧卡瓦可予以改善;管材两端面间的间隙D﹤225㎜时为㎜,225≤D﹤400㎜时为㎜,D≥400㎜时为1㎜,否则应再次铣削,直到满足上述要求。 将加热板表面的灰尘和残留物清除干净(应特别注意不能划伤加热板表面的不粘层),检查加热板温度是否达到设定值。 加热板温度达到设定值后,放入机架,施加规定的压力,直到两边最小卷边达到规定。 将压力减小到接触压力,继续加热规定的时间。 时间达到后,退开活动架,迅速取出加热板,然后合拢两管端,其时间间隔应尽可能短,最长不应超过切换时间。

焊接电弧光谱的分布特征

焊接电弧光谱的分布特征 柳刚李俊岳李桓范荣焕云绍辉 摘要在试验的基础上,给出了焊接电弧光谱的频域及空间分布的测试结果,分析了焊接电弧光谱的结构。通过分析得出了TIG焊电弧光谱空间分布的差异性和MIG焊电弧光谱空间分布的相似性,着重指出MIG焊电弧光谱与熔滴过渡之间存在密切关系。此外,还对焊接电弧光谱特征的应用提出了方向。 叙词:焊接电弧光谱特征分布熔滴过渡 中图分类号:TG44 SPECTRAL DISTRIBUTION CHARACTERISTICS OF WELDING ARC Liu Gang Li Junyue Li HuanFan Ronghuan Yun Shaohui (Tianjin University) Abstract On the basic of experiments,the testing results of welding arc cross spectrum distribution of various arc cross section along wavelength window are presented.The sepctrum structures and the differences between TIG and MIG welding arc are analysed.The corresponding relations between metal transfer and welding arc spectrum structure are pointed out especially.Meanwhile,the potential applications have been also proposed. Key words:Welding arc Spectrum characteristics Distribution Metal transfer 0 前言 目前,焊接质量控制与焊接自动化业已成为焊接领域发展的前沿,为了实现上述目标,需要对焊接电弧内部的物理过程及现象,进行更为充分的研究以获取更多的信息。由于焊接电弧的特殊性,常用的传感方法在检测它时都遇到了困难,而应用光谱来传感焊接电弧,则具有信息丰富、响应迅速、不干扰电弧和适于实时控制等优点[1,2],因此受到日益广泛的重视。将电弧光谱应用于焊接过程控制的前提,是须首先获得焊接电弧的光谱特征,从中发现与焊接电弧过程尤其是熔滴过渡之间的联系,从而为后续工作提供理论指导。因此,焊接电弧光谱特征的研究具有重要的理论和实用意义。 1 焊接电弧光谱测量装置、原理及试验方法 1.1 测量装置 为了测定焊接电弧的光谱特征,建立了如图1所示的测量装置[2]。 图1 焊接电弧光谱测量装置

PE 热熔焊接作业指导书要点

PE 热熔焊接作业指导书 一、PE管热熔全自动焊接作业指导书 1.1工序流程图 → → → → 2、施工前的准备工作 2、1、施工图的准备 施工是按照设计图纸来进行的。当设计单位出有效的施工图后,施工单位应到施工现场,具体了解情况,对不能照图施工的部分要与设计单位交底,协商,确定是否能采取特殊的施工工艺或作局部设计变更。同时,还应根据图纸进行材料、设备的采购,对施工进度安排。 2、2人员培训 从事聚乙烯燃气管道连接的操作人员,在上岗前必须进行专门培训,经过考试和技术评定合格后方可上岗操作。 参与培训人员除了在燃气知识、聚乙烯专用料特性、电工知识、聚乙烯熔接设备、聚乙烯燃气管道施工技术等理论知识方面进行培训,并参加考核。 2、3施工机具的准备 根据施工工艺的要求,准备相应的施工机具。因我国对聚乙烯管道的焊接质量和熔接参数无统一标准,不同生产厂家生产的管材、管件熔接参数不同。为达到可靠的熔接效果,

在选择设备上还须认真选型,选质量好的产品,在熔接效果上,要可靠许多。施工机具分为电熔焊机和热熔对接焊机两类。热熔焊接所用机具如下: 1、全自动热熔焊机 技术参数:管材直径范围60~160mm 最大对接压力 43bar 可焊管材料 PE—HD.PP 工作温度-5℃~+40℃ 2、30Kw柴油发电机 3、焊缝外观检验尺 3、0管材、管件的验收 3、1检查产品有无出厂合格证,出厂检验报告。 3、2对外观进行检查。检查管材内外表面是否清洁光滑,是否有沟槽、画上、凹陷、杂质和颜色不均匀等。 3、3长度检查。管的长度应均匀一致,误差不超过正负20 mm。逐一检查管口端面是否与管材的轴线垂直,是否存在有气孔。凡长短不同的管材,在未查明原因前应不予验收。 3、4燃气用聚乙烯管应为黄色和黑色,当为黑色时管口必须有醒目的黄色色条,同时管材上应有连续的、间距不超过2m 的永久性标志,写明用途、原材料牌号、标准尺寸比、规格尺寸、标准代号和顺序号、生产厂名或商标、生产日期。3、5不园度检查:取三个试样的实验结果的算术平均数作为

电熔焊接操作规程

编号:CZ-GC-07038 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电熔焊接操作规程 Electric fusion welding procedure

电熔焊接操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 焊接工艺 电熔焊接的焊接参数,已由管件生产厂对所有规格的电熔管件和电熔鞍形管件在设计生产时已逐一进行了焊接工艺工艺评定,其焊接参数按照管件说明书上的参数进行焊接。 2.2.2焊接操作步骤 焊接前的准备 检查电源电压在焊机要求的范围之内,特别是发电机电压。 导线容量达到焊机输出功率的要求。 地线接地。 自动模式焊接 (1)开机。 (2)截取管材;管材端面应垂直轴线,截取误差<5mm。 (3)去氧化皮;需焊接的管材/管件表面必须刮去>0.1mm厚

度。 (4)划线;量取电熔管件的焊接深度,标在需焊接的管材/管件上。 (5)承插电熔管件;将清洁的电熔管件套在需焊接的管材/管件上。 (6)安装电熔卡具;保证同轴度。 (7)插接输出电源接头;插牢焊机输出接头,防止虚接。 (8)调整程序;调整焊接模式到‘自动’模式 (9)读取数据;用扫描器读取条码,参数在显示屏上显示。 (10)起动焊接焊接,显示屏显示焊接参数及焊接情况。,同时焊机自动计时储存。 (11)焊接完成;焊机提示,拔去焊机输出电源接头;复位后,进行下一循环。 手动模式焊接 (1-7)步骤同自动模式 (8)调整焊机到‘手动’模式。

熔池分析

焊接溶池形状分析法在水平固定管焊接培训中的应用 姜新成张红 (新疆电力焊接技术培训中心,乌鲁木齐,830026) Application of the Analytical Methods of Shapes of Welding Molten Pool in Training of Horizontally Fixed Pipeline Welding Jiang Xincheng Zhang Hong (Xinjiang Electric Welding Technology Training Center, Urumqi, PC: 830026) 摘要水平固定管焊接技术是焊工基础培训的难点和关键环节,容易产生仰焊位置打底内凹;平焊位置打底收弧处弧坑裂纹、未焊透;平焊盖面未熔合,满溢、过烧;断口内部检查有夹渣、未溶合等焊接缺陷。本人根据多年的教学经验总结出采用熔池形状分析对比的讲授方法,分析焊接操作技术的细微动作,了解几种常见焊接缺陷产生时的溶池形状,指导学员通过观察焊接过程中熔池的形状和熔孔的大小,来确度焊条的送进位置。实践证明,这种方法把复杂的理论描述简单化,让学员很快领会教练意图,掌握焊接操作技术。 关键词:焊接缺陷溶池缺陷控制 Abstract:The technology of horizontally fixed pipeline welding is a difficult point and key step in the welders’ basic training courses. It easily causes such weld defects as internal dents in backing weld at overhead welding positions, crater cracks and incomplete penetration at the positions of retreating the arc in backing weld at down hand positions, lack of fusion, flooding and overheating in cosmetic welding as well as slag inclusion and incomplete fusion in fractures. The authors summarized the teaching methods of applying the analytical comparison of shapes of molten pools, analyzed subtle movements in welding skills, investigated shapes of molten pools when some common weld defects appear and instructed trainees to determine the positions of welding rods through investigations of shapes of molten pools and the sizes of fusing holes. Practice has proven that this teaching method can simplify the complex theoretical descriptions and make trainees appreciate the drill masters’ intentions quickly and grasp welding skills. Key Words: welding; defects; molten pool; defects control 单面焊双面成形水平固定管焊接,难度大,技术要求高,焊接过程中溶池形状小,焊条的送进往往需要在毫米间移动,教学中仅靠示范很难让学员掌握要领。现有教材只是从焊条角度、运条方法讲述了操作要领,还没有通过分析熔池形状讲解焊接技术要领的教材。焊接过程中溶池变化快,学员只知道焊条角度和运条方法也很难根据实际情况准确地判断下一次焊

相关主题
文本预览
相关文档 最新文档