当前位置:文档之家› Detection of Nine M8.0-L0.5 Binaries The Very Low Mass Binary Population and its Implicatio

Detection of Nine M8.0-L0.5 Binaries The Very Low Mass Binary Population and its Implicatio

Detection of Nine M8.0-L0.5 Binaries The Very Low Mass Binary Population and its Implicatio
Detection of Nine M8.0-L0.5 Binaries The Very Low Mass Binary Population and its Implicatio

a r X i v :a s t r o -p h /0301095v 1 6 J a n 2003

Submitted 07/22/02,accepted 12/18/02,to appear in the April 10,2003issue of the Astrophysical Journal

Preprint typeset using L A T E X style emulateapj v.25/04/01

DETECTION OF NINE M8.0-L0.5BINARIES:THE VERY LOW MASS BINARY POPULATION AND ITS IMPLICATIONS FOR BROWN DWARF AND VLM STAR FORMATION

Laird M.Close 1,Nick Siegler 1,Melanie Freed 1,&Beth Biller 1

lclose@https://www.doczj.com/doc/07211645.html,

1Steward

Observatory,University of Arizona,Tucson,AZ 85721

Submitted 07/22/02,accepted 12/18/02,to appear in the April 10,2003issue of the Astrophysical Journal

ABSTRACT

Use of the highly sensitive Hokupa’a/Gemini curvature wavefront sensor has allowed direct adaptive optics (AO)guiding on very low mass (VLM)stars with SpT=M8.0-L0.5.A survey of 39such objects detected 9VLM binaries (7of which were discovered for the ?rst time to be binaries).Most of these systems are tight (separation <5AU)and have similar masses (?Ks <0.8mag;0.852.4mag and consist of a VLM star orbited by a much cooler L7-L8brown dwarf companion.Based on this ?ux limited (Ks <12mag)survey of 39M8.0-L0.5stars (mainly from the 2MASS sample of Gizis et al.(2000))we ?nd a sensitivity corrected binary fraction in the range 15±7%for M8.0-L0.5stars with separations >2.6AU.This is slightly less than the 32±9%measured for more massive M0-M4dwarfs over the same separation range (Fischer &Marcy 1992).It appears M8.0-L0.5binaries (as well as L and T dwarf binaries)have a much smaller semi-major axis distribution peak (~4AU)compared to more massive M and G dwarfs which have a broad peak at larger ~30AU separations.We also ?nd no VLM binary systems (de?ned here as systems with M tot <0.185M ⊙)with separations >15AU.

We brie?y explore possible reasons why VLM binaries are slightly less common,nearly equal mass,and much more tightly bound compared to more massive binaries.We investigate the hypothesis that the lack of wide (a >20AU)VLM/brown dwarf binaries may be explained if the binary components were given a signi?cant di?erential velocity kick.Such a velocity kick is predicted by current “ejection”theories,where brown dwarfs are formed because they are ejected from their embryonic mini-cluster and therefore starved of accretion material.We ?nd that a kick from a close triple or quadruple encounter (imparting a di?erential kick of ~3km/s between the members of an escaping binary)could reproduce the observed cut-o?in the semi-major axis distribution at ~20AU.However,the estimated binarity ( 5%;Bate et al.(2002))produced by such ejection scenarios is below the 15±7%observed.Similarly,VLM binaries could be the ?nal hardened binaries produced when a mini-cluster decays.However,the models of Sterzik &Durisen (1998);Durisen,Sterzik,&Pickett (2001)also cannot produce a VLM binary fraction above ~5%.The observed VLM binary frequency could possibly be produced by cloud core fragmentation.Although,our estimate of a fragmentation-produced VLM binary semi-major axis distribution contains a signi?cant fraction of “wide”VLM binaries with a >20AU in contrast to observation.In summary,more detailed theoretical work will be needed to explain these interesting results which show VLM binaries to be a signi?cantly di?erent population from more massive M &G dwarf binaries.

Subject headings:instrumentation:adaptive optics —binaries:general —stars:evolution —stars:

formation —stars:low-mass,brown dwarfs

1.introduction

Since the discovery of Gl 229B by Nakajima et al.(1995)there has been intense interest in the direct detection of brown dwarfs and very low mass (VLM)stars and their companions.According to the current models of Burrows et al.(2000)and Chabrier et al.(2000),stars with spectral types of M8.0-L0.5will be just above the stellar/substellar boundary.However,modestly fainter companions to such primaries could themselves be substellar.Therefore,a sur-vey of M8.0-L0.5stars should detect binary systems con-sisting of VLM primaries with VLM or brown dwarf sec-ondaries.

The binary frequency of M8.0-L0.5stars is interesting in its own right since little is known about how common M8.0-L0.5binary systems are.It is not clear currently if the M8.0-L0.5binary separation distribution is similar to that of M0-M4stars;in fact,there is emerging evidence that very low mass L &T dwarf binaries tend to have

smaller separations and possibly lower binary frequencies compared to more massive M and G stars (Mart′?n,Brand-ner,&Basri 1999;Reid et al.2001a;Burgasser et al.2003).Despite the strong interest in such very low mass (VLM)binaries (M tot <0.185M ⊙),only 24such systems are known (see Table 4for a complete list).A brief overview of these systems starts with the ?rst double L dwarf system which was imaged by HST/NICMOS by Mart′?n,Brand-ner,&Basri (1999).A young spectroscopic binary brown dwarf (PPL 15)was detected in the Pleiades (Basri &Mart′?n (1999))but this spectroscopic system is too tight to get separate luminosities for each component.A large HST/NICMOS imaging survey by Mart′?n et al.(2000)of VLM dwarfs in the Pleiades failed to detect any brown dwarf binaries with separations >0.2′′( 27AU).Detec-tions of nearby ?eld binary systems were more successful.The nearby object Gl 569B was resolved into a 0.1′′(1AU)binary brown dwarf at Keck and the 6.5m MMT (Mart′?n 1

2Close et al.

et al.(1999);Kenworthy et al.(2001);Lane et al.(2001)). Keck seeing-limited NIR imaging marginally resolved two more binary L stars(Koerner et al.(1999)).A survey with WFPC2detected four more(three newly discovered and one con?rmed from Koerner et al.(1999))tight equal mag-nitude binaries out of a sample of20L dwarfs(Reid et al. (2001a)).From the same survey Reid et al.(2002)found a M8binary(2M1047;later discovered independently by our survey).Guiding on HD130948with adaptive optics (AO),Potter et al.(2002a)discovered a companion binary brown dwarf system.Recently,Burgasser et al.(2003) have detected two T dwarf binaries with HST.Finally,12 more L dwarf binaries have been found by analyzing all the currently remaining HST/WFPC2data collected on L dwarfs(Bouy et al.2003).Hence,the total number of binary VLM stars and brown dwarfs currently known is just24.Of these,all but one have luminosities known for each component,since one is a spectroscopic binary. Here we have carried out our own high-spatial resolu-tion binary survey of VLM stars employing adaptive op-tics.In total,we have detected12VLM binaries(10of these are new discoveries)in our AO survey of69VLM stars.Three of these systems(LP415-20,LP475-855, &2MASSW J1750129+442404)have M7.0-M7.5spectral types and are discussed in detail elsewhere(Siegler et al. 2003).In this paper,we discuss the remaining9cooler binaries with M8.0-L0.5primaries detected in our survey (referred herein as M8.0-L0.5binaries even though they may contain L1-L7.5companions;see Table2for a com-plete list of these systems).

Two of these systems(2MASSW J0746425+200032 and2MASSW J1047127+402644)were in our sample but were previously imaged in the visible by HST and found to be binaries(Reid et al.(2001a,2002)). Here we present the?rst resolved IR observations of these two systems and new astrometry.The seven remaining systems were all discovered to be bina-ries during this survey.The?rst four systems dis-covered in our survey(2MASSW J1426316+155701, 2MASSW J2140293+162518,2MASSW J2206228-204705, and2MASSW J2331016-040618)have brief descriptions in Close et al.(2002b).However,we have re-analyzed the data from Close et al.(2002b)and include it here for completeness with slightly revised mass estimates. The very interesting M8/L7.5system LHS2397a discov-ered during this survey is discussed in detail elsewhere (Freed,Close,&Siegler2003)yet is included here for completeness.The newly discovered binaries2MASSW J1127534+741107and2MASSW J1311391+803222are presented here for the?rst time.

These nine M8.0-L0.5binaries are a signi?cant addi-tion to the other very low mass M8-T6binaries known to date listed in Table4(Basri&Mart′?n1999;Mart′?n, Brandner,&Basri1999;Koerner et al.1999;Reid et al. 2001a;Lane et al.2001;Potter et al.2002a;Burgasser et al.2003;Bouy et al.2003).With relatively short periods our new systems will likely play a signi?cant role in the mass-age-luminosity calibration for VLM stars and brown dwarfs.It is also noteworthy that we can start to charac-terize this new population of M8.0-L0.5binaries.We will outline how VLM binaries are di?erent from their more massive M and G counterparts.Since VLM binaries are so tightly bound we hypothesize that very little dynami-cal evolution of the distribution has occurred since their formation.We attempt to constrain the formation mech-anism of VLM stars and brown dwarfs from our observed semi-major axis distribution and binarity statistics.

2.an ao survey of nearby m8.0-l0.5field stars As outlined in detail in Close et al.(2002a),we utilized the University of Hawaii curvature adaptive optics system Hokupa’a(Graves et al.1998;Close et al.1998),which was a visitor AO instrument on the Gemini North Telescope. This highly sensitive curvature AO system is well suited to locking onto nearby,faint(V~20),red(V?I>3), M8.0-L0.5stars to produce~0.1′′images(which are close to the0.07′′di?raction-limit in the K′band).We can guide on such faint(I~17)targets with a curvature AO system(such as Hokupa’a)by utilizing its zero-read noise wavefront sensor(for a detailed explanation of how this is possible see Siegler,Close,&Freed(2002)).We utilized this unique capability to survey the nearest extreme M and L stars(M8.0-L0.5)to characterize the nearby VLM binary population.

Here we report the results of all our Gemini observing runs in2001and2002.We have observed all32M8.0-M9.5stars with Ks<12mag from the list of Gizis et al. (2000).It should be noted that the M8.0-M9.5list of Gizis et al.(2000)has some selection constraints:galactic lati-tudes are all>20degrees;and from0

Nine of our39targets were clearly tight binaries(sep< 0.5′′).We observed each of these objects by dithering over4di?erent positions on the QUIRC1024×1024NIR (1?2.5μm)detector(Hodapp et al.1996)which has a 0.0199′′/pixel plate scale at Gemini North.At each po-sition we took3x10s exposures at J,H,K′,and3x60s exposures at H,resulting in unsaturated120s exposures at J,H,and K′with a deep720s exposure at H band for each binary system.

3.reductions

We have developed an AO data reduction pipeline in the IRAF language which maximizes sensitivity and image res-olution.This pipeline is standard IR AO data reduction and is described in detail in Close et al.(2002a).

Unlike conventional NIR observing at an alt-az telescope (like Gemini),we disable the Cassegrain rotator so that the pupil image is?xed w.r.t.the detector.Hence the optics are not rotating w.r.t.the camera or detector.In this manner the residual static PSF aberrations are?xed in the AO images enabling quick identi?cation of real com-panions as compared to PSF artifacts.The pipeline cross-correlates and aligns each image,then rotates each image so north is up and east is to the left,then median combines

Very Low Mass Binaries3

the data with an average sigma clip rejection at the±2.5σlevel.By use of a cubic-spline interpolator the script pre-serves image resolution to the<0.02pixel level.Next the custom IRAF script produces two?nal output images, one that combines all the images taken and another where only the sharpest50%of the images are combined.

This pipeline produced?nal unsaturated120s expo-sures at J(F W HM~0.15′′),H(F W HM~0.14′′), and K′(F W HM~0.13′′)with a deep720s exposure (F W HM~0.14′′)at H band for each binary system.The dithering produces a?nal image of30x30′′with the most sensitive region(10×10′′)centered on the binary.Figures 1and2illustrates K′images of each of the systems.

In Table2we present the analysis of the images taken of the9new binaries from our Gemini observing runs. The photometry was based on DAOPHOT PSF?tting photometry(Stetson1987).The PSFs used were the re-duced12x10s unsaturated data from the next(and pre-vious)single VLM stars observed after(and before)each binary.The PSF stars always had a similar IR brightness, a late M spectral type,and were observed at a similar airmass.The resulting?magnitudes between the compo-nents are listed in Table2;their errors in?mag are the di?erences in the photometry between two similar PSF stars.The individual?uxes were calculated from the?ux ratio measured by DAOPHOT.We made the assumption ?K′~?Ks,which is correct to0.02mag according the models of Chabrier et al.(2000).Assuming?K′=?Ks allows us to use the2MASS integrated Ks?uxes of the blended binaries to solve for the individual Ks?uxes of each component(see Table3).

The platescale and orientation of QUIRC was deter-mined from a short exposure of the Trapezium cluster in Orion and compared to published positions as in Simon, Close,&Beck(1999).From these observations a platescale of0.0199±0.0002′′/pix and an orientation of the Y-axis (0.3±0.3degrees E of north)was determined.Astrom-etry for each binary was based on the PSF?tting.The astrometric errors were based on the range of the3values observed at J,H,and K′and the systematic errors in the calibration added in quadrature.

4.analysis

4.1.Are the companions physically related to primaries? Since Gizis et al.(2000)only selected objects>20de-grees above the galactic plane,we do not expect many background late M or L stars in our images.In the3.6x104 square arcsecs already surveyed,we have not detected a very red J?Ks>0.8mag background object in any of the?elds.Therefore,we estimate the probability of a chance projection of such a red object within<0.5′′of the primary to be<2x10?

5.Moreover,given the rather low space density(0.0057±0.0025pc?3)of L dwarfs(Gizis et al.2001),the probability of a background L dwarf within <0.5′′of any of our targets is<10?1

6.We conclude that all these very red,cool objects are physically related to their primaries.

4.2.What are the distances to the binaries? Unfortunately,there are no published trigonometric par-allaxes for six of the nine systems.The three systems with parallaxes are:2M0746(Dahn et al.2002);LHS2397a (van Altena,Lee,&Ho?eit1995);and2M2331(associ-ated with a Hipparcos star HD221356Gizis et al.(2000)). For the remaining six systems without parallaxes we can estimate the distance based on the trigonometric paral-laxes of other well studied M8.0-L0.5stars from Dahn et al.(2002).The distances of all the primaries were deter-mined from the absolute Ks magnitudes(using available 2MASS photometry for each star with trigonometric par-allaxes from Dahn et al.(2002)),which can be estimated by M Ks=7.71+2.14(J?Ks)for M8.0-L0.5stars(Siegler et al.2003).This relationship has a1σerror of0.33mag which has been added in quadrature to the J and Ks pho-tometric errors to yield the primary component’s M Ks val-ues in Table3and plotted as crosses in Figures3-11.As can be seen from Table3all but one of our systems are within29pc(the exception is2M1127at~33pc).

4.3.What are the spectral types of the components? We do not have spatially resolved spectra of both com-ponents in any of these systems;consequently we can only try to?t the M Ks values in Table3to the rela-tion SpT=3.97M Ks?31.67which is derived from the dataset of Dahn et al.(2002)by Siegler et al.(2003). Unfortunately,the exact relationship between M Ks and VLM/brown dwarf spectral types is still under study.It is important to note that these spectral types are only a guide since the conversion from M Ks to spectral type car-ries at least±1.5spectral subclasses of uncertainty.For-tunately,none of the following analysis is dependent on these spectral type estimates.

It is interesting to note that six of these secondaries are likely L dwarfs.In particular2M2331B is likely a L7and LHS2397aB is likely a L7.5.Both2M2331B and LHS 2397aB are very cool,late L companions.

4.4.What are ages of the systems? Estimating the exact age for any of these systems is dif-?cult since there are no Li measurements yet published (which could place an upper limit on the ages).An ex-ception to this is LHS2397a for which no Li was detected Mart′?n,Rebolo,&Magazzu(1994).For a detailed discus-sion on the age of LHS2397a see Freed,Close,&Siegler (2003).For each of the remaining systems we have conser-vatively assumed that the whole range of common ages in the solar neighborhood(0.6to7.5Gyr)may apply to each system(Caloi et al.1999).However,Gizis et al.(2000) observed very low proper motion(V tan<10km/s)for the 2M1127,2M2140,and2M2206systems.These three sys-tems are among the lowest velocity M8’s in the entire sur-vey of Gizis et al.(2000)suggesting a somewhat younger age since these systems have not yet developed a signi?-cant random velocity like the other older(~5Gyr)M8.0-L0.5stars in the survey.Therefore,we assign a slightly

younger age of3.0+4.5

?2.4

Gyr to these3systems,but leave large error bars allowing ages from0.6-7.5Gyr(~3Gyr is the maximum age for the kinematically young stars found by Caloi et al.(1999)).The other binary systems2M0746, 2M1047,2M1311,and2M2331appear to have normal V tan and are more likely to be older systems.Hence we assign

an age of5.0+2.5

?4.4

Gyr to these older systems(Caloi et al. 1999).It should be noted that there is little signi?cant di?erence between the evolutionary tracks for ages1?10

4Close et al.

Gyr when SpT

the exact age is not absolutely critical to estimating the

approximate masses for M8.0-L0.5stars(see Figure3).

4.5.The masses of the components

To estimate masses for these objects we will need to

rely on theoretical evolutionary tracks for VLM stars and

brown dwarfs.Calibrated theoretical evolutionary tracks

are required for objects in the temperature range1400-

2600K.Recently such a calibration has been performed

by two groups using dynamical measurements of the M8.5

Gl569B brown dwarf binary.From the dynamical mass

measurements of the Gl569B binary brown dwarf(Ken-

worthy et al.2001;Lane et al.2001)it was found that

the Chabrier et al.(2000)and Burrows et al.(2000)evo-

lutionary models were in reasonably good agreement with

observation.In Figures3to11we plot the latest DUSTY

models from Chabrier et al.(2000)which have been spe-

cially integrated across the Ks?lter so as to allow a direct

comparison to the2MASS Ks photometry(this avoids the

additional error of converting from Ks to K for very red

objects).We extrapolated the isochrones from0.10to0.11

M⊙to cover the extreme upper limits of some of the pri-

mary masses in the?gures.

We estimate the masses of the components based on the

age range of0.6-7.5Gyr and the range of M Ks values.The

maximum mass relates to the minimum M Ks and the max-

imum age of7.5Gyr.The minimum mass relates to the

maximum M Ks and the minimum age of0.6Gyr.These

masses are listed in Table3and illustrated in Figures3to

11as?lled polygons.

At the younger ages(<1Gyr),the primaries may be on

the stellar/substellar boundary,but they are most likely

VLM stars.The substellar nature of the companion is very

likely in the case of2M2331B and LHS2397aB,possible in

the cases of2M0746B,2M1426B,and2M2140B,and un-

likely in the cases of2M1047B,2M1127B,2M1311B,and

2M2206B which all appear to be VLM stars like their pri-

maries.Hence two of the companions are brown dwarfs,

three others may also be substellar,and four are likely

VLM stars.

5.discussion

5.1.The binary frequency of M8.0-L0.5stars

We have carried out the largest?ux limited(Ks<12)

high spatial resolution survey of M8.0-L0.5primaries.

Around these39M8.0-L0.5targets we have detected9

systems that have companions.Since our survey is?ux

limited we need to correct for our bias toward detect-

ing equal magnitude binaries that“leak”into our sample

from further distances.For example,an equal magnitude

M8binary could have an integrated2MASS magnitude

of Ks=12mag but be actually located at36pc whereas

a single M8star of Ks=12would be located just26pc

distant.Hence our selection of Ks<12leads to incom-

pleteness of single stars and low mass ratio(q 10f(ρ)dρ(2)

We consider two limiting cases for the f(ρ)distribution:

1)if all the systems are equal magnitude(q=ρ=1)

thenα=2(3/2)=2.8and the BF=12%;2)if there is

a?at f(ρ)distribution thenα=1.9and the BF=19%.

Consequently,the binary frequency range is12-19%which

Very Low Mass Binaries5 is identical to the range estimated https://www.doczj.com/doc/07211645.html,ter we will

see(Figure14)the true f(ρ)is indeed a compromise be-

tween?at and unity;hence we split the di?erence and

adopt a binary frequency of15±7%where the error is

the Poisson error(5%)added in quadrature to the(~4%)

uncertainty due to the possible range of the q distribution

(1.9<α<2.8).It appears that for systems with separa-

tions2.6

within the range15±7%.

Our M8.0-L0.5binary fraction range of15±7%is

marginally consistent with the28±9%measured for more

massive M0-M4dwarfs(Fischer&Marcy1992)over the

same separation/period range(2.6

in this study.However,Fischer&Marcy(1992)found a bi-

nary fraction of32±9%over the whole range of a>2.6AU.

If we assume that there are no missing low mass wide bi-

nary systems with a>300AU(this is a good assumption

since such wide sep 15′′systems would have been easily

detected in the2MASS point source catalog as is illus-

trated in Figure12),then our binary fraction of15±7%

would be valid for all a>2.6AU and would therefore be

slightly lower than32±9%observed for M0-M4dwarfs

with a>2.6AU by Fischer&Marcy(1992).Hence it ap-

pears VLM binaries(M tot<0.185M⊙)are less common

(signi?cant at the95%level)than M0-M4binaries over

the whole range a>2.6AU.

5.2.The separation distribution function for M8.0-L0.5

binaries

The M8.0-L0.5binaries are much tighter than M0-M4

dwarfs in the distribution of their semi-major axes.The

M8.0-L0.5binaries appear to peak at separations~4AU

which is signi?cantly tighter than the broad~30AU peak

of both the G and M star binary distributions(Duquennoy

&Mayor1991;Fischer&Marcy1992).This cannot be a

selection e?ect since we are highly sensitive to all M8.0-

L0.5binaries with sep>20?300AU(even those with

?H>10mag).Therefore,we conclude that M8.0-L0.5

stars likely have slightly lower binary fractions than G and

early M dwarfs,but have signi?cantly smaller semi-major

axes on average.

6.the vlm binary population in general

More observations of such systems will be required to

see if these trends for M8.0-L0.5binaries hold over bigger

samples.It is interesting to note that in Reid et al.(2001a)

an HST/WFPC2survey of20L stars found4binaries and

a similar binary frequency of10-20%.The widest L dwarf

binary in Koerner et al.(1999)had a separation of only9.2

AU.A smaller HST survey of10T dwarfs by Burgasser

et al.(2003)found two T binaries and a similar binary

frequency of9+15

?4%with no systems wider than5.2AU.

Therefore,it appears all M8.0-L0.5,L,and T binaries may have similar binary frequencies~9?15%(for a>3AU). In Table4we list all the currently known VLM bina-ries(de?ned in this paper as M tot<0.185M⊙)from the high-resolution studies of Basri&Mart′?n(1999);Mart′?n, Brandner,&Basri(1999);Koerner et al.(1999);Reid et al. (2001a);Lane et al.(2001);Potter et al.(2002a);Burgasser et al.(2003);Bouy et al.(2003).As can be seen from Fig-ure13VLM binaries have a~4AU peak in their separa-tion distribution function with no systems wider than15AU.

From Figure14we see that most VLM binaries have nearly equal mass companions,and no system has q<0.7. This VLM q distribution is di?erent from the nearly?at q distribution of M0-M4stars(Fischer&Marcy1992).Since the HST surveys of Mart′?n,Brandner,&Basri(1999); Reid et al.(2001a);Burgasser et al.(2003);Bouy et al. (2003)and our AO surveys were sensitive to1.0>q 0.5 for systems with a>4AU,the dearth of systems with 0.8>q>0.5in Figure14is likely a real characteristic of VLM binaries and not just a selection e?ect of insensi-tivity.However,these surveys become insensitive to tight (a<4AU)systems with q<0.5,hence the lack of detec-tion of such systems may be purely due to insensitivity.

6.1.Why are there no wide VLM binaries?

It is curious that we were able to detect8systems in the range0.1?0.25′′but no systems were detected past 0.5′′(~16AU).This is surprising since we(as well as the HST surveys of Mart′?n,Brandner,&Basri(1999);Reid et al.(2001a);Burgasser et al.(2003);Bouy et al.(2003)) are very sensitive to any binary system with separations >0.5′′and yet none were found.One may worry that this is just a selection e?ect in our target list from the spectroscopic surveys of Gizis et al.(2000)and Cruz et al.(2003),since they only selected objects in the2MASS point source catalog.There is a possibility that such a catalog would select against0.5′′?2.0′′binaries if they appeared extended in the2MASS images.However,we found that marginally extended PSFs due to unresolved binaries(separation 2′′)were not being classi?ed as ex-tended and therefore were not removed from the2MASS point source catalog.For example,Figure12illustrates that no known T-Tauri binary from list of White&Ghez (2001)was removed from the2MASS point source cat-alog.Although,due to the relatively poor resolution of 2MASS(FWHM~2?3′′),only systems with separations >3′′were classi?ed as binaries by2MASS,all the other T-Tauri binaries were unresolved and mis-classi?ed as single stars.In any case,we are satis?ed that no“wide”(0.5′′ separation 2′′)VLM candidate systems were tagged as extended and removed from the2MASS point source cata-log.Therefore,the lack of a detection of any system wider than0.5′′is not a selection e?ect of the initial use of the 2MASS point source catalog for targets.

Our observed dearth of wide systems is supported by the results of the HST surveys where out of16L and two T binaries,no system with a separation>13AU was detected.We?nd the widest M8.0-L0.5binary is16 AU while the widest L dwarf binary is13AU(Bouy et al.2003),and the widest T dwarf binary is5.2AU(Bur-gasser et al.2003).However,M dwarf binaries just slightly more massive( 0.2M⊙)in the?eld(Reid&Gizis1997a) and in the Hyades(Reid&Gizis1997b)have much larger separations from50-200AU.

In Figure15we plot the sum of primary and secondary component masses as a function of the binary separation for all currently known VLM binaries listed in Table4. It appears that all VLM and brown dwarf binaries(open symbols)are much tighter than the slightly more massive M0-M4binaries(solid symbols).

If we examine more massive(SpT=A0-M5)wide bi-

6Close et al.

nary systems from Close et al.(1990),we see such wide binaries have maximum separations best ?t by a max ~1000(M tot /0.185M ⊙)AU in Figure 15.Any system with such a separation (a =a max )will be disrupted by a di?er-ential velocity impulse (or “escape kick”)to one compo-nent of V esc >0.57km/s (see the solid upper line in Figure 15).However,if we try to ?t the VLM/brown dwarf bi-naries (de?ned here as systems with M tot <0.185M ⊙)we ?nd the maximum separation is better predicted by a max V LM ~23.2(M tot /0.185M ⊙)AU (lower dashed line in Figure 15).Since these are much smaller separa-tions we ?nd that any system with such a separation (a =a max V LM )will require a larger escape velocity kick of V esc >3.8km/s to become unbound.

To try and glean if VLM/brown dwarf binaries are re-ally more tightly bound,we compare their binding en-ergy to that of more massive binaries.Figure 16illus-trates how the minimum binding energy of binaries with M tot <0.185M ⊙is 16x harder than more massive ?eld M-G binaries.In other words the widest binaries with M tot <0.185M ⊙appear to be 16times “more bound”than the widest binaries with M tot >0.185M ⊙.

This hardening could be a relic from dissipative star/disk interactions with the accretion disks around each star (McDonald &Clarke 1995)and/or it could be from an ejection event,dynamical decay,or fragmentation.We will brie?y explore some of these possibilities in the next sections.

6.1.1.Can ejection explain the lack of wide VLM

binaries?Reipurth &Clarke (2001)suggest that VLM binary sys-tems may have been ejected from their “mini-cluster”stel-lar nurseries in close triple or quadruple encounters with more massive objects early in their lives.Consequently,these ejected VLM objects are starved of accretion mate-rial and their growth is truncated (see a cartoon of this scenario in Fig.17).Sterzik &Durisen (1998)estimate that around 5%of ejecta from pentuple systems are bi-naries.The typical ejection velocity estimated by Sterzik &Durisen (1998);Reipurth &Clarke (2001)is ~3km/s for single objects (on average these ejected single objects have masses >0.185M ⊙).Hence one might hypothesize tight VLM binaries of similar total mass may be ejected at similar velocities;however,we caution that more de-tailed simulations are required to estimate realistic ejec-tion velocities.In any case,only tightly bound binaries will survive the ejection process.This may explain the additional tightness of the VLM/brown dwarf binaries in Figure 15.More loosely bound VLM binaries were dis-solved (“kicked”past the V esc =3.8km/s line in Fig.15)when they were ejected from their mini-cluster.Hence,only relatively hard a <16AU (V esc >3.8km/s)low mass binaries have survived until today.

However,the ejection paradigm of Reipurth &Clarke (2001)as simulated in detail by Bate et al.(2002)only pre-dict a VLM/brown dwarf binary fraction of 5%which is below the 15±7%observed for M8.0-L0.5binaries and the 9+15?4observed for T dwarf binaries (Burgasser et al.2003).Therefore,further simulations will be required to see if a larger ( 9%)binary frequency can be produced when low mass binaries are ejected from the mini-cluster.

6.1.2.Is the dearth of wide low mass binaries due to

Galactic dynamical evolution?Over the lifetime of a binary there will be many stochas-tic encounters,which will increase the potential energy (and therefore its separation)of the binary slowly over time.Eventually,these encounters may also disrupt the binary.In fact,this disruption timescale is roughly pro-portional to M tot /a for separations <200AU according to the detailed models of Weinberg et al.(1987).As we can see from the solid line in Figure 15,a line of constant M tot /a or constant V esc (where V esc =0.57km/s)can ?t the widest A0-M0binaries,but the same line cannot ?t the widest of the much tighter VLM binaries (open sym-bols).This is quite puzzling since wide (>200AU)VLM binaries should get wider throughout their lifetime until they reach a =a max ~1000(M tot /0.185M ⊙)AU.By this point,they have reached the average minimum binding en-ergy (?E bind min ~3x1041erg)of ?eld wide binaries and are likely to be disrupted by a di?erential kick of only 0.6km/s.

So why do we not observe wider VLM binaries if they should dynamically evolve to a =a max ~1000(M tot /0.185M ⊙)AU ~1000AU over time?It is critical to note that only binaries that are wider than 1000(M tot /M ⊙)AU are wide enough to signi?cantly evolve in the galactic disk according the detailed models of Wein-berg et al.(1987).Therefore,only binaries of initial sepa-ration (a o )greater than a o ~185AU for M tot =0.185M ⊙will evolve to the minimum binding energy (which corre-sponds to separation of a max ~1000AU)over a 12Gyr lifetime.Any systems formed tighter than 1000(M tot /M ⊙)AU will not dynamically evolve to signi?cantly wider sep-arations over time.

So why don’t we detect any 185-1000AU VLM binaries?The answer may be very simple.If the formation process that forms VLM/brown dwarf binaries cannot produce bi-naries with a o >1000(M tot /M ⊙)AU then there will be no signi?cant evolution of a during the lifetime of the bi-naries.In other words the observed a distribution will be similar to the initial distribution (a o ).Since we currently observe no VLM systems with a >100AU,the observed separation distribution for VLM binaries is likely the same as their initial distribution.Figures 15and 16suggest that a o for VLM stars is strongly truncated at ~16AU.In addition,the observed values of V esc >3.8km/s and ?E bind >50×1041erg are therefore likely relics of the formation of these VLM binaries and need to be explained by any successful model of star/brown dwarf formation.6.1.3.Could VLM binaries be the decay product of a

dissolving mini-cluster?In the dynamical decay of these “mini-clusters”it is likely that the most massive components become a hard-ened binary as the lower mass objects are ejected by triple encounters (see bottom of Figure 17).Reipurth &Clarke (2001)have hypothesized that VLM binaries may also be ejected from these mini-clusters since they have very low masses and are tight enough to remain bound after ejec-tion.However,it is also possible that VLM binaries are not ejected but instead persevere until they are the ?nal most tightly bound binary remaining after the “mini-cluster”decays.

Very Low Mass Binaries7

The decay of3,4,and5-body“mini-clusters”has been studied by Sterzik&Durisen(1998).The?nal residual bi-naries produced by such decays have characteristics similar to those observed for VLM binaries.In particular,Sterzik &Durisen(1998)predict that binaries composed of stars with masses from0.1?0.2M⊙would have separations of ~10AU compared to~30AU for more massive stars. Furthermore,they predict the mass ratio q to be in the range0.6-1.0.Moreover,they predict a fairly sharp cut-o?at~10AU for“wide”low mass binaries.All these predictions are roughly consistent with our observations of the VLM binary population.

Since the?nal binary produced is typically biased to-wards the two or three most massive members of the mini-cluster(true of~99?98%cluster decays;Sterzik &Durisen(1998)),the likelihood of the most massive objects in the mini-cluster both having masses less than 0.090M⊙is rather small.Indeed,the binary fraction of 0.2

6.1.4.Can we explain the truncation at~16AU simply

by an initial semi-major axis distribution produced

by fragmentation?

One could avoid the problem of the unlikelihood of VLM binaries surviving the dynamics of an ejection or cluster decay if one simply produces VLM binaries in the same fashion that more massive binaries are thought to form. This is commonly thought to be through the fragmenta-tion of molecular cloud cores.A fragmenting very low mass molecular cloud core could directly produce a VLM binary without evoking any ejection or decay processes. It would be interesting to see if we can approximate a VLM binary semi-major axis distribution produced by fragmentation by scaling distributions of more massive bi-naries.If we assume M tot/a o is roughly constant for wide binaries(see Figure15),then we expect the initial a o dis-tribution to be somewhat tighter for VLM binaries com-pared to more massive binaries.We can estimate the a o for solar mass binaries from the well known young T-Tauri star a distributions.Young T-Tauri binaries are strongly suspected to have formed by fragmentation(White&Ghez 2001).We can utilize a HST sample of29T-Tauri binary systems in Taurus to produce an initial separation distri-bution.Such a distribution from the sample of White& Ghez(2001)has an a o peak at~30AU(as also found by Leinert et al.(1993);Ghez et al.(1993)).We can scale this to match our observed VLM binary peak of~4AU by simply scaling the distribution by a o

V LM

~0.13(a o

T T au

). Similarly we can scale the masses of the T Tauri binaries to also match our mean VLM binary mass of~0.15M⊙by multiplying by the same factor of0.13.In this manner we have created a plausible fragmentation-produced VLM a o distribution.However,we have assumed that the other properties of the distribution(such as the FWHM and tail distributions)can be scaled along with the mean a o and M tot.Assuming such a scaling is valid globally,we see that this fragmentation a o

V LM

distribution has~26%of systems wider than~40AU.Hence if our observed VLM distribution is to match this scaled fragmentation a o dis-tribution,we would expect~9of the34VLM/brown dwarf systems observed(see Table4)to have separations greater than40AU.However,from Figure15no VLM systems are observed to have separations greater than16 AU.Therefore,it appears very hard to explain the total lack of systems with separations greater than16AU by scaling the observed a o distribution of T-Tauri stars.In other words,if we scale the distribution to match the VLM ~4AU peak we over-produce wide systems(26%of sys-tems wider than40AU)compared to observations.It may be that our“toy model”of simply scaling the T Tauri a o distribution is too simple an approach,but,it is a?rst step which shows that such a sharp cut-o?(a o<16AU)is not easily produced by a fragmentation distribution.Detailed fragmentation simulations at the lowest masses will be re-quired to prove whether fragmentation can produce the VLM binary separation distribution observed.

6.1.5.What e?ect does an ejection“kick”have on the

binary distribution?

Assuming(as has been suggested by Reid et al.(2002); Bate et al.(2002))that eventually a close multiple en-counter ejects VLM(<0.185M⊙)binaries,it would be interesting to see if such an“ejected”VLM binary dis-tribution would have a maximum separation of~16AU as observed.The full dynamical modeling of the e?ect of a binary’s ejection from a mini-cluster is beyond the scope of this paper.However,we can simply explore,as a “toy-model”,the possibility that the ejection process pro-vides a hard di?erential velocity kick of order~3km/s to the two components of an ejected VLM binary.We take the value of~3km/s since this is the value calculated for the ejection velocity of on average more massive single objects from a dissolving mini-cluster(Sterzik&Durisen 1998;Reipurth&Clarke2001).We assume,this may be of the right order of magnitude for the di?erential velocity kick between the VLM members of the ejected binary.We caution that this is only a simple toy-model,the true dif-ferential velocity applied during the ejection can only be calculated by detailed simulations of each ejection event. In our simple toy-model ejection only binaries with V esc 3.0km/s will survive the ejection process.More-over,systems that are more tightly bound than V esc=3.0 will hardly be e?ected by such a kick in the tidal limit of Weinberg et al.(1987).To survive in the general galactic

8Close et al.

?eld we see (from Figure 15)V esc 0.6km/s.Hence one may expect today’s population of VLM binaries to all have V esc V LM (3.0+0.6)km/s.

It is very interesting to note that we “observe”(from ?gure 15)V esc 3.8km/s for wide VLM binaries which is similar to the “predicted”value of V esc V LM 3.6km/s.Therefore,the observed cut-o?at 16AU could be pro-duced by a population of VLM binaries where each system has been subjected to a di?erential kick of ~3km/s in the ejection process.We conclude that it is possible to produce the observed distribution of semi-major axes for VLM bi-naries by applying a strong di?erential velocity kick to each binary in the distribution.However,it is still not clear if a VLM binary frequency of 9?15%could be produced by ejection,since ejection of a VLM tight binary may be a very rare event.

7.future observations

Future observations of all of these binaries should deter-mine if there is still Li present in their spectrum.The most useful Li observation would spatially resolve both compo-nents in the visible spectrum.Currently there is no visible wavelength AO systems capable of guiding on a V ~20source and obtaining resolutions better than 0.1′′in the op-tical (Close 2000,2002).Therefore,we will have to carry out such observations from space with HST/STIS perhaps.Trigonometric parallax measurements should also be ob-tained in the near future.Within the next few years one should also be able to measure the masses of both compo-nents of several of these systems as they complete a signif-icant fraction of their orbit.Hence,further observations of these systems are a high priority for the calibration of the brown dwarf mass-age-luminosity relation.Continued searches for new VLM binaries will help de?ne this very interesting and important binary population with greater precision.

8.conclusions about the vlm population in

general

Based on all 34VLM (M tot <0.185M ⊙)systems cur-rently known from this work and that of Basri &Mart′?n (1999);Mart′?n,Brandner,&Basri (1999);Koerner et al.(1999);Reid et al.(2001a);Lane et al.(2001);Potter et al.(2002a);Burgasser et al.(2003);Bouy et al.(2003),we ?nd the following general characteristics:

?VLM binaries are tight (peak separation ~4AU)with no systems wider than 16AU (this is ~10times tighter than the slightly more massive M0-M4binaries);?they tend to have nearly equal mass companions (q ~0.9)with no detected companions below ~70%of the primary’s mass;?they have a corrected binary frequency of 15±7%for spectral types M8-L0.5,and 9+15?4%for T dwarf bi-naries (Burgasser et al.2003)for separations a >2.6AU.This is less than the 32±9%binary frequency of M0-M4binaries (Fischer &Marcy 1992)and the ~50%binarity of G dwarf binaries (Duquennoy &Mayor 1991)for similar separations.

We ?nd the formation of such a VLM distribution to be problematic with current simulations of binary star forma-tion.

?Ejecting VLM binaries from their formation mini-clusters (Reipurth &Clarke 2001)can likely pro-duce the observed cut-o?in separation at 16AU,but ejection simulations (Bate et al.2002)produce a binarity of 5%which is smaller than the ~9?15%binarity observed.?If we ignore ejection and assume that these VLM binaries are instead the residual (most massive)sys-tem remaining from the dynamical decay of the mini-cluster one can likely also reproduce the tight cut-o?at 16AU.But the strong bias to higher masses in the ?nal binary predicts that too few VLM binaries would be made in this fashion –assuming each component is picked randomly from the IMF (Sterzik &Durisen 1998;Durisen,Sterzik,&Pickett 2001).?We brie?y look at a “toy-model”of a VLM binary population produced by fragmentation.It appears that simply scaling an observed fragmentation pro-duced T-Tauri distribution to force a peak at 4AU produces systems with separations much greater than the 16AU cut-o?observed.Hence,it is not obvious that the characteristics of the VLM binary distribution are accurately predicted by any of these methods.Future detailed modeling (taking into account circumstellar gas disks and their e?ects on dy-namical interactions/ejections)will be required to see if ejection or dynamical decay can be common enough to ex-plain the ~9?15%binarity of VLM systems.Future detailed fragmentation simulations of the smallest cores will be needed to discern if some type of truncation occurs at low masses that limits VLM binaries to separations of less than 16AU.

The Hokupa’a AO observations were supported by the University of Hawaii AO group.(D.Potter,O.Guyon,&P.Baudoz).Support for Hokupa’a comes from the Na-tional Science Foundation.We thank the anonymous ref-eree for many detailed comments that led to an all round better paper.LMC acknowledges support by the AFOSR under F49620-00-1-0294and from NASA Origins NAG5-12086.We would also like to send a big mahalo nui to the Gemini operations sta?.These results were based on observations obtained at the Gemini Observatory,which is operated by the Association of Universities for Research in Astronomy,Inc.,under a cooperative agreement with the NSF on behalf of the Gemini partnership:the Na-tional Science Foundation (United States),the Particle Physics and Astronomy Research Council (United King-dom),the National Research Council (Canada),CONI-CYT (Chile),the Australian Research Council (Australia),CNPq (Brazil)and CONICET (Argentina).

Very Low Mass Binaries9 REFERENCES

Bate,M.R.,Bonnell,I.A.,Bromm,V.2002,MNRAS,332,L65 Burgasser,A.et al.2002BAAS

Burgasser,A.et al.2003,ApJ,in press

Burrows,A.,Hubbard,W.B.,Lunine,J.I.,Marley,M.S.,Saumon, D.2000,Protostars and Planets IV(Tucson:University of Arizona Press,eds Mannings,V.,Boss,A.P.,Russell,S.S.),p.1339 Basri,G.,&Mart′?n,E.L.1999,AJ,118,2460

Bouy,H.,Brandner W.,Mart′?n,E.,Delfosse,X.,Allard,F.,&Basri, G.2003,AJ,submitted

Caloi,V.,Cardini,D.,D’Antona,F.,Badiali,M.,Emanuele,A., Mazzitelli,I.1999,A&A,351,925.

Chabrier,G.,Bara?e,I.,Allard,F.,&Hauschildt,P.2000,ApJ,542, 464

Close,L.M.,Richer,H.B.,&Crabtree,D.R.1990,AJ,100,1968 Close,L.M.,Roddier,F.J.,Roddier,C.A.,Graves,J.E.,Northcott, M.J.,Potter,D.1998,Proc.SPIE Vol.3353,p.406-416.Adaptive Optical System Technologies,D.Bonaccini,R.K.Tyson,Eds Close,L.M.2000,Proc.SPIE Vol.4007,p758-772.Adaptive Optical Systems Technology,P.L.Wizinowich,Ed.

Close,L.M.et.al.2002a,ApJ,566,1095.

Close,L.M.et.al.2002b,ApJ,567,L53.

Close,L.M.2002,Proc.SPIE Vol.4834-12Research Prospects on Large6.5-10m Telescopes.Aug2002,Kona.in press

Cruz,K.et al.2003,ApJ,in prep.

Dahn C.et al.2002ApJ,124,1170

Durisen,R.H.,Sterzik,M.F.,&Pickett,B.K.2001,A&A,371,952 Duquennoy,A.,Mayor,M.1991,A&A,248,485

Fischer,D.A.,Marcy,G.W.1992,ApJ,396,178

Freed,M.,Close,L.M.,&Siegler,N.2003,ApJ,in press(Feb10 issue)

Graves,J.E.,Northcott,M.J.,Roddier,F.J.,Roddier,C.A.,Close, L.M.1988,Proc.SPIE Vol.3353,p.34-43.Adaptive Optical System Technologies,D.Bonaccini,R.K.Tyson,Eds.

Ghez,A.M.,Neugebauer,G.&Matthews,K.1993,AJ,106,2005 Gizis,J.E.,Kirkpatrick,J.D.,Burgasser,A.,Reid,I.N.,Monet,D.G., Liebert,J.,Wilson,J.C.2001,ApJ,551,L163

Gizis,J.E.et al.,Monet,D.G.,Reid,I.N.,Kirkpatrick,J.D.,Liebert, J.,Williams,R.J.2000,AJ,120,1085

Hodapp,K.-W.,Hora,J.L.,Hall,D.N.B.,Cowie,L.L.,Metzger, M.,Irwin,E.,Vural,K.,Kozlowski,L.J.,Cabelli,S.A.,Chen,C. Y.,Cooper,D.E.,Bostrup,G.L.,Bailey,R.B.,Kleinhans,W.E. 1996,New Astronomy,1,177

Kenworthy,M.,Hofmann,K-H.,Close,L.,Hinz,P.,Mamajek,E., Schertl,D.,Weigelt,G.,Angel,R.,Balega,Y.Y.,Hinz,J.,Rieke, G.2001,ApJ,554,L67

Kirkpatrick,J.D.,Henry,T.J.,&Simons,D.A.1995,AJ,109,797Kirkpatrick,J.D.,Henry,T.J.,&Irwin,M.J.,1997,AJ,113,1421 Kirkpatrick,J.D.,Reid,I.N.,Liebert,J.,Gizis,J.E.,Burgasser,A.J., Monet,D.G.,Dahn,C.C.,Nelson,B.,Williams,R.J.2000,AJ, 120,447

Koerner, D.W.,Kirkpatrick,J.Davy,McElwain,M.W., Bonaventura,N.R.1999,ApJ,526,L25

Lane, B.F.,Zapatero Osorio,M.R.,Britton,M.C.,Martin,E.L., Kulkarni,S.R.2001,ApJ,in press

Leggett,S.K.,Allard, F.,Geballe,T.R.,Hauschildt,P.H.,& Schweitzer,A.2001,ApJ,548,908

Leinert,Ch.et al.1993,A&A,278,129.

Mart′?n, E.L.,Koresko, C. D.,Kulkarni,S.R.,Lane, B. F., Wizinowich,P.L.1999ApJ,529,L37

Mart′?n,E.L.,Rebolo,R.,&Magazzu,A.1994,ApJ,436,262 Mart′?n,E.L.,Brandner,W.,Basri,G.1999,Science,283,5408,1718 Mart′?n,E.L.,Brandner,W.,Bouvier,J.,Luhman,K.L.,Stau?er, J.,Basri,G.,Osorio,M.R.Zapatero,Barrado y Navascus,D. 2000,ApJ,543,299

McDonald,J.M.,&Clarke,C.J.1993,MNRAS,262,800 Nakajima,T.,Oppenheimer,B.R.,Kulkarni,S.R.,Golimowski,D.

A.,Matthews,K.,Durrance,S.T.1995,Nature,378,463 Oppenheimer,

B.R.,Golimowski,D.A.,Kulkarni,S.R.,Matthews, K.,Nakajima,T.,Creech-Eakm an,M.,Durrance,S.T.2001,ApJ, 121,2189

Potter,D.et al.2002a ApJ,567,113

Reid,I.Neill;Gizis,John E.1997a AJ,113,2246

Reid,I.Neill;Gizis,John E.1997b AJ,114,1992

Reid,I.N.,Gizis,J.E.,Kirkpatrick,J.D.,Koerner,D.W.2001a,AJ, 121,489

Reid,I.N.,Burgasser,A.J.,Cruz,K.L.,Kirkpatrick,J.D.,Gizis, J.E.2001b,AJ,121,1710

Reid,I.N.et al.2002,AJ,in press

Reipurth,B.&Clarke,C.2001,AJ,122,432

Siegler,N.,Close,L.M.,Freed,M.2002,SPIE Kona conf.proc.,in press

Siegler,N.,Close,L.M.,Mamajek,E.,Freed,M.2003,ApJ,in prep Simon,M.,Close,L.M.,&Beck,T.1999,AJ,117,1375

Sterzik,M.F.,&Durisen,R.H.1998A&A,339,95

Stetson,P.B.1987,PASP,99,191

Tinney,C.G.,Mould,J.R.,&Reid,I.N.1993,AJ,105,1045 Wainscoat R.J.,&Cowie,L.L.1992,AJ,103,332.

Weinberg M.D.,Shapiro,S.L.,&Wasserman,I.1987,ApJ,312,367 White,R.J.,&Ghez,A.M.2001,ApJ,556,265

van Altena,W.F.,Lee,J.T.,&Ho?eit,D1995,The General Catalog of Trigonometric Stellar Parallaxes(4th ed.;New Haven:Yale University Observatory)

10Close et al.

Table1

M8.0-L0.5Stars Observed with No Likely Physical Companions Between0.1′′-15′′

2MASS other name K s SpT Ref.

References.—(1)Gizis et al.(2000);(2)Kirkpatrick et al.(1995);(3)Cruz et

al.(2003);(4)Kirkpatrick et al.(1997);(5)Tinney et al.(1993)

Very Low Mass Binaries11

Table2

The binary systems observed

System?J?H?K′Sep.(′′)PA Age(Gyr)

a discovery paper Reid et al.(2001a)

b discovery paper Reid et al.(2002)

c observations made on Feb7,2002UT

d observations mad

e on April25,2002UT

e observations made on June20,2001UT

f observations made on Sept20,2001UT

g discovery paper Freed,Close,&Siegler(2003)

12Close et al.

Table3

Summary of the new binaries’A&B components

Name J H Ks M K s c SpT a Est.Mass b Est.D(pc)c Sep.(AU)P(yr)d

a Spectral types estimated by3.97x M

?31.67(Dahn et al.2002;Siegler et al.2003)with±1.5spectral subclasses of error in these estimates

Ks

(note a value of SpT=10is de?ned as L0in the above equation).

b Masses(in solar units)from the models of Chabrier et al.(2000)–see Figure3.

c Photometric distances estimate

d for th

e primaries by M

Ks=7.71+2.14(J?Ks)which is valid for M7

d Periods estimated assuming face-on circular orbits.In th

e cases of2M0746and LHS2397a,the larger o

f the2observed separations(2.7AU

&3.86AU from Reid et al.(2001a)and Freed,Close,&Siegler(2003),respectively)have been used to more accurately estimate the period.

e These systems have trigonometric parallaxes.

Very Low Mass Binaries13

Table4

All Known Resolved VLM Binaries e

Name Sep.Est.Est.M A Est.M B Est.Period b Ref.c

AU SpT A/SpT B M⊙M⊙yr

a PPL15is a spectroscopic binary(Basri&Mart′?n1999)

b This“period”is simply an estimate assuming a face-on circular orbit

c REFERENCES–(0)Basri&Mart′?n(1999);(1)Kenworthy et al.(2001);(2)Lane et al.(2001);(3)Potter et al.

(2002a);(4)Reid et al.(2001a);(5)Mart′?n,Brandner,&Basri(1999);(6)Koerner et al.(1999);(7)Freed,Close,

&Siegler(2003);(8)Reid et al.(2002);(9)Burgasser et al.(2003);(10)Mart′?n,Brandner,&Basri(1999);(11)

Siegler et al.(2003);(12)Bouy et al.(2003)

d Gl569B and HD130948B ar

e binary brown dwarfs that orbit normal stars,for AO observations these bright

primary stars were guided on,not the brown dwarfs

e We de?ne VLM binaries as2star systems where M

tot<0.185M⊙.Very young evolving systems(like GG

TauBaBb(White&Ghez2001))are not included,nor are over-luminous systems which are not resolved into

binaries.

14Close et al.

Fig. 1.—The12x10s K′image of the L0.52MASSW J0746425+200032binary(which is the one overlap object between our study and that of Reid et al.(2001a)).Note the very di?erent position(P A=85.7?,sep=0.121′′=1.49AU on2002/2/7)of our image compared to the PA=168.8?sep2.7AU published by Bouy et al.(2003)from HST observations of Reid et al.(2001a)at2000/4/15.This suggests that the orbit could have a period of~4yr.In the near future this system could have an orbital solution.At a resolution of<0.1′′both components are clearly visible.We also show K′images of the new binaries2MASSW J1047127+402644,2MASSW J1127534+741107,& 2MASSW J1311391+803222.The pixels are0.199′′pix?1.The contours are linear at the90,75,60,45,30,15,and1%levels.North is up and east left in each image.

Very Low Mass Binaries15

Fig.2.—In?gure(a)we see the12x10s K′image of the2MASSJ1426316+155701binary discussed in Close et al.(2002b)at a resolution of0.131′′.In Figures(b-d)we show K′images of the binaries2MASSW J2140293+162518,2MASSWJ2206228-204705,and2MASSWJ 2331016-040618,respectively.The pixels are0.0199′′pix?1.The contours are linear at the90,75,60,45,30,15,and1%levels.North is up and east left in each image.

16Close et al.

Fig.3.—The latest Chabrier et al.(2000)DUSTY evolutionary models are shown custom integrated over the Ks bandpass.The locations of the2components of2M0746are indicated by the crosses.The polygon encloses the error in the M Ks and age range0.6?7.5Gyr of the system.The M Ks of each secondary is determined by the addition of?Ks plus the M Ks of the primary.The errors for the primary are enclosed by the upper polygon(outlined by a solid thick line),the secondary is bounded by the lower polygon(outlined by a thick dashed line).The models suggest a primary mass of0.082M⊙with a range0.078?0.083M⊙with temperatures of2375K(2323-2409K).For the secondary the models suggest a mass of0.078M⊙with a range0.068?0.079M⊙with temperatures of2173K(2034-2252K).The isochrones plotted are0.3,0.6,0.65,0.7,0.85,1.2,1.7,3.0,5.0,7.5,&10.0Gyr.The isotherms run in equal intervals from2600K to1400K in steps of 200K.

Very Low Mass Binaries17

Fig.4.—The same as?gure3except for2M1047.Note the larger errors in M Ks compared to2M0746since we have to currently rely on a photometric parallax for this system.The models suggest a primary mass of0.092M⊙with a range0.079?0.102M⊙with temperatures of 2660K(2460-2830K).For the secondary the models suggest a mass of0.084M⊙with a range0.068?0.090M⊙with temperatures of2430K (2164-2625K).

18Close et al.

Fig.5.—Figure3from Freed,Close,&Siegler(2003).Note that the isochrones are di?erent for this plot compared to all the other plots in this paper(but the isotherms are the same).More detail about LHS2397a can be found in Freed,Close,&Siegler(2003).LHS2397aB (mass0.068M⊙)is one of the tightest brown dwarf companions ever to be imaged around a star.

Very Low Mass Binaries19

Fig.6.—The same as for?gure3except for2M1127.Note the larger errors in M Ks compared to2M0746since we have to currently rely on a photometric parallax for this system.The models suggest a primary mass of0.092M⊙with a range0.080?0.101M⊙with temperatures of2650K(2460-2810K).For the secondary the models suggest a mass of0.087M⊙with a range0.074?0.095M⊙with temperatures of2540K (2330-2710K).

20Close et al.

Fig.7.—The same as for?gure3except for2M1311.Note the larger errors in M Ks compared to2M0746since we have to currently rely on a photometric parallax for this system.The models suggest a primary mass of0.089M⊙with a range0.078?0.098M⊙with temperatures of2610K(2400-2760K).For the secondary the models suggest a mass of0.088M⊙with a range0.074?0.095M⊙with temperatures of2540K (2331-2710K).

视频直播艺人合同

xx文化传媒有限公司视频直播演艺合同 甲方:xx文化传媒有限公司 地址:x 法定代表人:x 电话:x 传真: 乙方(艺员): 性别: 身份证号: 住址: 电话: Email: 鉴于: 1、甲方为一家专业的文化传媒公司,乙方是具有独立行为能力的艺人;甲乙双方经友好协商,就乙方委托甲方在其演艺发展事业方面为其经纪人事宜,双方依据《中华人民共和国合同法》等相关法律法规自愿订立如下协议,以资共同遵守: 一、协议宗旨 1、甲乙双方自愿签署本协议。 2、甲乙双方本着优势互补、共同发展的原则进行合作。 3、乙方委托甲方为其独家经纪公司,协议期内由甲方全权代理乙方涉及到演出、出版、广播、电视、广告、电影、录音、录象等与演艺有关的商业或非商业活动,以及与乙方公众形象有关的一切活动。 二、协议期限 1、为期3年,自签约后立即生效。 2、在本协议到期前90日,甲乙双方可以协商是否续约并另行签订书面协议。

三、利益分配 1、甲乙双方可分配收益为: (1)乙方因演出、出版、广播、电视、广告、电影、录音、录象等与演艺有关的商业或非商业活动所获得的收益。 (2)乙方因名称、肖像、形象、声音、动画等获得的收益。 (3)因履行本协议产生的知识产权及其衍生利益的收益。 (4)其他收益。 2、乙方同意在协议有效期内上述第1条所列收益均由甲方代为收取并自行支配。 3、甲方同意在协议有效期内每年向乙方支付劳务报酬。 四、甲方的权利义务 1、甲方在协议有效期内独家拥有乙方名称、肖像、声音及演出、出版、广播、电视、广告、电影、录音、录象、视频直播与同类型网站等与演艺有关的商业或非商业活动和乙方公众形象有关的一切活动的代理权。未与甲方商议,乙方不得私自去其他直播平台进行表演或任何合作。 2、在协议有效期内。甲方有权安排乙方的所有演艺工作并作为乙方的委托代理人签署有关演艺合同,但合同内容应征得乙方的同意。甲方对乙方日程、企划、定位、筹备、训练、录音、录象、制作、宣传、演出、电商宣传等一切与演艺相关之活动拥有最终决定权,乙方在力所能及的范围内不得借故拖延或拒绝。 3、在协议有效期内,甲方有权要求乙方参加由甲方安排的演艺活动,但是必须充分考虑到乙方的身心状况和劳动强度,在乙方可以胜任的情况下,乙方应参加甲方安排的演艺活动。 4、甲方有权按照公司的各种规章制度对乙方的艺术行为、演出行为、以及各种行为进行必要的管理。 5、甲方有权将乙方资料(包括个人照片、个人资料和简介、影像资料等)发布到甲方公司所属平台用作推广和宣传使用。 6、甲方应努力通过自身资源、各种新闻媒体及其他方式宣传乙方,尽可能地提高乙方的知名度;通过强有力的宣传运作获得最佳效果,使乙方建立、保持良好的公众艺员形象。 7、甲方负责乙方的艺术形象、艺术定位、宣传定位等总体包装的设计策划等。 8、甲方应自行承担因协助乙方推广宣传所产生的相关费用等。 9、提供相对应的直播账号给予乙方,以便乙方更好的发展乙方所在的频道环境,乙方有权与甲方协商给予适合自己的演出直播时间。

奔跑吧兄弟游戏汇总

跑男第一季第一期 嘉宾:马苏,窦骁地点:杭州西湖主题:白蛇传 游戏1:白蛇指压板晨跑(接力,率先进90秒)第一位:跨人,楼梯,跳绳 第二位:钻圈,跨栏第三位:背胖子,跳跃单杠叼食物 游戏2:猜服务员上菜顺序,猜错着同伴受到高空落水惩罚 游戏3:用奇怪的道具在水中打乒乓球 撕名牌:铃铛人金钟国 跑男第一季第二期 嘉宾:张蓝心,唐艺昕,唐宛如,古力娜扎地点:浙江乌镇主题:寻找前世情侣 游戏1:嘉宾找到含有R牌的地方与游客比赛掷筛子,赢者获得有机会获得圣水道具 游戏2:从农田里放置的缸中找到自己的同伴,然后背回去,最后将薯条吃到小于1cm,敲锣 游戏3:水池一侧的嘉宾入水将水中的爱心交给对岸的同伴 跑男第一季第三期 嘉宾:王丽坤,欧弟,林更新地点:韩国首尔主题:韩囧 游戏1:找到表格中一串顺序的食物,并把它们都吃掉 游戏2:一边做运动一边唱歌打分 1 跑男第一季第四期 嘉宾:王丽坤,欧弟,林更新地点:韩国首尔主题:韩囧 游戏1:抽个一个国家的国旗找寻这个国家的游客,依次踢毽子十下,共三次机会 游戏2:找护照 游戏3:人造纸船 跑男第一季第五期 嘉宾:王丽坤,欧弟,林更新地点:韩国首尔主题:韩囧 游戏1:7分钟过河 与韩国跑男撕名牌 跑男第一季第六期 嘉宾:胡海泉,伊一地点:浙江舟山秀山岛主题:逃离秀山岛 游戏1:在村庄中找到有效水枪,并喷到对方名牌上,对方即遭淘汰 游戏2:泥中抓鸭子 游戏3:找线索穿越山洞 跑男第一季第七期 嘉宾:胡海泉,伊一地点:上海主题:穿越世纪的爱恋 游戏1:邓超:随机找到十位路人与之扳手腕胜利 伊一:指定时间吃掉西瓜2 郑恺:扮蜡像半小时 游戏2:集体抢占台子对着相机拍照

认识Photoshop说课稿

认识Photoshop》说课稿 .h1{FoNT-wEIGHT:bold;TEXT-jUSTIFy:inter-ideo graph;FoNT-SIZE:22pt;mARGIN:17pt0cm16.5pt;LI NE-HEIGHT:240%;TEXT-ALIGN:justify}.h2{FoNT-w EIGHT:bold;TEXT-jUSTIFy:inter-ideograph;FoNT -SIZE:16pt;mARGIN:13pt0cm;LINE-HEIGHT:173%;T EXT-ALIGN:justify}.h3{FoNT-wEIGHT:bold;TEXT-jUSTIFy:inter-ideograph;FoNT-SIZE:16pt;mARGI N:13pt0cm;LINE-HEIGHT:173%;TEXT-ALIGN:justif y}DIV.union{FoNT-SIZE:14px;LINE-HEIGHT:18px} DIV.unionTD{FoNT-SIZE:14px;LINE-HEIGHT:18px} .h1{FoNT-wEIGHT:bold;TEXT-jUSTIFy:inter-ideo graph;FoNT-SIZE:22pt;mARGIN:17pt0cm16.5pt;LI NE-HEIGHT:240%;TEXT-ALIGN:justify}.h2{FoNT-w EIGHT:bold;TEXT-jUSTIFy:inter-ideograph;FoNT -SIZE:16pt;mARGIN:13pt0cm;LINE-HEIGHT:173%;T EXT-ALIGN:justify}.h3{FoNT-wEIGHT:bold;TEXT-jUSTIFy:inter-ideograph;FoNT-SIZE:16pt;mARGI N:13pt0cm;LINE-HEIGHT:173%;TEXT-ALIGN:justif y}.union{FoNT-SIZE:14px;LINE-HEIGHT:18px}.un ionTD{FoNT-SIZE:14px;LINE-HEIGHT:18px} 【教材分析】

直播平台演艺战略合作协议模板常用版

编号:GR-WR-29842 直播平台演艺战略合作协议模板常用版 After negotiation and consultation, both parties jointly recognize and abide by their responsibilities and obligations, and elaborate the agreed commitment results within the specified time. 甲方:____________________ 乙方:____________________ 签订时间:____________________ 本文档下载后可任意修改

直播平台演艺战略合作协议模板常用版备注:本协议书适用于约定双方经过谈判、协商而共同承认、共同遵守的责任与义务,同时阐述确定的时间内达成约定的承诺结果。文档可直接下载或修改,使用时请详细阅读内容。 甲方: 地址: 法定代表人: 乙方: 联系地址: 身份证号: 鉴于乙方是具有完全民事行为能力的自然人,并具有歌唱、表演等方面的才艺和经验,甲方系依法注册并合法存续的以文化艺术交流活动、展示展览服务以及文化演出策划等为营业范围的公司,为各展其长,双方在平等自愿、互惠互利的基础上,达成以下网络表演合作协议,以资共同遵守: 一、合作事项和经营收入 1.1、甲方为乙方设立网络视频直播间账号与后台,为其指定网络展示平台由乙方通过视频直播的方式向观众展示自己唱歌、主持、表演等方面的才艺,以获取观众的支持

和肯定。 1.2、甲乙双方合作经营,以观众对乙方的肯定和支持为前提,由观众在观看视频过程中进行礼物充值刷出礼物获取收益。 二、合作期限 2.1、合作期限为____年,自_____年_____月____日。 2.2、协议所约定的期限届满,如甲乙双方有意续签,应在本合作协议期限届满之前30日内向对方发出通知,经协商一致,双方可重新签订合作协议,继续合作。 三、培训 甲方在与乙方签订本合作协议后,应当对乙方进行系统的培训和帮助,直至乙方熟悉并可独立胜任视频直播,该培训的费用由甲方承担。 四、收入管理和分配 4.1、合作期间内,由甲方代为收取和管理双方合作经营所获取的收益,按月结算和分配。 4.2、甲乙双方协商确定,对于合作期间的经营收入按照比例进行分配,其中甲方占百分之____,乙方占百分之

适合团队的跑男游戏

适合团队的跑男游戏

跑男游戏汇总 一、铃铛追击游戏 队员分为任务队和追击队。 任务队要完成一定的任务,同时保护自己的名牌不被撕掉; 追击队要在鞋上系着铃铛,同时追击任务队,撕掉任务队的名牌。 二、一杯茶的时间: 两队通过抽签选择出不同的器皿,如耳屎勺,汤勺,瓢...(越夸张越好),然后用该器皿向杯子里装一勺的材料(如咖啡粉、茶粉...),然后泡开,有时可再加入如一颗鸡蛋等作料,比哪队先喝完。 三、照相 要求各队所有人想尽办法让自己的脸呆在不知何时会拍照的照相机镜头前,有时照相机位置可移动,且照相环境可变(如在水中、舞台上),当照相机照下照片后,露脸多的队获胜。 四、记歌词 播放一首歌曲,各队要仔细听,能完整、正确地唱出该歌曲的对获胜。五、测谎·测心率 一队中选一个人连接上测谎仪,另一队人要想办法让那一个人在规定时间内说3个谎言,通过测谎仪来评定 一队中选一个人连接上心率仪,另一队人使用各种手段(或揭短,激怒,使兴奋)让那一个人在规定时间内心率达到最高,通过测谎仪来评定 六、卡拉OK 每队在完成各种任务(如坐过山车、举重、压腿...)的情况下唱歌,通过卡拉OK的评分来定输赢 七、画画传递猜词 一队人按顺序排成一列,第一个人依据所给出的主题作画,并传给第二个人(不能有语言交流),再由第二个人根据看到的画重新作画,并传给第三个

人,以此类推,若最后一个人能猜对主题,则该队获胜 八、 1 VS n 众人合伙要在一个实现安排好的假游戏中欺骗某一个人,既要达到某种目的,如不能让被欺骗者在游戏中获胜、众人集体秘密变装.......又不能让其发现。若被揭露,则被欺骗者获胜。 九、眼神游戏 大家都蹲下来,然后一个一个地站起来。 1、报数每个人按顺序说1、 2、 3、4...,那就不能同时站起来两个人,如 果站起来两个人那就是这两个人输了,要互相观察彼此,看到没人站起来或是马上站起来抢先,因为没有提前串通,所以就很小心的看别人眼色行事,剩下最后一个没站起来的人就输了 2、游戏外的人喊数,比如喊“3”,就要有3个人站起来,多站、少站都不 行,如果出错就输了. 十、乒兵球识字 把字写在乒乓球上,一队打乒乓球,另一队要在这过程中认出球上的字 十一、倒水游戏 队中选出一人蒙眼往杯中倒水,其余队员坐在椅子上,将杯子举在头顶上,最后水多的队获胜 十二、衣架接力赛 十三、 369BIBO 几个人按顺序数数,但当遇到含有3,6,9的数要用BIBO代替,否则输掉 十四、模拟恶劣天气限时播报 三个人均给出播报词,但在另一地点只提供三套衣服,队员要在抢衣穿衣过程中记住词,并在人为制造的如,大风,大雨等恶劣情况下正确播报。 十五、来了两个人 几个人按顺序蹲成一排,另一个人随意说数字,那几个人要按照顺序站起相

直播平台演艺战略合作协议正式范本新编

文件编号:TP-AR-L6360 The Civil Subjects Establish, Change And Terminate Their Corresponding Civil Legal Relations, And Then Determine Their Respective Rights And Obligations. The Terms Are Binding On The Parties And Need To Abide By Them. (示范文本) 甲方:_______________ 乙方:_______________ 签署时间:_______________ 直播平台演艺战略合作 协议正式范本新编

直播平台演艺战略合作协议正式范 本新编 使用注意:该协议资料可用在各个民事主体之间设立、变更、终止其对应的民事法律关系而订立,进而确定各自的权利和义务,条款对当事人具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 甲方: 地址: 法定代表人: 乙方: 联系地址: 身份证号: 鉴于乙方是具有完全民事行为能力的自然人,并 具有歌唱、表演等方面的才艺和经验,甲方系依法注 册并合法存续的以文化艺术交流活动、展示展览服务 以及文化演出策划等为营业范围的公司,为各展其

长,双方在平等自愿、互惠互利的基础上,达成以下网络表演合作协议,以资共同遵守: 一、合作事项和经营收入 1.1、甲方为乙方设立网络视频直播间账号与后台,为其指定网络展示平台由乙方通过视频直播的方式向观众展示自己唱歌、主持、表演等方面的才艺,以获取观众的支持和肯定。 1.2、甲乙双方合作经营,以观众对乙方的肯定和支持为前提,由观众在观看视频过程中进行礼物充值刷出礼物获取收益。 二、合作期限 2.1、合作期限为____年,自_____年_____月____日。 2.2、协议所约定的期限届满,如甲乙双方有意续签,应在本合作协议期限届满之前30日内向对方

奔跑吧兄弟 - 游戏规则

一、《天龙八部积分赛》 ①项目规则: 《天龙八部积分赛》一共分为8轮竞技任务,每项任务成功完成的队伍获得1枚积分,积分赛结束后,积分多的队伍将在下一轮《终极绝杀撕名牌》环节中有5分钟的主动出击时间,积分少的队伍只能逃避,不能攻击。 ②项目内容: ①`《百发百中》:要求选手蒙住双眼,原地转十圈,在队友的提示下扎破气球,每组分派5人参赛,用时短的一队获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ②`《学霸出击》:主持人随机抽选20道题目,两队选派一名举手者,两组队员在主持人说开始后可以进行举手,同意后抢答,未举手抢答的扣除1枚积分,题目结束后答对最多的一队获胜);---------------------------------------------------------------------------------------------------------------------------------------------- ③`《龟派气功》:参赛的一队选手分别排成一字型队形,从队伍第一个人把气球吹上头顶,悬浮在空中,选手中途不能变换前后位置顺序,可移动身体,依次依靠肺活量将气球吹送到最后一人,由最后一人扎破气球,用时短的一队获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ④`《国球相杀》:要求选手用羽毛拍来接住乒乓球,每队排成一条长龙,一共两只羽毛拍进行轮换交替,从第一个人开始向上接球到最后一个人,不能使乒乓球落地,时间短的一队获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ⑤`《摩擦摩擦》:每队派出4人参赛,一人负责打气球,一人负责运送气球,其余两人背对背夹气球直到夹爆为止,2分钟内,夹爆气球最多的一队获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ⑥`《双人跳绳》:每队分派6人进行组队成3小队,每小队连续跳5个跳绳,3分钟内完成最快的一队获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ⑦`《你划我猜》:导演组随机准备10个词汇,每组分派1人进行猜谜,其余队员可以比划提醒,不能提到字面上的词语,否则算本题作废,5分钟内多的猜对最多的一组获胜; ---------------------------------------------------------------------------------------------------------------------------------------------- ⑧`《饶舌脱口》:导演组随机准备一组绕口令,每队派出5人参赛,3分钟内正确念完用时短的一队获胜;

直播推广服务合同范本最新

编号:_______________ 本资料为word版本,可以直接编辑和打印,感谢您的下载 直播推广服务合同范本最新 甲方:___________________ 乙方:___________________ 日期:___________________

甲方: 法定代表人: 联系地址: 联系电话: 乙方: 法定代表人: 联系地址: 联系电话: 甲乙双方经友好协商,就乙方利用_____平台为甲方进行_____直播推广服务相关事宜,达成此合同。 一、合作期限 (一)合作期限:自________年____月____日起至________年____月____日止。 (二)本合同期限届满,如双方继续合作,甲乙双方另行签订相关合同。 二、合作内容及合作方式 (一)合作期内,甲方向乙方提供直播服务所需物料,乙方按照本合同约定为甲方提供直播推广服务(以下亦简称“乙方服务”)。 (二)甲方须在直播开始_____个工作日前告知乙方,直播时间、位置、内容、价格等具体项目。 (三)乙方必须严格按照甲方与乙方约定的合同内容、范围为甲方提供直播服务,如由于乙方原因造成信息推广内容或范围与双方约定不符的或未经甲方同意擅自投放的,则由此产生的推广费用须由乙方承担。 (四)甲乙双方一致确认:甲方与最终用户之间存在具体法律关系,乙方仅负责为甲方提供推广服务,不与最终用户之间发生任何法律关系,乙方推广的产品和服务最终结果由甲方承担。但如乙方未按甲方要求或违反本合同约定,造成的不良后果的,由乙方自行承担。

三、费用及结算:甲方向乙方支付主播出场费以及产品销售计提的佣金。 (一)主播出场服务费人民币_____元(大写人民币_____元)。本协议签订当日内,甲方向乙方支付此款项。(活动期间UGC直播不收取主播出场服务费,该活动自签订合同当天起持续_____个月。) (二)佣金提成比例为产品销售额的_____%。直播推广结束后,甲方需根据直播期间店铺产生的销售额以及约定佣金比例计算乙方所得佣金;佣金甲方通过淘宝系统自动结算到乙方账户。 (三)乙方收款账户信息: 账户名:_________________________。 银行账号:_________________________。 开户行:_________________________。 公司对公卡号:_________________________。 用户名:_________________________。 开户行:_________________________。 (四)乙方收到甲方款项后,按约定方式可向甲方提供等额发票。如甲方需要乙方提供增值税专用发票,需要甲方事先出具加盖公章的税务登记证复印件,一般纳税人证明复印件及开票信息函。 四、甲方的权利和义务 (一)甲方负责甲方产品及相关服务的合法性、适当性。如果甲方产品及相关服务违反法律、法规或侵犯第三人的合法权益,由甲方承担全部责任,并保证乙方免受损害,如因此给乙方造成的损失,由甲方承担赔偿责任。 (二)甲方负责甲方产品及相关服务的平台建设、技术支持和维护、运营和用户管理、客户服务,并承担上述事项相应产生的一切费用。 (三)甲方按照乙方的要求提供必要的资料以配合乙方的各项服务。 (四)甲方按照本合同的约定及时向乙方支付推广服务费。 五、乙方的权利和义务

苏教版小学语文四年级上册《九色鹿》教案及反思

教学过程设计 一、激趣导入: 1、a)播放《九色鹿》的动画片片段,激发学生的学习兴趣。 b)谈话导入、引出课题。(动画片好看吗?)今天我们继续学习民间故事《九色鹿》。 2、c)师生共同板书课题,师边板书边问:九色鹿,你能用一个字来概括吗?(美) 3.故事中还有一个重要人物,(板书:调达)一读到这个名字,你又想用什么字来概括他呢?(丑) 【设计意图:动画片导入,并播放一小片段作为引子,这样就可以调动起学生学习课文积极性。】 二、教学新课。 (一)初读课文,提出自读要求:自由朗读课文,读准字音,读通句子,难读的句子和段落多读几遍,不会读的可以请教同学或老师。 (二)检查自读情况,并进行基础知识教学。 1、出示带生字的词语。 2、出示多音字。 【设计意图:设计此环节,是对基础知识的教学做到既扎实有效又不会让学生感到枯燥乏味。如:把多音字放在具体的句子中能正确选择并读准字音;把词语放在不同的语言环境中理解词语的意思;区分形近字,抓住学生在学习过程中容易出错的字词展开教学。此环节的设计具有针对性,体现教学方法的多样性,还重在关注字源文化的渗透性。】

(三)这是一个精彩的民间故事。在读这个故事时,我们应走进字里行间揣摩故事中人物的心思、语气,与故事中的人物同悲、同喜、同怒、同乐!这就叫用心读书,也只有这样用心方能读出“味儿”。现在,请同学们默读课文,划出课文中体现美与丑的句子,并想一想美在哪里,丑在何处?(四)划完的同学可以小组交流一下。 (五)同学们交流得真热烈,那我们先来汇 ●在一片景色秀丽的山林中,有一只鹿。它双角洁白如雪,身上有九种鲜艳的毛色,漂亮极了,人们都称它九色鹿。 1.出示图。九色鹿的外表很美。(外表美) 2.那你能读出他的外表美吗?指名读、齐读。 △读得真好。这一段写出了九色鹿的外表美。接着我们继续交流,你还发现了哪些美? ●九色鹿立即纵身跳进河中,将落水人救上岸来。 1.你能从中体会出什么?(板书:勇敢) 2.这个“立即”可以换一个什么词?说明什么? 3.九色鹿看到调达在汹涌的波涛中挣扎时,毫不犹豫地纵身跳了下去,多么勇敢啊!你会怎么读?激情感读:调达万分危急,生死之间。读—— 九色鹿毫不犹豫,勇敢救人。读—— △勇敢的力量来自善良的心灵!还能从九色鹿身上找到美吗? ●九色鹿打断了调达的话,说:“我救你并不是要你做我的奴仆。快回家吧。只要你不向任何人泄露我的住处,就算是知恩图报了。” 1. 从这段话中你看出了九色鹿美在哪里?(板书:无私)

奔跑吧兄弟游戏方案

奔跑吧兄弟游戏方案策划(一) 主题:惊天大劫案(即小偷和守卫的故事)背景故事:某伯爵家中藏有一颗价值连城的钻石,但由于信息泄露,吸引了许多人的注意,伯爵为避免钻石失窃,准备聘请安全公司进行保卫,奔跑安保公司和兄弟安保公司实力超群,使得伯爵难以取舍。由于这两个安保公司的实力不相上下,为确认哪个公司更胜一筹,故设定了一些小小的考验来考验你们…… 参演嘉宾: 奔跑吧兄弟兄弟团成员不变 参与游戏的嘉宾最好是二男一女,例如: 地点:最好是空间大一点的,布局稍稍复杂一些的 (PS1:最好类似于上海的1933老场坊,因为在第一期的时候就觉得这里不错; PS2:因本人去过的地点较少,所以地点一栏不做推荐,请见谅)

游戏方案设定: 将兄弟团成员与嘉宾分成两组,进行对抗 成员分组如下:(以第一组为例) 兄弟安保公司:anglebaby,邓超,陈赫,王宝强,孙红雷(男嘉宾1) 奔跑安保公司:王祖蓝,李晨,郑恺,张钧甯(女嘉宾),黄渤(男嘉宾2) 背景故事:伯爵决定先看看你们这些安保公司员工的个人水平究竟如何,所以决定让你们都去演武场进行单兵作战能力考查…… 第一关:单兵作战能力检测 在指压板上跨栏奔跑30米后,站在指压板上射箭5支(距离10米,并记录靶环数),之后返回,与下一位成员击掌接力,用时最短的队伍获胜。若时间相同,则比较靶环总数大小,靶环总数大的为胜。 获胜队伍奖励: 1.可以选择称为攻击方(即小偷方)或者是防御方(即守卫 方); 2.获胜组可获得一次在之后密室逃脱游戏中的提示机会; 3.靶环数最大的两人可以在撕名牌的环节获得额外能力。

额外能力1——破釜沉舟:在己方队伍人数小于等于3人时,(包括自己)每死亡一名己方队友,生命提升一格。若技能持有者在技能即将发动或未发动之前便死亡,拥有该技能的人会复活一次,复活后,技能失效 额外能力2——一箭定乾坤:拥有一次暗中击杀的机会,可以选择击杀一名视线范围内的敌方人员,使用此技能时,周围4米内不允许出现任何人员,否则技能失效。

《认识Photoshop》说课稿

《认识Photoshop》说课稿 【教材分析】 1.与前后课程的联系 图像是传递信息的重要媒体,因此让学生学会处理图像尤为重要。Photoshop是一个功能强大的图像处理软件,可以实现对图像的各种处理操作,实现多种信息表达效果。本课是初中信息技术教材“图像信息处理”部分的第1节,由于Photoshop的普及面比较广,有的学生以前系统学习过,有的只是简单接触过,有的可能一点都没有接触,起点得差异性比较大。在课前预习中,学生已经了解了一些基础知识,但还不能应用到实际操作中。因此,本课成为把学生带入Photoshop世界的关键一课。 2.教学重点 使学生熟悉Photoshop界面,体验各种工具的用途,对其产生兴趣。 3.教学难点 仿制图章工具的使用 4.教学目标 [知识与技能] 1.初步了解Photoshop界面的组成。 2.会用几个特殊工具(仿制图章工具、横排文字工具)。 3.能够实现图像的复制。 [教学过程与方法] 充分利用多媒体网络机房的优势,首先由教师展示作品,确定教学主题并布置教学任务,学生在教师的引导下完成教学任务。 [情感态度与价值观 1.培养学生的观察能力、审美能力; 2.教会学生对图片进行加工处理的能力; 3.通过制作合影照,让学生有一定的成就感,增强学生学习信息技术的兴趣。 【教学过程】 为了进一步培养学生的信息素质,使他们从学会知识发展为学会学习,我们选择了网络环境下学生自主学习与协作学习相结合的教学模式,并且编制了资源库、专题学习网站,将网络作为辅助学习的认知工具和组织课堂活动的基本平台。教师尽力避免单纯地介绍知识或限制学生的操作过程,而应该让学生充分思考,创造性地学习Photoshop。七年级学生对新鲜事物的好奇心非常强,并有强烈的表现欲望。通过这一任务可以让他们的想法得到实现。我们如下安排整个教学过程。 一、组织网上实时讨论,实现复习引入环节 本节课以一个问题开始,“通过近一段时间的学习,你怎么理解图层的?”首先拿出两三分钟的时间,让每个学生在实时讨论区中发表自己的观点,然后讨论彼此的看法。这样做,可以发挥网络的优势,克服传统课堂只能提问一两个学生的局限;同时在短时间内给每个学生提供发言的机会并使他们在相互讨论中实现相互启发。 教师在这个环节中可以参与讨论,表扬其中较为生动、贴切的说法;还可以展示自制的教具,使学生对图层的理解更加形象化。这一环节应该是学习前的“热身”活动,短短的几分钟不仅可以把学生的注意力集中到课堂上,而且更深化他们头脑中的图层概念。 二、创设情境、激发学习热情 教师先展示几幅图片,然后告诉学生“它们分别从不同角度应用了图层技术。只要掌握了一定的基础知识,学习这些实例将成为一件很有趣的事情。”那么现有知识是否够用呢?

直播脱口秀签约协议

直播脱口秀签约协议 协议编号:甲方:法定代表人:联系方式: 电子邮箱:住所:乙方:身份证号: 联系方式: 电子邮箱: 住所:

双方本着自愿平等互利双赢的原则,经友好协商达成共识,甲方聘请乙方为公司的签约脱口秀人选。为规范双方在协议期间的权利、义务,特制定本协议。 乙方的权利与义务 1.乙方的权利 (1)可以获得甲方授予的其原创作品的授权。 (2)可获得甲方自有媒体和相应渠道的所有推广。 (3)可以得到甲方指定专业人士的专业指导与点评。 (4)优秀脱口秀主播可以免费享受甲方在演讲表演的专业方面的培养和培训。 (5)可以享受甲方提供的专门宣传页面。 (6)优秀脱口秀可以获得甲方为其免费拍摄专题MV的机 △ Q (7)可以获得甲方举办的各种〃演出巡演"及宣传机会和与甲方其他明星一起学习的机会。 2.乙方的义务

(1)乙方在签约时,须向甲方提供真实的个人资料及信息。 (2)必须服从甲方约定的《直播脱口秀演出制度》见另外附件 (3)甲方按照《直播脱口秀演出制度》附件约定给予乙方费用,除此外还可免费享受甲方为其提供的培训、形象、脱口秀设计等服务以及车旅食宿。 (4)乙方有义务维护甲方的形象及名誉,不得发表任何有损甲方形象或名管的言论,不得做出任^有损甲方形象或名誉的行为。 (5)乙方需将自己所录播或者直播的脱口秀作品交于甲方做相关业务和推广。 (6)未经甲方书面同意,乙方不得参与与甲方属同质竞争企业的工作或活动,其录播直播的新作品必须保证在甲方使用。 (7)乙方要保证按照甲方要求录播和直播脱口秀,具体直播要求见《直播脱口秀演出制度》。 (8 )在接受媒体、广告、商业演出、出席各种公益或者非公益活动、都应该认同自己属于甲方旗下“原创艺人"的身份。 二.甲方的权利与义务

苏教版四年级上册《九色鹿》教案

《九色鹿》教案设计 【教学目标】: 1、有感情地朗读课文,体会人物的形象。 2、理解课文内容,明白做人要恪守信用的道理。 3、通过学习,复习童话的特点。 【教学重难点】: 让学生在自读自悟的基础上,与文本对话,与师生对话,感受人物形象。 【教学准备】: 多媒体课件。 【教学过程】: 一、导入: 1、齐读课题。 2、复习词语: 斥责发誓惭愧 残害灵魂笑话 见利忘义背信弃义恩将仇报 (1)指读第一行。(评1:你把字音都读准了。评2:你读得真有节奏。)齐读。(2)指读第二行。(评1:你把后鼻音读准了。评2:你把轻声读出来了。)齐读。(3)指读第三行。(评1:你读得真好。评2:你读出了词语背后的声音。)(4)齐读。 3、同学们,你们的词语掌握的可真好啊!那么通过上一节课的学习,你们还记得我们本课的主人公除了九色鹿,还有谁啊?(板书:调达) 4、那么,他们之间又发生了怎样的故事呢?(板书:救、出卖) 5、接下来,让我们一起把目光聚焦到这两位主人公的身上。请同学们打开书本,默读课文,用“——”画出描写九色鹿的语句;用“﹏﹏”画出描写调达的语句;再把句子读几遍,体会这两个人物的特点,并选择二、三处写下自己的感想。 交流一:我认识到了这是一只漂亮极了的九色鹿。抓住“漂亮极了”进行教学(1)你从哪里体会到的?(双角洁白如雪、九种鲜艳的毛色) A、“洁白如雪”你能体会到什么呢?(白得跟雪一样) 请你读好着个词语。指读。(评1:九色鹿,你的双角真白啊!跟雪一样的白。评2:九色鹿,你双角的颜色真漂亮啊!)齐读。 B、“九种鲜艳的毛色”你能体会到什么?(羽毛的颜色多、漂亮) 请你读好这个短语。指读。(评1:九色鹿,羽毛的颜色真多啊!评2:九色鹿,你的羽毛真鲜艳啊!) C、指读本段。(评1:我看到了拥有洁白如雪的双角的九色鹿。评2:我看到了身上有九种鲜艳毛色的九色鹿。)齐读。 (2)同学们,洁白如雪的双角,九种鲜艳的毛色,这是在对九色鹿的什么进行描写啊? (3)师小结:是啊,课文通过对九色鹿外貌的描写,让我们体会到了九色鹿的漂亮。让我们再来读好这段。齐读。 交流二:我认识到了这是一只勇敢的九色鹿。 (1)你从哪里体会到的呢?(九色鹿立即纵身跳入跳入河中,将落水人救上岸

奔跑吧兄弟策划书

校园版“Running Star/奔跑吧兄弟” 一、活动前言韩国超火综艺节目running man由于它强大的娱乐性和竞技性,吸引了全世界的注意力,可以说是风靡全球,然而坐在电脑前的我们无法身临其境,只能享受视觉效果,为之失 一、活动前言 韩国超火综艺节目“running man”由于它强大的娱乐性和竞技性,吸引了全世界的注意力,可以说是风靡全球,然而坐在电脑前的我们无法身临其境,只能享受视觉效果,为之失落不已。然而,今天,地理学院即将为大家提供尽情表现自我的机会,“Running star”——专属于江西师大的校园版“Running man”,重磅来袭!这里没有璀璨夺目的明星,但是有青春洋溢的我们;这里没有华丽绚烂的场景,但是有绿意盎然的健康小道;这里没有专业大牌的导演,但是有认真服务的小编。一段段精彩的演出将会由你来呈现,这将会是你的专属show time! 二、活动目的 为了提高大学生的综合素质,发扬团队协作互帮互助的精神,使广大学生在活动参与中受到潜移默化的影响,思想感情得到熏陶,精神生活得到充实,道德境界得到升华,活跃我校大学生文化体育生活,营造良好的校园文化氛围,加强各分站间的交流。

三、活动主题 Running star 四、活动主办方 地理与环境学院 五、活动承办方 软件学院、传播学院、生命科学学院、体育学院、理电学院六、活动时间 十一月八日下午两点 七、活动地点 健康小道 八、主持人 地理与环境学院文化部部长 九、参与人员 (一)嘉宾 地理与环境学院党员服务站站长 软件学院党员服务站站长 体育学院党员服务站站长 传播学院党员服务站站长 生命科学学院党员服务站站长 理电学院党员服务站站长 (二)参与人员主体 地理与环境学院党员服务站内部人员

网络直播演艺合作协议(标准范文)

直播演艺合作协议 甲方:xxxx文化传媒有限公司 注册地址: 联系人: 联系电话:xxxxxxx 乙方: 艺名昵称: 身份证号: 联系电话: 联系地址: 甲方系一家依法成立并持续经营的公司,拥有网络直播平台、线下商演等合作资源。乙方是一名具有演艺特长,有志于逐步提升演艺水平和知名度的主播。 现甲乙双方为了实现共同的目标,经友好协商达成本协议。 1. 合作内容 甲方利用其现有资源对乙方进行培训、推广,帮助乙方提升演艺水平、知名度和收益。 2. 合作期限

双方的合作期限为【两】年,自【】年【】月【】日至【】年【】月【】日。协议期满前,如双方均无异议,本协议自动延续【一】年,依此类推。 3. 甲方权利义务 3.1甲方有权为乙方接洽、安排、策划直播演艺活动和事务,并对乙方进行培训、包装、推广。甲方得以全权代表乙方与第三方签订经纪或演出相关合约。 3.2甲方有权享有乙方姓名、名称、声音、形象以及由此衍生的相关权利在全球范围内之所有权和收益权,并有权在自身活动或者其他商业活动中使用、授权合作方使用乙方的姓名、名称、声音、形象及相关衍生权利。 3.3乙方演出所产生的视频内容及衍生作品相关版权及其他权利在全球范围内均归甲方单独所有,甲方可以自行使用或授权给第三方使用。合作期满后,乙方在合作期间授权的姓名权、肖像权、作品表演权等,甲方或授权的第三方有权继续使用,并无需为此另外支付乙方任何费用。 3.4甲方负责了解、接受并传达直播平台规则。乙方应保证遵守该等规则。 3.5为提升乙方知名度和影响力,甲方有权以授权、许可、合作经营等方式,转让本协议项下全部或部分权利义务,即有权与第三方共同享有和承担本协议项下权利义务,乙方应予配合和服从。 3.6乙方不得未经甲方书面许可擅自商业性行使上述权利或者使用演出产生的一切视频、衍生品版权、权利等,否则所得收益均归甲方所有,另乙方需向甲方支付所得收益的50%作为赔偿。 4. 乙方权利义务

校园版“奔跑吧兄弟”活动策划书

校园版“奔跑吧兄弟”活动策划书 一、活动前言韩国超火综艺节目running man由于它强大的娱乐性和竞技性,吸引了全世界的注意力,可以说是风靡全球,然而坐在电脑前的我们无法身临其境,只能享受视觉效果,为之失 一、活动前言 韩国超火综艺节目“running man”由于它强大的娱乐性和竞技性,吸引了全世界的注意力,可以说是风靡全球,然而坐在电脑前的我们无法身临其境,只能享受视觉效果,为之失落不已。然而,今天,地理学院即将为大家提供尽情表现自我的机会,“Running star”——专属于江西师大的校园版“Running man”,重磅来袭!这里没有璀璨夺目的明星,但是有青春洋溢的我们;这里没有华丽绚烂的场景,但是有绿意盎然的健康小道;这里没有专业大牌的导演,但是有认真服务的小编。一段段精彩的演出将会由你来呈现,这将会是你的专属show time! 二、活动目的 为了提高大学生的综合素质,发扬团队协作互帮互助的精神,使广大学生在活动参与中受到潜移默化的影响,思想感情得到熏陶,精神生活得到充实,道德境界得到升华,活跃我校大学生文化体育生活,营造良好的校园文化氛围,加强各分站间的交流。 三、活动主题 Running star 四、活动主办方 地理与环境学院 五、活动承办方 软件学院、传播学院、生命科学学院、体育学院、理电学院 六、活动时间 十一月八日下午两点 七、活动地点 健康小道 八、主持人 地理与环境学院文化部部长 九、参与人员 (一)嘉宾 地理与环境学院党员服务站站长 软件学院党员服务站站长 体育学院党员服务站站长 传播学院党员服务站站长 生命科学学院党员服务站站长 理电学院党员服务站站长

Photoshop说课稿

Photoshop 说课稿 一、说教材 1、教材简析: 《PHOTOSHOP》属计算机软件应用类课程,这类课程有实践性、工具性、直观性的特点。在这一类课程的教学实践中我主要的教学思想是使用任务驱动法和学生的自主学习相结合,在设计任务时要紧扣教学内容并紧密联系学生的已有知识结构和实际生活,以培养学生的协作能力、分析问题、解决实际问题的能力为目标。在教学过程中,要充分体现以人为本的思想,要能用生活化的语言讲清楚专业的概念。本节内容是在学生对PHOTOSHOP 基础知识有了一定的了解之后进而提高的内容,主要是对图层、色彩修饰和羽化等操作内容的学习,通过学习此节内容,可以使学生掌握一种对图形进行精细选择的基本操作技能,从而提高学生对图形的处理能力。指导学生对人物图像进行处理,使图像更富创造力,从而完成整幅图像设计制作任务,并为以后提出更高层次的学习任务做好铺垫。 2、学情分析大部分学生对图形、图像的基本知识已有了最初的了解,对他们来说,这部分知识是将已经学过的知识和新知识融合到一起的内容,所以教学中,我将重点放在引导学生学习photoshop命令菜单、积累图像处理方法和提高图像处理技能上。 3.教学目标 1 .掌握利用photoshop的图像处理功能 2 .学会在学习中领悟制作过程和方法 3 .品格教育、肖像权教育

4、教学重难点 重点: l 曲线、羽化命令菜单的使用 2 图像处理方法 难点: l 图像处理方法和技能的综合运用 二、说教法 教师在占用课堂时间较少,采用演示法、讲解法、指导法,以任务驱动模式达到教学效果。同时,老师在教法中一定要引申出许多问题让学生思考。因为根据计算机这门学科的特点,老师教的知识在一定时间内会过时,必须要教会学生制作的方法,让学生学会思考和观察。(自己先演示,再让学生做,最后再让学生发散思维制作自的创意作品) 三、说学法 从学生上机时间占总课时的70%出发,采用练习法、发现法、观察法等,本人利用“个人作品展示” ,目的是让学生按照即定的任务制作自己的作品,并通过展示作品从而进行交流,有所提高,学生能发挥主体作用,老师负责组织教学、检查总体、指导个别等,这样调动课堂气氛,形成竞争氛围,激发学生热情和对电脑的兴趣。 四、教学思路和过程 (一)明确任务 (1)人物图像处理技术。把原图处理成效果图的样式。

【标准合同模板】最新直播平台演艺合作协议

合作协议 甲方: 地址: 法定代表人: 乙方: 联系地址: 身份证号: 鉴于乙方是具有完全民事行为能力的自然人,并具有歌唱、表演等方面的才艺和经验,甲方系依法注册并合法存续的以文化艺术交流活动、展示展览服务以及文化演出策划等为营业范围的公司,为各展其长,双方在平等自愿、互惠互利的基础上,达成以下网络表演合作协议,以资共同遵守: 一、合作事项和经营收入 1.1、甲方为乙方设立网络视频直播间账号与后台,为其指定网络展示平台由乙方通过视频直播的方式向观众展示自己唱歌、主持、表演等方面的才艺,以获取观众的支持和肯定; 1.2、甲乙双方合作经营,以观众对乙方的肯定和支持为前提,由观众在观看视频过程中进行礼物充值刷出礼物获取收益。 二、合作期限 2.1、合作期限为年,自年月日至年月日;

2.2、协议所约定的期限届满,如甲乙双方有意续签,应在本合作协议期限届满之前30日内向对方发出通知,经协商一致,双方可重新签订合作协议,继续合作。 三、培训 甲方在与乙方签订本合作协议后,应当对乙方进行系统的培训和帮助,直至乙方熟悉并可独立胜任视频直播,该培训的费用由甲方承担。 四、收入管理和分配 4.1、合作期间内,由甲方代为收取和管理双方合作经营所获取的收益,按月结算和分配; 4.2、甲乙双方协商确定,对于合作期间的经营收入按照比例进行分配,其中甲方占百分之,乙方占百分之。 五、甲方的权利和义务 5.1、甲方有权按协议约定的比例分配经营收益; 5.2、协议签订时,甲方有权审查乙方的身份情况,以确认乙方具有完全民事行为能力人,有权签订本协议; 5.3、合作期间内,甲方有权对乙方的行为进行监督和审查,一旦发现乙方不符合视频主播条件或者有其他违法、违规行为的,视为乙方违约,甲方有权解除本协议并要求乙方因此造成的经济损失; 5.4、合作期间内,甲方有权根据市场需要,安排乙方参与相关视频活动,如无特别情况,乙方必须参加; 5.5、甲方应当按照协议积极为乙方寻找视频直播的机会,并将有

奔跑吧兄弟的策划修订稿

奔跑吧兄弟的策划内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

奔跑吧 K303 活动时间 2015年4月26日8:30-12:00(暂定) 集合地点 橘子洲公园游客服务中心旁边的大草坪(下桥后往南边走) 裁判长:陈老师 游戏方案: 约十人一组,一共5组(由所到人数再定) 队伍产生方式:随机抽签 队伍产生后选定队长,设计好队名,队旗,口号,展示造型。并贴好名牌,调试对讲机。 10min后集体展示,由裁判长评选出第一名,可获得撕名牌游戏中“复活卡”一张(被OUT后获得重生机会);第二名,可获得撕名牌游戏中“女生特权卡”一张(限女生被抓时求放过);第三名,可获得撕名牌游戏中“延时卡”一张;(即将被抓住时可准许5秒逃跑时间)。 热身游戏一:十人九足 每队十人,男女交错排成一横排,相邻的人把腿系在一起,一起跑向终点(50m),用时最短的胜出。第一名将获得30秒优先奔跑权利,第二名将获得20秒优先奔跑权利,第三名将获得10秒优先奔跑权利。 热身游戏二:盲人足球?

组内两两搭档,每对搭档中只有一个人戴蒙眼布,另一个人不戴。只有被蒙上眼睛的队员才可以踢球,他的搭档负责告诉他向什么方向走、做什么,并踢进5m远的球门。两人不能有肢体接触。在规定的时间3min内,看哪一组进的球最多,哪一组就获胜。 第一名将获得3个智慧锦囊,第二名将获得2个智慧锦囊,第三名将获得1个智慧锦囊。 撕名牌游戏 两轮比赛综合排名最后的组将成为铃铛人,铃铛人将铃铛绑在小腿上,携带任务卡率先出发,并按照提示将任务卡隐藏在指定位置。(铃铛必须一直挂在小腿上,直至OUT) 10min后,各组出发,寻找任务卡,或者撕下铃铛人的名牌,铃铛人OUT后,需告诉对手任务卡隐藏位置。任务卡一共十一张,需全部集中在某一队手中,该队获胜。若任务卡分散在不同组,则需要相互撕名牌,被撕掉名牌者OUT,任务卡给对手,最终某队获得全部任务卡,赢得终极大奖!撕掉对方名牌后,请及时通过对讲机告诉裁判,“某某OUT”,被OUT的人严禁继续参与撕名牌游戏,且不能透露信息给还在游戏中的人。 剧情还可能反转哦!一个半小时后,若铃铛组还有任务卡没被其他组找到,铃铛组获胜! 终点集合 预计11:40到达观景台,集体吟诵《沁园春。长沙》 颁奖,班级合影 自由活动 注意事项:

相关主题
文本预览
相关文档 最新文档