当前位置:文档之家› 超定方程最小二乘解

超定方程最小二乘解

超定方程最小二乘解
超定方程最小二乘解

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

超定方程用最小二乘法求解

根据解的存在情况,线性方程可以分为: 有唯一解的恰定方程组, 解不存在的超定方程组, 有无穷多解的欠定方程组。 对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。 线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最小二乘解; 还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。 左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠; 广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快; 独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解, 一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解, x=lsqnonneg(A,b) (3)矩阵求逆 行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。方阵的求逆函数为: B=inv(A) 该函数返回方阵A的逆阵。如果A不是方阵或接近奇异的,则会给出警告信息。 在实际应用中,很少显式的使用矩阵的逆。在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解, 而是使用矩阵除法运算x=A\B来求解。因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时, 并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。 因此,MATLAB推荐尽量使用除法运算,少用求逆运算。 (4)除法运算 在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。而在MATLAB 中,定义了矩阵的除法运算。

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 = 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法 . 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) [ ] ∑ = = - m i i i y x p 0 2 min ) (

第五章--最小二乘问题的解法

第五章 最小二乘问题的解法 1.最小二乘问题 1)回归方程问题 []T i i l i y t t )() ()(1 ,,...,,m i ,...,2,1=是m 个实验点。现要根据这些点确定y 与l 个物理量 l t t t ,...,,21之间的关系式。 设这种关系式为),...,,,...,(11n l x x t t F y =,其中n x x ,...,1是方程中需要待定的n 个参数(系数)。 因此问题是如何通过)(n m m >个实验点,确定方程中的系数。 由于实验点的个数大于待定系数的个数,因此方程中系数的确定是一个超静定问题,无法按一般的方法进行求解。 此时将实验点到曲面距离最短的那个曲面作为所求曲面,从而求取该曲面方程。 即求解[]∑=-m i i i y x t F 12 )()(),(min ,这就是最小二乘问题。 2)非线性方程组问题 求解非线性方程组?? ? ?? ??===0),...,(. 0 ),...,(0 ),...,(11211n n n n x x f x x f x x f 可转化为求解如下形式的最小二乘问题。 ∑ =m i n i x x f 1 12 ),...,(min 显而易见,最小二乘法的一般形式可写为)()(min x f x f T 最小二乘法问题实际上是具有n 个变量的无约束极小化问题,前面解无约束优化问题的方法均可应用。 但是最小二乘问题具有一定的特殊性,即目标函数的表达式是由多个表达

式的平方和组成,理应有更、更有效的方法。这正是最小二乘解法要解决的问题。 2.线性最小二乘问题的解法 最小二乘法的一般形式可写为)()(min x f x f T 特别地,当b Ax x f -= )(,即)(x f 为线性函数时,则最小二乘问题可表示为: 2 min b Ax - 1) 线性最小二乘问题解的条件 定理1:*x 是线性最小二乘问题极小点的充要条件是*x 满足b A Ax A T T =。 证明:(1)必要性 令2 )(b Ax x s -= ,于是有: b b Ax b b A x Ax A x b Ax b A x b Ax b Ax x s T T T T T T T T T T +--=--=--=))(()()()( 由于b A x T T 是一个数,而一个数的转置是它的本身,因此有: Ax b A x b b A x b A x T T T T T T T T T T ===) () ( 故上式可化为:b b Ax b Ax A x x s T T T T +-= 2)( b A Ax A x s T T 22)(-=? 若*x 是)(x s 的极小点,则必有0)(=?x s ,则必有:b A Ax A T T = (2)充分性 若*x 满足b A Ax A T T =* ,即0)(*=-b Ax A T 考虑任一点n R z x v ∈+=*,计算

最小二乘法原理

最小二乘法原理 1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 2. 原理 给定数据点pi(xi,yi),其中i=1,2,…,m 。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。 常见的曲线拟合方法: 1. 是偏差绝对值最小 11min (x )y m m i i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小 min max (x )y i i i i φδ?=- 3. 是偏差平方和最小 2211min ((x )y )m m i i i i i φδ?===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 01...k k y a a x a x =+++ 2. 各点到这条曲线的距离之和,即偏差平方和如下: 2 2 011(...)m k i i k i i R y a a x a x =??=-+++??∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了: 011 2(...)0m k i k i i y a a x a x =??--+++=??∑ 011 2(...)0m k i k i i y a a x a x x =??--+++=??∑

…….. 0112( 0 k k i k i i y a a x a x x =??--+++=??∑ 4. 将等式简化一下,得到下面的式子 01111...n n n k i k i i i i i a n a x a x y ===+++=∑∑∑ 2 1011111...n n n n k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ …… 12011111...n n n n k k k k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵: 11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====??????????????????????=?????????????????????? ∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到: 0111122 21...1...1...k k k k n n n a y x x a y x x a y x x ??????????????????=????????????????????

超定方程-最小二乘解

matlab 超定方程最小二乘解 2011-04-09 06:36:47| 分类:学习| 标签:超定方程最小二乘|字号订阅 根据解的存在情况,线性方程可以分为: 有唯一解的恰定方程组, 解不存在的超定方程组, 有无穷多解的欠定方程组。 对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。 线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解; 还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。 左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠; 广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快; 独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解, 一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解, x=lsqnonneg(A,b) (3)矩阵求逆 行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。方阵的求逆函数为: B=inv(A) 该函数返回方阵A的逆阵。如果A不是方阵或接近奇异的,则会给出警告信息。

在实际应用中,很少显式的使用矩阵的逆。在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解, 而是使用矩阵除法运算x=A\B来求解。因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时, 并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。 因此,MATLAB推荐尽量使用除法运算,少用求逆运算。 (4)除法运算 在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。而在MATLAB中,定义了矩阵的除法运算。 矩阵除法的运算在MATLAB中是一个十分有用的运算。根据实际问题的需要,定义了两种除法命令:左除和右除。 矩阵左除: C=A\B或C=mldivide(A,B) 矩阵右除; C=A/B或C=mrdivide(A,B) 通常矩阵左除不等于右除, 如果A是方阵,A\B等效于A的逆阵左乘矩阵B。也就是inv(A)*B。 如果A是一个n*n矩阵,B是一个n维列向量,或是有若干这样的列的矩阵,则A\B就是采用高斯消去法求得的方程AX=B的解。 如果A接近奇异的,MATLAB将会给出警告信息。 如果A是一个m*n矩阵,其中m不等于n,B是一个m维列向量,或是由若干这样的列的矩阵,

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

超定方程组最小二乘解

精品文档 超定方程组最小二乘解 最小二乘法广泛地应用于工程计算中,用最小二乘法消除(平滑)误差,用最小二乘法从有噪声的数据中提取信号,从海量数据中找出数据变化的趋势,……。甚至利用简单函数计算复杂函数的近似值,我们并不期望它的近似值多么精确(事实上很多时候也不用很精确),尽管如此还是希望计算出的近似数据与原始数据之间有相似之处。如果从线性代数角度来理解最小二乘法,实际上是将一个高维空间的向量投影到低维子空间所涉及的工作。 一、 超定方程组的最小二乘解 当方程组GX=b 的方程数多于未知数个数时,对应的系数矩阵G 的行数大于列数,此时方程组被称为是超定方程组。设G=(g iu )m ×n ,当m>n 时即所谓的高矩阵,绝大多数情况下,超定方程组没有古典意义下的解。超定方程组的最小二乘解是一种广义解,是指使残差r = b – GX 的2-范数达取极小值的解,即 22*||||min ||||GX b GX b m R X -=-∈ 该问题是一个优化问题。 命题1:如果X *是正规方程组G T GX=G T b 的解,则X *是超定方程组GX=b 的最小二乘解 证 由题设可得,G T (b – GX *)=0。对任意n 维向量Y ,显然有 (X * – Y )T G T (b – GX *)=0 考虑残差2-范数平方,由 22**2 2||)()(||||||Y X G GX b GY b -+-=- 上式右端利用内积,得 22*22*22*2 2||||||)(||||||||||GX b Y X G GX b GY b -≥-+-=- 从而有 || b – GY ||2 ≥ || b – GX *||2 等式仅当Y =X *时成立。所以X *是超定方程组GX=b 的最小二乘解。 命题2:如果X *是超定方程组GX=b 的最小二乘解,则X *满足正规方程组G T GX=G T b

超定方程组最小二乘解

超定方程组最小二乘解课程设计 最小二乘法广泛地应用于工程计算中,用最小二乘法消除(平滑)误差,用最小二乘法从有噪声的数据中提取信号,从海量数据中找出数据变化的趋势,……。甚至利用简单函数计算复杂函数的近似值,我们并不期望它的近似值多么精确(事实上很多时候也不用很精确),尽管如此还是希望计算出的近似数据与原始数据之间有相似之处。如果从线性代数角度来理解最小二乘法,实际上是将一个高维空间的向量投影到低维子空间所涉及的工作。 一、超定方程组的最小二乘解 当方程组GX=b 的方程数多于未知数个数时,对应的系数矩阵G 的行数大于列数,此时方程组被称为是超定方程组。设G=(g iu )m ×n ,当m>n 时即所谓的高矩阵,绝大多数情况下,超定方程组没有古典意义下的解。超定方程组的最小二乘解是一种广义解,是指使残差r = b – GX 的2-范数达取极小值的解,即 22*||||min ||||GX b GX b m R X -=-∈ 该问题是一个优化问题。 命题1:如果X *是正规方程组G T GX=G T b 的解,则X *是超定方程组GX=b 的最小二乘解 证 由题设可得,G T (b – GX *)=0。对任意n 维向量Y ,显然有 (X * – Y )T G T (b – GX *)=0 考虑残差2-范数平方,由 2 2**22||)()(||||||Y X G GX b GY b -+-=- 上式右端利用内积,得 2 2*22*22*22||||||)(||||||||||GX b Y X G GX b GY b -≥-+-=- 从而有 || b – GY ||2 ≥ || b – GX *||2 等式仅当Y =X *时成立。所以X *是超定方程组GX=b 的最小二乘解。 命题2:如果X *是超定方程组GX=b 的最小二乘解,则X *满足正规方程组G T GX=G T b 证 由题设,22* ||||min ||||GX b GX b m R X -=-∈,利用2-范数与内积关系,知X *是下面二次函数的极小值点 ?(X ) = (GX ,GX ) – 2(GX ,b ) + (b ,b ) 取任意n 维向量v ,对任意实数t ,构造一元函数 g (t ) = ?(X * + t v ) 显然, g (t ) 是关于变量t 的二次函数 g (t ) = (G (X * + t v ),G (X * + t v )) – 2(G (X * + t v ),b ) + (b ,b ) = g (0) + 2t [(GX *,Gv ) – (Gv ,b )]+ t 2 (Gv ,Gv ) 由题设t =0是g (t )的极小值点。由极值必要条件,得0)0(='g 。即 (GX *,Gv ) – (Gv ,b )=0 将左端整理化简,便得 (Gv ,GX * – b ) =0

人口预测的最小二乘模型

实验24 人口预测的最小二乘模型 表 24-1 世界人口数据(单位 亿) 年 1960 1961 1962 1963 1964 1965 1966 1967 1968 人口 29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83 根据表中数据,预测公元2000年世界人口会超过 60亿。作出这一预测结果所用 的方法就是数据拟合方法。 一、问题分析 据人口增长的统计资料和人口理论,当人口总数 N 不是很大时,在不长的 时期内,人口增长率与人口数 N 成正比,这就是著名的马尔萨斯人口模型,用微 分方程描述为 由此可知,马尔萨斯模型是人口数量按指数函数递增的模型。由于指数函数表达 式中a 和b 均未知,需要用人口数据来确定。即用指数函数对数据进行拟合,确 定指数函数中参数使指数函数与人口数据偏差(残差平方和)尽可能小。下图是 经数所拟合后的指数函数图形与原始数据散点图的对比,残差平方和为 3.6974 杓-4 为了计算方便,将上式两边冋取对数,还原为 y = ln N 或 In N = a + b t ,令 N = e y 变换后的拟合函数为 dN dt bN 其中,b 为人口增长系数。用分离变量法解常微分方程,得 N(t) a bt e (24.1) In N = b t + a ,即 (24.2) 图24-1指数函数图形与原始数据散点图

y(t) = a + b t (24-3) 由人口数据取对数(y = In N )计算,得下表 表24-2世界人口数据(单位:亿) 二、求解超定方程组的数学原理 根据表中数据及等式a + b t k = y k ( k = 1, 2, ……,9)可列出关于两个未知数 a、b的9个方程的线性方程组 a 1960 b 3.3918 a 1961 b 3.4213 a 1962 b 3.4503 a 1963 b 3.4698 a 1964 b 3.4763 a 1965 b 3.4920 a 1966 b 3.5133 a 1967 b 3.5322 a 1968 b 3.5505 (24-4) 由于这一问题中方程数目多于未知数个数,被称为超定方程组,用矩阵形式表示为 AU = f (24-5) 显然A矩阵的行数大于列数。求解这一类方程组的数学原理是将等式左、右同时 乘以A的转置矩阵,得新的线性方程组 A T AU =A T f (24-6) 令G =A T A, b = A T f。得系数矩阵为方阵的线性方程组。 GU=b 求解得原方程组的最小二乘解(广义解)。由于原方程组一般无解,将最小二乘解 代入下式计算 R = f -A U (24-7) 通常会得非零向量,这一向量称为残差。残差的内积可以用来度量最小二乘解的 逼近程度。 三、问题求解的计算机实验 输入下面命令

超定方程组最小二乘解说课讲解

超定方程组最小二乘 解

精品文档 收集于网络,如有侵权请联系管理员删除 超定方程组最小二乘解 最小二乘法广泛地应用于工程计算中,用最小二乘法消除(平滑)误差,用最小二乘法从有噪声的数据中提取信号,从海量数据中找出数据变化的趋 势,……。甚至利用简单函数计算复杂函数的近似值,我们并不期望它的近似值多么精确(事实上很多时候也不用很精确),尽管如此还是希望计算出的近似数据与原始数据之间有相似之处。如果从线性代数角度来理解最小二乘法,实际上是将一个高维空间的向量投影到低维子空间所涉及的工作。 一、 超定方程组的最小二乘解 当方程组GX=b 的方程数多于未知数个数时,对应的系数矩阵G 的行数大于列数,此时方程组被称为是超定方程组。设G=(g iu )m ×n ,当m>n 时即所谓的高矩阵,绝大多数情况下,超定方程组没有古典意义下的解。超定方程组的最小二乘解是一种广义解,是指使残差r = b – GX 的2-范数达取极小值的解,即 22*||||min ||||GX b GX b m R X -=-∈ 该问题是一个优化问题。 命题1:如果X *是正规方程组G T GX=G T b 的解,则X *是超定方程组GX=b 的最小二乘解 证 由题设可得,G T (b – GX *)=0。对任意n 维向量Y ,显然有 (X * – Y )T G T (b – GX *)=0 考虑残差2-范数平方,由 22**2 2||)()(||||||Y X G GX b GY b -+-=- 上式右端利用内积,得 22*22*22*2 2||||||)(||||||||||GX b Y X G GX b GY b -≥-+-=-

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

第四章参数的最小二乘法估计

精心整理 第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据 其后在 x x, , 2 1 n 2 1 显然,最可信赖值应使出现的概率P为最大,即使上式中页指数中的因子达最小,即 权因子: 2 2 o i i w 即权因子 i w∝ 2 1 i ,则 再用微分法,得最可信赖值x

11 n i i i n i i w x x w 即加权算术平均值 这里为了与概率符号区别,以i 表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法 1x +3x =0.5 2x +3x =-0.3 这是一个超定方程组,即方程个数多于待求量个数,不存在唯一的确定解,事实上,考虑到测量有误差,记它们的测量误差分别为4321,,,v v v v ,按最小二乘法原理 Min v i 2 分别对321,,x x x 求偏导数,令它们等于零,得如下的确定性方程组。

(1x -0.3)+(1x +3x -0.5)=0 (2x +0.4)+(2x +3x +0.3)=0 (1x +3x -0.5)+(2x +3x +0.3)=0 可求出唯一解1x =0.325,2x =-0.425,3x =0.150这组解称之为原超定方程组的最小二乘解。 以下,一般地讨论线性参数测量方程组的最小二乘解及其精度估计。 即 x j ][][][][2211y a x a a x a a x a a t t t t t t 式中,j a ,y 分别为如下列向量 ][k l a a 和][y a j 分别为如下两列向量的内积: ][k l a a =nk nl k l k l a a a a a a 2211 ][y a j =n nj j j y a y a y a 2211

极小范数最小二乘解

第十四讲 矛盾方程(组)的解---最小二乘法 一、从实验数据处理谈起 设有一组实验数据(t 1,s 1),(t 2,s 2),……,(t n ,s n ),希望由实验数据拟合给定规律,从而测出待测量的有关参数。 假定规律为:2t c +1s=c ,由于存在误差i 2 t c (i 1,2,,n)≠+=i 1s c ,令 1121 22n n t 1s t 1c s A ,x ,b c t 1s ??????????????===???????????? ???????? , 则: Ax=b 实际无解,或者说矩阵方程Ax=b 成为矛盾方程(不自洽、非相容),虽说无解,但在物理上看,我们需要而且也理当有“解”。怎么办? 一般处理是,定义一种目标函数,例如: n 2 12i i 1i 2i i 1E(c ,c )w (s c t c )w 0==-->∑为加权系数 使误差12E(c ,c )最小化。w i =1(i=1~n)时2 122E(c ,c )Ax b -= 二、 最小二乘法(解) 对于矛盾方程Ax=b ,最小二乘法是求其“解”的一种方法。即求使2Ax b min -=的解。 t s

引理:m n A C ?∈设,A{1,3}由如下方程的通解构成: (1,3)(1,3)(1,3)n m AX AA A{1,3}{A (I A A)Z Z C }?=→=+-∈ 其中,A (1,3)为A{1,3}中的某个矩阵。 证:1。方程既然相容,设X 是其某个解,则 (1,3)H (1,3)H (1,3) (i) AXA AA A A X A{1} (iii)(AX)(AA )AA AX X A{3} ==→∈===→∈ 即方程的解必在A{1,3}中。 2。设X 为A 的一个{1,3}-逆矩阵,则 ( )() ()()()iii H H (1,3) (1,3)H (1,3) H H H H (1,3)H H (1,3)(1,3) AX AA AX AA AX A A X A A (AXA)AA AA ====== 即,A 的{1,3}-逆矩阵必满足方程AX=AA (1,3) {} { } (1,3)(1,3) (1,3) n m A{1,3}AX AA A (I A A)Z Z C ?∴==+-∈方程的所有解 = 令(1,3)(1,3)X A I A A)Z =+(-,则 (1,3)(1,3)(1,3) (1,3) (1,3) H (i)AX A AA A AZA AA AZA A X A{1} (iii)AX AA (A AA A)Z A A (AX) X A{3} =+-=∈=+-==∈ 定理:矩阵方程Ax=b 的最小二乘解为 (1,3)x A b =,其中A (1,3)为A 的任何一个{1,3}-逆矩阵,反之,存在X ,对于任何m b C ∈均有Xb 成为Ax=b 的最小二乘解,则X A{1,3}∈。 证明:

17 矛盾方程(组)的解---最小二乘法

第十七讲 矛盾方程(组)的解---最小二乘法 一、从实验数据处理谈起 设有一组实验数据(t 1,s 1),(t 2,s 2),……,(t n ,s n ),希望由实验数据拟合给定规律,从而测出待测量的有关参数。 假定规律为:2t c +1s=c ,由于存在误差i 2 t c (i 1,2,,n)≠+= i 1s c ,令 112122n n t 1s t 1c s A ,x ,b c t 1s ???????? ?????? ===???????????? ???????? , 则:Ax=b 实际无解,或者说 矩阵方程Ax=b 成为矛盾方程(不自洽、非相容),虽说无解,但在物理上看,我们需要而且也理当有“解”。怎么办? 一般处理是,定义一种目标函数,例如: n 2 12i i 1i 2i i 1E(c ,c )w (s c t c )w 0==-->∑为加权系数 使误差12E(c ,c )最小化。w i =1(i=1~n)时2 122E(c ,c )Ax b -= 二、 最小二乘法(解) 对于矛盾方程Ax=b ,最小二乘法是求其“解”的一种方法。即求使2Ax b min -=的解。 引理:m n A C ?∈设,A{1,3}由如下方程的通解构成:

(1,3)(1,3)(1,3)n m AX AA A{1,3}{A (I A A)Z Z C }?=→=+-∈ 其中,A (1,3)为A{1,3}中的某个矩阵。 证:1。方程既然相容,设X 是其某个解,则 (1,3)H (1,3)H (1,3) (i) AXA AA A A X A{1} (iii)(AX)(AA )AA AX X A{3} ==→∈===→∈ 即方程的解必在A{1,3}中。 2。设X 为A 的一个{1,3}-逆矩阵,则 ( )() ()()()iii H H (1,3) (1,3)H (1,3) H H H H (1,3)H H (1,3)(1,3) AX AA AX AA AX A A X A A (AXA)AA AA ====== 即,A 的{1,3}-逆矩阵必满足方程AX=AA (1,3) {} { } (1,3)(1,3) (1,3) n m A{1,3}AX AA A (I A A)Z Z C ?∴==+-∈方程的所有解 = 令(1,3)(1,3)X A I A A)Z =+(-,则 (1,3)(1,3)(1,3) (1,3) (1,3) H (i)AX A AA A AZA AA AZA A X A{1} (iii)AX AA (A AA A)Z A A (AX) X A{3} =+-=∈=+-==∈ 定理:矩阵方程Ax=b 的最小二乘解为 (1,3)x A b =,其中A (1,3)为A 的 任何一个{1,3}-逆矩阵,反之,存在X ,对于任何m b C ∈均有Xb 成为Ax=b 的最小二乘解,则X A{1,3}∈。 证明: R(A)R(A)R(A)R(A)R(A)R (A)Ax b (Ax P b)(P b b) (Ax P b)R(A),(P b b)(I P )b P b R (A) ⊥⊥ -=-+--∈-=--=-∈ 所以,2222 R(A)R(A)R(A)22 2 2Ax b Ax P b P b b b P b -=-+-≥-,

参数的最小二乘法估计

第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。 最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。 本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。 §2最小二乘法原理 最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。测值落入),(dx x x i i +的概率。 根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即

权因子:2 2o i i w σσ=即权因子i w ∝21i σ,则 再用微分法,得最可信赖值x 1 1 n i i i n i i w x x w === ∑∑即加权算术平均值 这里为了与概率符号区别,以i ω表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。它是以最小二乘方而得名。 为从一组测量数据中求得最佳结果,还可使用其它原理。 例如 (1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-m in m ax 以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。 §3.线性参数最小二乘法 先举一个实际遇到的测量问题,为精密测定三个电容值:321,,x x x 采用的测量方案是,分别等权、独立测得323121,,,x x x x x x ++,列出待解的数学模型。 1x =0.3 2x =-0.4 1x +3x =0.5

最小二乘法基本原理

该方程的参数估计步骤如下: 取n 组观测值n i x x x y ki i i i ,,2,1),,,,(211 =代入上式中可得下列形式: ?????????++??+++=++??+++=++??+++=m mk k m m m k k k k u x x x y u x x x y u x x x y ββββββββββββ2211022222211021 112211101 (2) (2)的矩阵表达形式为: U B X y += (3) 对于模型(3),如果模型的参数估计值已经得到,则有: ^^B X y = (4) 那么,被解释变量的观测值与估计值之差的平方和为: ∑∑==--==-==n i i i n i i B X Y B X Y e e y y e Q 1 ^ '^'2^12)()()( (5) 根据最小二乘法原理,参数估计值应该是下列方程: 0)()(^' ^^=--??B X Y B X Y B (6) 的解。于是,参数的最小二乘估计值为: Y X X X B '1'^)(-= ( 7)

多变量预测模型是以多元线性回归方程为基础,其一般形式为: i ki k i i i u x x x y +++++=ββββ 22110 (8) 其中:k n i ;,,2,1 =为解释变量的数目;k x x x ,,,21 为解释变量,)1(+k 为解释变量的数目;k βββ ,,21为待估参数;u 为随机干扰项;i 为观测值下标。 统计检验是依据统计理论来检验模型参数估计值的可靠性。主要包括方程显著性检验(F 检验)和变量显著性检验(F 检验)。前者计算出F 统计量的数值;给定一个显著性水平α,查F 分布表,得到一个临界值),1,(--k n k F α当)1,(-->k n k F F α时,通过F 检验。后者计算出t 统计量的数值;给定一个显著性水平α,查t 分布表,得到一个临界值)1(2/--k n t α,当)1(||2/-->k n t t α时,通过t 检验。

相关主题
文本预览
相关文档 最新文档