当前位置:文档之家› 锻造工艺

锻造工艺

锻造工艺
锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺

一、前言

复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。

二、工艺分析与方案确定

轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。

图1

针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

热→辊锻制坯→弯曲→锻造→切边→校正→锻件质量检测。本工艺方案采用中频感应加热不仅提高了锻件表面质量,稳定了工艺过程,也可提高生产率,改善劳动环境。多道次辊锻制坯,可有效地解决复杂弯轴锻件截面差大的问题,使制坯形状更接近于这类锻件展开后的直线形状和尺寸,减少锻件飞边,节省原材料。由于摩擦压力机具有模锻锤和锻压机的双重工作特性,在摩擦压力机上进行弯曲成形、预锻、终锻及校正成形,有利于稳定工艺过程,保证锻件质量,同时也具有很高的生产率。

三、工艺设计要点

1.辊锻毛坯的设计

辊锻毛坯设计是否合理对其后的弯曲,锻造成形工序有很大影响,应精确制坯,满足工序间的合理匹配。除按一般的辊锻毛坯设计原则外,要注意以下问题:(1)辊锻毛坯过渡区段的斜度选取原则为在能满足终锻充满型腔的情况下,斜度尽量取得大些,避免在大小头过渡处形成较大飞边。(2)由于采用辊锻制坯、摩擦压力机成形,在计算毛坯的横截面积F=Fd+2KFf时,飞边槽充满系数K取0.4-0.6即可,根据锻件形状尺寸,难于充填的部分取大值,易于充填的部分取小值。(3)辊锻制坯各道次间的延伸系数的计算与选取,要避免辊锻过程道次之间或辊锻后的毛坯出现折叠。

2.弯曲的回弹

对复杂弯轴类锻件而言,弯曲成形至关重要。在热锻时,弯曲过程中有否回弹及相关的影响因素,在教材、设计手册及资料中介绍的很少。通过试验研究表明,在摩擦压力机上进行没有夹紧的弯曲时,弯曲回弹是存在的,热锻时弯曲回弹值的大小主要和相对弯曲半径R/t,工件及模具的形状,弯曲部分坯料压扁程度即变形程度关系比较大。当R/t越大时回弹量也越大,工件在弯模中被压扁程度越大,弯曲型槽作用部分越长,回弹量越小。以左转向节臂为例(图1),由于弯曲成形时回弹的影响,在弯曲成形后,开口尺寸增大5-6mm,弯曲角由102°增大到103.4°,弯曲毛坯与终锻型槽明显不相匹配。在校正模弯曲成形时,由于回弹的影响,致使锻件落差尺寸22+2.0+1.0减小了2-3mm,如果设计时不考虑回弹问题,将直接影响着锻件尺寸精度和表面质量及材料利用率。在研制过程中,比较准确地确定了不同件、不同部位的弯曲回弹数值后,对原部分设计进行了修改,取得了较好的效果。

3.弯曲毛坯的设计

对复杂弯轴类锻件,弯曲毛坯设计是否合理,对锻造成形影响很大。在工艺调试中出现的两个主要问题是:弯曲毛坯放入终锻型槽不稳定,容易偏摆;直角弯曲处易出折叠。如1t轻型车左、右转向节臂两种锻件在最初的设计中,经弯曲后放入终锻型槽时出现偏倒问题。后来修改设计时,加大了弯曲的压扁程度,并重新确定了弯曲毛坯与终锻型槽的接触位置,使弯曲毛坯稳定放入终锻型槽。直角弯曲处易出折叠这是一个普遍存在的技术问题,如图2所示。

图2

由于金属朝最小阻力方向流动,则在直角弯曲处汇集,结果在锻件本体及毛边上形成折叠。为控制锻件直角弯曲处不出折叠,主要应设计好弯曲毛坯的形状和尺寸,其设计关键是要把直角处的R值尽量取的大些,并使直角弯曲处R的轮廓线在终锻型槽外面,如图3所示,虽然在锻件终锻过程中仍然产生折叠,但这时的折叠仅仅出现在毛边上,而不是出现在锻件本体上。实践证明,只要弯曲毛坯设计合理,能与终锻型槽很好的匹配,是完全可以克服直角弯曲处折叠问题的。

图3

4.弯曲工序的合理安排

对于简单弯曲,即一个方向上的弯曲工序,一般安排在顶锻、终锻之前,但对于复杂多向弯曲锻件,弯曲工序的合理安排也是很重要的,从锻造设备本身而言,只有一个垂直方向的运动,只能安排一方向上的弯曲成形,在本项目的研究中,采取了把多向弯曲合理分解的技术措施。如奥迪轿车左、右下拉臂两种锻件、不仅形状复杂,而且锻件在两个方向上有4种不同的弯曲角度。对此,我们在制定工艺时,将一个方向上的弯曲型槽开在预锻模上,经辊锻制坯的毛坯先经一向弯曲并预锻,

另一个方向上的三种不同形状、不同角度的弯曲安排在终锻工序即利用终锻型槽完成弯曲和终锻成形。再如2t轻型车左转向节壁臂(图1),也是两个方向4种弯曲角度,并且落差较大,对此种锻件经过认真的工艺分析,采取了如下工艺方案,即在一台摩擦压力机上进行水平方向的弯曲成形,然后在另一台摩擦压力机上终锻成形,经切边后再在校正模上将垂直方向的曲形压出来,这样不仅使终锻模和切边模形状简化,加工制造难度降低,节省模具材料,而且容易保证锻件质量,经实际生产使用表明,左转向节臂的工艺路线是正确的,在校正模上进行垂直方向的弯曲成形是成功的。

四、模具合理结构与设计

由于摩擦压力机行程速度较模锻锤慢,模具受力条件较好,其承击面一般为锤上模锻1/3即可。在本项目的设计中,对于预锻模、终锻模、校正模均采用了镶块式模具结构,可较大幅度地降低模具材料,降低模具机加工时与费用。此外,为适应大批量生产的要求,模具导向部分采用了导柱、导套结构,以平衡弯轴类锻件模锻过程中出现的错移力,减少锻件错差,提高锻件精度,同时也便于模具安装调整。

复杂弯轴锻件截面差较大,一般需经制坯工步,由于制坯后的毛坯截面形状和尺寸很难与锻件相吻合,故在预锻时往往出现多余金属流往模膛外,使预锻模打不靠,在锻模承击面间形成飞边,锤上模锻工艺的预锻不设飞边槽,在本工艺的设计中,在预锻模上也设置了飞边槽,以使多余金属流向飞边槽内,并使模具打靠,从而有效地保证预锻毛坯的形状和尺寸,使预锻毛坯截面积和终锻毛坯截面积匹配合理,保证复杂锻件的良好成形,避免折叠等缺陷。摩擦压力机上预锻飞边槽的形状与终锻相同,但在飞边桥部及仓部高度上要大1.5-2mm,而宽度要缩短4-5mm。这种设计方法对于摩擦压力机模锻成形是很合理的。

五、结论

(1)采用辊锻—摩擦压力机模锻复合工艺生产轻轿车复杂弯轴类锻件,其产品尺寸精度高,表面质量好,与传统的锤上模锻工艺相比,可平均节约原材料15%以上,能耗降低60%,锻件可比成本下降10%以上,具有显著的经济效益和社会效益。

(2)本工艺方案选择合理,生产过程稳定可靠,本文中的工艺设计方法与模具结构设计对其它复杂弯轴类锻件工艺设计具有普遍指导意义。

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。

铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造 制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。

砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计

铸造工艺

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性(任何铝铸件均存在这些问题)。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1)流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金《共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109)》的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。(这个度要靠经验来掌控,也是一个铸造技师,一辈子要研究的事) (2)收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,(我喜欢这句话,一看就是实际生产中中总结的)铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是(使)缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

锻造对金属组织、性能的影响与锻件缺陷

锻造对金属组织、性能的影响与锻件缺陷 锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。 本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。 (一)锻造对金属组织和性能的影响 锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。 锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能: 1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度; 2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布; 3)控制晶粒的大小和均匀度; 4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布; 5)使组织得到形变强化或形变——相变强化等。 由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。 但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。 (二)原材料对锻件质量的影响 原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。 如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。 如原材料内存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。原材料内的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。

锻造工艺规范

盘锦辽河油田天都实业有限公司 锻造工艺规范 TD/QD-ZJ-01,B/0 编制:周强日期:2013.12.06 审核:任文松日期:2013.12.06 批准:考立龙日期:2013.12.06 受控状态: 受控发放编号: 修改状态:第1次

1 主题内容及适用范围 本规范规定了承压件和压力控制件用锻钢件(含轧材)的化学成份、性能、熔炼、锻造、热处理及试验等内容。 本规范规定了承压件和压力控制件用锻钢件(含轧材,以下简称锻钢件)的生产、采购。 2 引用标准 GB9452热处理炉有效加热区测定方法 JB4249-1986锤上钢质自由锻件机械加工余量和公差 JB4250锤上钢质胎模锻件机械加工余量和公差 3 总则 锻钢件应符合本规范要求并按照经规定程序批准的技术文件和图样制造。 4 化学成份 4.1锻钢件用钢的化学成份应以抽样分析结果为依据。 4.2锻钢件材料化学成份极限应不超过表1、表2规定。 4.3锻钢件各元素的最大偏差应符合表3规定。 4.4常用锻钢件化学成份及允差应符合附录A或附录B的要求。 注:附录A给出了我国材料的化学成份及允差,附录B给出了相对应的美国材料的化学成份及允差,如用户要求,按用户要求选择,如用户无要求,则按附录A执行。 表1 表2

5 工艺要求 5.1熔炼方法 5.1.1制造厂必须制定规范的熔炼工艺指导生产。 5.1.2锻钢厂(含轧材)用钢熔炼一般采用碱性电弧炉可感应电弧炉进行,酸性电弧炉熔炼的钢不接 表3 合金元素最大偏差范围 注:表3中各元素的最大偏差应当使元素的合金含量不超过表1规定的值。 受;在熔炼过程中采用真空感应熔炼(VIM) 或者采用真空脱气、氢—氧脱碳方法(AOD)都可以接受,无论采用何种方法熔炼,钢水都必须经过充分镇静,以便得到纯净的钢水,保证锻件具有压力容器质量。 5.1.3中小型锻件也可直接用。 5.2锻造要求 5.2.1锻件图上规定的机械加工余量、公差及余量按JB4249-1986和JB4250有关标准执行。 5.2.2制造厂必须制定规范的锻造工艺指导生产。 5.2.3锻钢件若采用钢锭制作其主截面的锻造比不得小于3,若采用轧材制作其主截面的锻造比不得小于1.6。 5.2.4外观质量及其修补 5.2.4.1锻件的形状与尺寸应符合锻件图的要求。 5.2.4.2锻钢件外加工面不允许有飞刺,位于加工面的飞边经切除后残余量不应大于2mm。 5.2.4.3胎模锻件分模面错移量。 a、对于分模处于加工面的锻件,错移量应不大于加工余量的1/3。 b、对于分模线处于外加工面的锻件,错移量应符合表4规定。 a、需加工表面的缺陷深度不超过单面余量的1/2时,并保证加工后能完全清除,可不清除。

(完整版)主要锻造方法的工艺特点.doc

锻 造 方名称法 空气 锤自 蒸汽由 空气锻 锤造 水压 机 空气 锤胎蒸汽模空气锻锤 水压 机 有砧锤 座锤上 模 锻无砧 座锤热 设备类型生 工艺特点 产构造特点规 模 原材料为锭料或轧材,人工掌握完成各 单行程不固定,上下锤头为道工序,形状复杂的零件要多次加热, 件平的,空气锤振动大,水宜用于锻造形状简单的零件以及大的环 小压机无振动形、盘形零件,适用于锭料开坯、模锻 批 前制坯、新产品试制 在自由锻设备上采用活动胎模。与自由 行程不固定,上下锤头为 锻相比,锻件形状较复杂,尺寸较精确, 节省金属,生产率高,设备能力较大。成平的,空气锤振动大,水 与模锻相比,适用性广,胎模制造简便,批压机无振动 但生产率较低,锻件表面质量、模具寿 命较低 行程不固定,工作速度可以多次打击成形,打击轻重可以控制, 6~ 8m/s,振动大,有砧适用多膛模锻,便于进行拔长、滚压, 座,无顶杆,行程次数适用于各类锻件,多采用带飞边开式锻 大60~100 次 /min 模 批 上下模上下对击,操作不方便,不宜于 下锤头活动,无砧座,模 拔长、滚压,适用于形状较简单的大型 锻时无振动 锻件单膛模锻 模 锻 热模压 压力机 机上 模 锻 平平锻锻机 螺 旋 摩擦压 螺旋力 压力机 机上模 行程固定,工作速度为0.5~ 0.8m/s,行程次数 35~90 次/min ,设备刚度好,导向准确,有顶杆 行程固定,工作速度≈ 0.3m/s,具有互相垂直的两组分模面,无顶出装置, 设备刚性好,导向准 确 行程不固定,工作速度为 1.5~2m/s,有顶杆,一般 设备刚性差,打击能量可调

金属在每一模膛中一次成形, 不宜拔长、 滚压,但可用于挤压,锻件精度较高, 成 模锻斜度小,一般要求联合模锻及无氧 批 化加热或严格清理氧化皮。适用于短轴 大 类锻件,配备制坯设备时也能模锻长轴 量类锻件 金属在每一模膛中一次成形,除积聚镦 粗外,还可切边、穿孔,余量及模锻斜 成 度较小,易于机械化,自动化。需采用 批 较高精度的棒料,加热要求严格。适合 大 锻造各种合金锻件,带大头的长杆形锻 量件,环形、筒形锻件,多采用闭式锻模 每分钟行程次数低,金属冷 却快,不宜拔长、滚压,对偏载敏感。一般 用于中 小件单膛模锻,配备制坯设备时,也能 成 模锻形状较复杂的锻件,还可以用于镦 批锻、精锻、挤压、冲压、切边、弯曲、 校正

火车车轮锻造工艺分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火车车轮锻造工艺分析(最新 版) Safety management is an important part of production management. Safety and production are in the implementation process

火车车轮锻造工艺分析(最新版) 铁路交通是我国运输系统的重要组成部分,在国民经济和社会发展过程中,铁路运输扮演着不可替代的重要角色。我国一直以来都十分重视铁路运输的发展。最近几年以来,随着以高铁为代表的新型铁路运输技术的应用,我国铁路运输朝着高速、重载方向发展,车轮在复杂的运行工况和恶劣的工作条件下,受到来自于速度效应和制动方式的双重影响,对其耐磨性、强韧性以及抗疲劳性提出了更高的要求。但是我国现有的车轮锻压生产技术,还不能完全满足铁路运输发展对火车车轮质量的要求。尤其是我国高速列车的车轮,在车轮的制造中,还存在废品率较高的现象。因此,笔者认为,研究火车车轮锻压生产工艺,提高我国火车车轮锻压生产技术水平,制造优质火车车轮,对于降低我国火车整车生产成本,促进铁路运输的发展,有十分重要的现实意义。 1.火车车轮概述。

1.1.我国火车车轮形制特征简析 火车车轮是火车整车零件中的一个关键组成部分,是火车机车生产中技术较高的环节之一。由于火车的种类繁多,工作环境和机车构造也不尽相同,所以火车车轮的结构形式和形制特征也多种多样。一般由轮毂、轮辋、辐板三个部分组成。 火车车轮属于典型的金属塑性成形产品,常常会出现多种内部和外部缺陷。比较常见的有偏心缺陷、组织和填充不完全等缺陷。所以车轮生产中对锻压技术要求较高。 1.2.我国现行车轮生产工艺。 当前包括我国在内的世界各国普遍采用模锻——轧制法(又称整体辗钢车轮生产法)进行火车车轮锻造生产,这一方法主要采用模锻和轧制扩径两个主要步骤来完成车轮主体的成形。和铸造法相比较,该法所生产的车轮内在质量要好很多,与全模锻制造法相比,该法的优点在于对模锻设备的要求较低。全世界有20多个生产厂家,虽然各自的生产工艺有其独有特点,但是总体来说从流程来讲可以分为三个主要步骤:预成型及成型、轧制扩径和压弯冲孔。通过初

工艺性能

属材料的工艺性能包括:铸造性能、锻造性能、焊接性能、切削加工性和热处理工艺性。 一、铸造性能 将熔化的金属浇注到铸型的型腔中,待其冷却后得到毛坯或直接得到零件的加工方法称为铸造。由铸造得到毛坯或零件称为铸件。铸造的应用十分广泛,据统计在机械设备中,铸件重量约占整体重量的50%~80%。 铸造性能包括液态金属的流动性、凝固过程的收缩率、吸气性和成分偏析倾向等。 二、锻造性能 锻造是指锻造和板料冲压。锻造是指金属加热后,用锤或压力机使其产生塑性变形,从而获得具有一定形状、尺寸和机械性能的毛坯或零件的加工方法。锻造广泛用于机床、汽车、拖拉机、化工机械中,如齿轮、连杆、曲轴、刀具、模具等都采用锻造加工。 板料冲压是指板料在机床压力作用下,利用装在机床上的冲模使其变形或分离,从而获得毛坯或零件的加工方法。 锻造性能的优劣常用金属的塑性和变形抗力来综合衡量。塑性愈大,变形抗力愈小,其压力加工性能愈好。金属材料的塑性,由金属材料的伸长率、断面收缩率和冲击韧度等指标衡量铜合金和铝合金在室温状态下就有良好的锻造性能;碳钢在加热状态下锻造性能较好。其中低碳钢最好,中碳钢次之,高碳钢较差;低合金钢的锻造性能接近于中碳钢,高合金钢的较差;铸铁锻造性能差,不能锻造。 三、焊接性能 焊接是一种永久性连接金属材料的工艺方法。它通过局部加热、加压或加热同时加压的方法,使分离金属借助原子间结合与扩散作用而连接起来的工艺方法,其应用广泛。 金属材料对焊接加工的适应性称焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度 焊接性包括工艺焊接性和使用焊接性两个方面。前者主要是指焊接接头产生工艺缺陷的倾向,尤其是出现各种裂缝的可能性;后者主要是指焊接接头在使用中的可靠性,包括焊接接头的力学性能及其他特殊性能(如耐热、耐蚀性能等)。金属材料这两个方面的焊接性可通过估算和试验方法来确定。 在汽车工业中,焊接的主要对象是钢材。影响钢材焊接性的主要因素是化学成分。多种化学元素加入钢中以后,对焊缝组织性能、夹杂物的分布以及对焊接热影响区的淬硬程度等影响不同,产生裂缝的倾向也不同。在各种元素中,碳的影响最明显。其他元素的影响可折合成碳当量,用碳当量方法可估算被焊钢材的焊桉性。一些经验值见表1— 4。低碳钢和碳当量低于0.4%的合金钢有较好的焊接性能,碳质量分数大于0.45%的碳钢和碳质量分数大于0.35%的合金钢的焊接性能较差

锻造对金属组织的影响

锻造对金属组织、性能的影响与锻件缺陷 锻造对金属组织、性能的影响与锻件缺陷 -------------------------------------------------------------------------------- 锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。 (一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变——相变强化等。由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。 (二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。如原材

锻造工艺缺陷

锻造工艺不当产生的缺陷通常有以下几种 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降, 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面, 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部分金属局部变形,被压人另一部分金属内而形成。折叠与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作等有关折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源 9.穿流 穿流是流线分布不当的一种形式。在穿流区,原先成一定角度分布的流线汇合在一起形成穿流,并可能使穿流区内、外的晶粒大小相差较为悬殊。穿流产生的原因与折叠相似,是由两股金属或一股金属带着另一股金属汇流而形成的,但穿流部分的金属仍是一整体 穿流使锻件的力学性能降低,尤其当穿流带两侧晶粒相差较悬殊时,性能降低较明显。 10.锻件流线分布不顺 锻件流线分布不顺是指在锻件低倍上发生流线切断、回流、涡流等流线紊乱现象。如果模具设计不当或锻造方法选择不合理,预制毛坯流线紊乱;工人操作不当及模具磨损而使金属产生不均匀流动,都可以使

锻造工艺常见缺陷

锻造工艺不当产生的缺陷通常有以下几种: 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允

许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部

锻造工艺

一、自由锻 只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件,称为自由锻。 1、基本工序可分为拔长、镦粗、冲孔、弯曲等。 拔长:也称为延伸,它是使坯料横断面积减小、长度增加的锻造工序。 镦粗:是使毛坯高度减小,横断面积增大的锻造工序。 冲孔:是利用冲头在镦粗后的坯料上冲出透也或不透孔的锻造方法。 弯曲:采用一定的工模具将毛坯弯成所规定的外形的锻造工序。 2、自由锻的特点及应用 特点:工艺灵活性较大,生产准备的时间较短; 生产率低,锻件精度不高,不能锻造形状复杂的锻件。 应用:自由锻是大型锻件的主要生产方法。这是因为自由锻可以击碎钢锭中粗大的铸造组织,锻合钢锭内部气孔、缩松等空洞,并使流线状组织沿锻件外形合理分布。 二、胎模锻 胎模锻是在自由锻设备上使用可移动模具(胎模)生产模锻件的一种锻造方法。 特点:与自由锻相比较优点 ①由于坯料在模膛内成形,所以锻件尺寸比较精确,表面比较光洁,流线组织的分布比较合理,所以质量较高。 ②由于锻件形状由模膛控制,所以坯料成形较快,生产率比自由锻高1~5倍。 ③胎模锻能锻出形状比较复杂的锻件。 ④锻件余块少,因而加工余量较小,既可节省金属材料,又能减少机加工工时。 缺点:需要吨位较大的锻锤;只能生产小型锻件;胎模的使用寿命较低;工作时一般要靠人力搬动胎模,因而劳动强度较大。 应用:胎模锻用于生产中、小批量的锻件。 三、锤上模锻 简称模锻,它是在模锻外向锤上利用模具(锻模)使毛坯变形而获得锻件的锻造方法。 特点:与自由锻、胎模锻比较有如下优点 ①生产效高 ②表面质量高,加工余量小,余块少甚至没有,尺寸准确,锻件公差比自由锻小2/3~3/4,可节省大量金属材料和机械加工工时。 ③操作简单,劳动强度比自由锻和胎模锻都低。 缺点: ①模锻件的重量受到一般模锻设备能力的限制,大多在50~70kg以下; ②锻模需要贵重的模具钢,加上模膛的加工比较困难,所以锻模的制造周期长、成本高; ③模锻设备的投资费用比自由锻大。 应用:一般用于生产大批量锻件。

毕业设计锻造工艺分析与模具设计

锻造模具设计 摘要 模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。随着我国汽车工业的迅猛发展,汽车性能不断提高,汽车零部件中对高精度、形状复杂锻件的需求量越来越大,锻造新工艺、省材、节能工艺等技术的开发对于新型汽车零件的生产尤为重要。我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,差距仍很大,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。 本文主要是以轴类锻件的生产,加工工艺等,设计制造了,一些模具,包括,堕轮锻件的镦粗,终锻等后期加工模具。 首先介绍了,模具的一些简单情况,模具的分类,发展现状和趋势等,其次介绍了,零件的工艺性,毛坯的制定,镦粗,终锻模膛的设计,包括飞边槽的设计。 关键词:模具,终锻模膛,飞边槽,钳口,镦粗

An inert wheel forging the design specification Abstract Mold is mechanical manufacturing technology advanced, profoundly important technical equipment,High production efficiency, material with high efficiency and good quality, technology parts good adaptability etc. Characteristics.Widely used in motor vehicles, machinery, aerospace, aviation, light industry, electronics, electric appliances, instruments and other industries.With the rapid development of China's automobile industry,The car's performance to improve, Auto parts of high precision, complicated shape of forging an increasing demand for,Forging new craft, material, energy saving technology province technology development for new type of car parts production is especially important.Our country stamping die in the number no matter, or in quality, technology and ability are already has great development,But with the national economy needs and the advanced world level, compared to a gap still, Some large, sophisticated, complex, the long life of high-grade die every year in the importation of large still, Especially in high-grade car covering mould, at present still mainly rely on imports. The paper is an inert round of forging production, Processing techniques, Design and manufacturing, some mould, including, fall round of forgings upsetting, eventually forging, and trimming punching production processing mould. Firstly introduces, die some simple case, the classification of mould, development situation and trends,Secondly introduces, the technology of parts, blank the formulation, the upsetting, and the design of the chamber forging die,Including flash slots of design, Introduced again, trimming punching the design of the composite film. Key words:Mould,Finally bore, Flash tank,Clamp mouth,Upsetting,Trimming, punching

金属材料的工艺性能

金属材料的工艺性能 金属材料的工艺性能是指制造工艺过程中材料适应加工的性能,即指其铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能。 1、铸造性能 金属材料铸造成形获得优良铸件的能力称为铸造性能,用流动性、收缩性和偏析来衡量。 1)流动性熔融金属的流动能力称为流动性。流动性好的金属容易充满铸型,从而获得外形完整和尺寸精确、轮廓清晰的铸件; 2)收缩性铸件在凝固和冷却的过程中,其体积和尺寸减少的现象称为收缩性。铸件用金属材料的收视率越小越好; 3)偏析铸锭或铸件化学成分和组织的不均匀现象称为偏析,偏析大会使铸件各部分的力学性能有很大的差异,降低铸件的质量。 被铸物质多为原为固态,但加热至液态的金属,如铜、铁、锡等,铸模的材料可以是沙,金属甚至陶瓷。南关菜市场东头前两年有两个人把大量的铝易拉罐盒熔化后倒进模子里铸成大大小小的铝锅、铝盆等 2、锻造性 工业革命前锻造是普遍的金属加工工艺,马蹄铁、冷兵器、铠甲均由各国的铁匠手锻造(俗称打铁),金银首饰加工、金属包装材料是锻造与冲压的总和。什么是锻造性能? 锻造性能:金属材料用锻压加工方法成形的适应能力称锻造性。

锻造性主要取决于金属材料的塑性和变形抗力。塑性越好,变形抗力越小,金属的锻造性能越好。高碳钢不易锻造,高速钢更难。 (塑性:断裂前材料产生永久变形的能力。) 3、焊接性 金属材料对焊接加工的适应性成为焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度。钢材的含碳量高低是焊接性能好坏的主要因素,含碳量和合金元素含量越高,焊接性能越差。4、切削加工性能 切削加工性能一般用切削后的表面质量(用表面粗糙程度高低衡量)和道具寿命来表示。金属材料具有适当的硬度和足够的脆性时切削性良好。改变钢的化学成分(如加入少量铅、磷等元素)和进行适当的热处理(如低碳钢进行正火,高碳钢进行球化退火)可以提高刚的切削加工性能。(热处理的四把火:正火、退火、淬火、回火等,后面我们将进一步学习。)铜有良好的切削加工性能。 5、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性,即钢接受淬火的能力。(淬火能获得较高的硬度和光洁的表面),含锰、铬、镍等元素的合金钢淬透性比较好,碳钢的淬透性较差。铝合金的热处理要求较严,铜合金只有几种可以熔热处理强化。三国时诸葛亮带兵打仗,请当时的著名工匠蒲元为他造了3000把钢刀,蒲元用了(清水淬其锋)的热处理工艺,经过千锤百炼,使钢刀削铁如泥,从而大败敌军.有关方面的成语:趁热打铁、斩钉截铁等。

不锈钢的锻造工艺

不锈钢的锻造工艺(马氏体、奥氏体)

一、奥氏体不锈钢的锻造 1.概述 奥氏体不锈钢的碳质量分数小于0.25%,铬的质量分数17~19%,镍的质量分数为 8%~18%,如12Cr18Ni9等。 为节镍,用锰或氮代替部分镍而获得的Cr-Ni-Mn或Cr-Ni-Mn-N不锈钢。 奥氏体不锈钢不发生组织转变,不能用热处理强化,只能通过热锻成形和再结晶获得高的强度。奥氏体不锈钢通常在固溶状态下使用,具有最佳的塑性、韧性、良好的加工成型性及良好的耐蚀性和抗氧化性,因此一般用于要求耐腐蚀、抗氧化或在较高温度下工作,对强度要求不高,以及在较低温度下使用的零部件。 奥氏体不锈钢在高温下晶粒易长大,但长大倾向不如铁素体不锈钢强烈。 2.锻造温度选择及加热要求 (1)变形温度选择:

奥氏体不锈钢的锻造加热温度受高温铁素体(α-相)形成温度的限制,加热温度过高,α-相铁素体的量会显著增多,使钢塑性降低,使塑性变形不均匀,在两相界面产生裂纹。因此奥氏体不锈钢的始锻温度一般控制在1150~1200℃。 为防止组织中因洗出碳化物使变形抗力增加,产生锻造裂纹。所以终锻温度不应太低,一般不低于850℃。 对于普通18-8型不锈钢始锻温度取1200℃,当含钼或含高硅则取低于1150℃,对于25-12型和25-20型,始锻温度不高于1150℃,终端温度不低于925℃。 (2)加热要求: 不锈钢导热性差,加热时要严格按照温度和速度进行:800℃下缓慢加热(0.3~0.5mm/min),到920℃后可快速加热。 为确保耐蚀性,加热时应严格避免渗碳,因此奥氏体不锈钢不宜在还原性气氛或过分氧化气氛中加热,也不许火焰直接喷射在毛坯上,否则使钢增碳或使晶界区贫铬,提高钢的晶间腐蚀敏感性。 锻件在高温区停留时间不宜过长,否则易造成严重过氧化、元素贫化和晶粒粗化,具体可按锻压手册P217表2-3-15选择,一般不少于10~20min。

相关主题
文本预览
相关文档 最新文档