当前位置:文档之家› 膜基萃取分离技术及应用

膜基萃取分离技术及应用

膜基萃取分离技术及应用
膜基萃取分离技术及应用

氢气膜分离技术的现状

氢气膜分离技术的现状、特点和应用(中国科学院大连化学物理研究所)摘要: 气体膜分离技术是一种新型的化工分离技术。由于它具有能耗低、投资省、占地面积小和使用方便等特点,现已在石化和化工工业中得到广泛的应用。 在气体膜分离技术中,氢气分离膜占有很大的比重。到目前为止,氢气膜分离技术是开发应用得最早,技术上最成熟,取得的经济效益十分显着的气体膜分离技术。 本文简要地介绍氢气膜分离技术的发展概况,一些氢气膜分离器的性能和特点以及在国内外的应用情况。 关键词:氢气膜分离膜分离技术氢气回收 作者简介: 董子丰:男,1937年生;祖籍:浙江绍兴;研究员。 1961年毕业于北京理工大学化工系。从那时起一直在中国科学院大连化学物理研究所工作。主要从事国防科技事业的研究。80年代中,曾作为访问学者到德国海德堡大学从事激光化学的合作研究。88年回国到现在,主要从事气体膜分离的技术开发,已撰写10余篇文章刊登在国内外杂志上。 中图分类号: TQ028. 8 氢气分离膜技术的现状、特点和应用 一、概述 目前,在气体膜分离技术中,氢气膜分离技术是开发应用最早、适用范围很广、技术最成熟和经济效益十分显着的膜分离技术。氢气膜分离技术主要用来从含氢和其它气体的混合气中,分离和提浓氢气。它之所以在气体膜分离技术中占有如此重要位置的原因不仅是因为氢气在化工和石化工业中的重要性,而且还在于氢气膜分离所具有的技术适用性和经济合理性。 1、氢气在化工和石油化工工业中具有非常重要的意义 现代石油化学和炼油工业的特点是,在一些大型工艺过程中,氢气是重要付产物(重整、裂解),同时,氢又是重要的原料(合成氨、合成甲醇、加氢精制、加氢裂化)。石化工业是个耗氢大户,多年来,在石化工业中,氢气一直供不应求,随着原料油的加重和对辛烷值要求的提高,氢气的供需予盾将会更加突出。

膜过滤技术及其应用范围介绍

膜过滤技术及其应用范围介绍 北京陶普森膜应用工程技术有限公司孙永杰 过滤是分离液体中固体性颗粒的常用方法之一。我们熟悉的土壤就是一个天然过滤器,池塘、湖泊和河流中的地表水在通过不同类型的土壤之后,渗透聚积成相对洁净的地下水,土壤让水透过的时候截留了其它成分,如颗粒物和污染物等,而渗透到深处的地下水得到了净化。 过滤是实验室常用的物料分离技术。从筛网、滤纸到膜滤器等技术手段的延伸、发展,促进了产品提纯技术的提高,净化效果明显,分离精度大大提高。在能量消耗,过滤效果和操作简便方面,相比于传统的分离方法如蒸馏或结晶,膜过滤技术的表现优于其他分离过程。在许多分离领域,膜过滤克服了传统技术局限性,尤其对生化或药物的加工应用过程,膜技术的应用提高了产品品质和收率,因为其中的蛋白质和有效成分大多是热敏感的。因膜过滤为物理过滤方式,膜材质稳定性强,经验证的实验室过滤工艺,很容易被放大和改进,更易成功应用到实际的大规模生产中。 在生物和制药技术行业的许多领域,包括食品和饮料行业,生物技术和饮用水处理行业,都普遍使用过滤膜用于过滤。 过滤膜的工作原理:膜过滤器的原理类似于上面提到的地下水渗透过程,人工制备的膜相当于地表土层,待过滤的溶液中一部分的小分子物质可以通过薄膜的微孔,其渗透性取决于孔的大小。比滤膜孔更小的颗粒可透过滤膜,而比滤膜孔大的颗粒就被截留下来。

一般情况下,膜的孔径决定了应用,根据孔径的大小,将不同的过滤膜技术分为四类:微滤,超滤和纳滤以及反渗透。 1. 微滤膜技术 过滤膜的孔径一般在5μm和0.1μm之间。在微生物实验中经常被使用孔径为0.1μm至0.2μm的膜,可以分离出酵母菌和细菌,是一种温和快速的杀菌方法。在工业化生产上,这种滤膜技术通常为过滤器的滤芯,广泛应用在医药,食品和饮料工业生产线中。例如,生物制药厂用于生物反应器中微生物生长阶段之后的“收获”和细菌菌体的分离,废水处理或浑浊液的油水分离等。 2. 超滤膜技术 超滤技术常常用于大分子的浓缩和脱水,超滤膜过滤“孔径”在0.1μm和0.01μm之间。由于该技术主要用于分离或浓缩蛋白质分子,所以膜的过滤孔径被定义为“分子量切断”(MWCO)或“标称分子量切断”(NMWC),单位为道尔顿(质量单位,等于一氧原子的1/16)。MWCO值表示可被膜截留的球状分子的小分子量。为了安全起见,应总是选择MWCO值至少比要分离的大分子的分子量高20%。这种膜过滤技术的应用操作压力,通常在2-10巴之间。 3.纳滤技术 是纳米级过滤技术的简称,纳米级过滤的膜过滤器,其孔径小于0.005μm,可截留更小的有机分子和大部分盐类物质,以及重金属离子等。陶普森纳米级过滤需要更高的外部压力,过滤压力一般在10-80巴之间。

油气回收膜分离法

油气回收膜分离法 1国内外发展现状 国外对膜法油气回收的研究和工业应用较早。日本公司1988年建造了第一套用于油库油气回收的膜装置。1989年德国公司也成功推出了膜法油气回收装置,至今已有180多套大型装置在运行。德国的公司、日本的日东电工和美国的公司都在膜法油气回收方面实现了工业应用。欧洲建造了很多安装在输油管线终端的大型膜装置,用来从输送过程产生的气流中分离和回收油气。 由于国外在气体分离膜领域开展的研究较早,目前国外己经实现工业化的膜分离法回收的生产厂家以及回收体系有: 我国对气体分离膜的研究开发和应用开始的较晚,20世纪80年代初才开始。但由于气体分离技术与催化燃烧、吸附等传统处理方法比较,具有效率高、能耗低、操作简单、装置紧凑、占地面积少、无二次污染等显著特点,所以得到了广泛推广和深入研究。 中科院大连化学物理所、中科院长春应用化学所等单位在该方面进行了积极有益的探索,并取得了长足进步。我国目前使用膜分离技术主要应用的领域有:氢气的回收和利用、从空气中制取富氮、从空气中富集氧气、二氧化碳的回收和脱除、工业气体脱湿、从天然气中提取浓氦气、空气中易挥发有机物的回收等。在这些领域,膜分离技术基本都得到了工业化应用,但在回收废气中的挥发性有机物领域的研究应用工作只是最近几年才开始。

在化工生产、油罐、油轮及加油站等有机物质制造、贮存、运输和使用过程中,经常要排放挥发性有机气体。他们通常由惰性气体和烷烃、烯烃等有机气体组成,采用膜技术实现有机混合气体的分离,不仅可以回收附加值高的烷烃、烯烃等有机物和等,获得可观的经济效益。2002年,中国科学院大连化学物理研究所和吉化公司合作进行了现场实验,采用螺旋卷式膜分离器回收聚乙烯生产过程中排放的乙烯和丁烯单体,取得了较好的结果。但在膜材料的研究和生产领域,我国还没有全部实现自己研制开发。寻找成本低,分离效率高、化学稳定性好、耐热、并具有优良的机械加工性能的膜材料,并将其工业化应用将是我国研究人员面临的挑战。 近几年来,国外的实验室研究分离使用得最多的膜分离材料是聚二甲基硅氧烷P()。它从结构上看属半无机、半有机结构的高分子,具有许多独特性能,是目前发现的气体渗透性能好的高分子膜材料之一。研究人员大多是采用聚枫()、聚偏氟乙烯()、聚间苯二甲酸乙二酯()等材料作为支撑层,使用涂层堵孔,作为选择性分离层,选择性分离2或空气体系,都取得了理想的实验结果。 2003年,大连欧科力德环境技术有限公司与德国研究所、公司合作,率先引进膜法油气回收技术,在中石油上海灵广加油站应用成功。这座加油站安装上膜法油气回收装置后,油气回收率达到98%以上,尾气排放浓度降到15 g 3以内,低于欧洲标准(35 g 3),是国内第一座真正意义上的安全、环保、效益型的加油站。 2膜分离机理 膜法气体分离的基本原理就是根据混合气中各组分在压力的推动下透过膜的传递速率不同,从而达到分离目的。对不同结构的膜,气体通过膜的传递扩散方式不同,因而分离机理也不同。目前常见的气体通过膜的分离机理包括: (1)气体通过非多孔膜即致密膜(如,高分子聚合物膜)的溶解—扩散的分离机理。一般橡胶态聚合物的气体渗透是溶解控制,玻璃态聚合物为扩散控制。此时,气体透过膜的过程可认为由3个环节(步骤)组成:①吸着过程,即气体在膜的上游侧表面被吸附、凝聚、溶解。这个过程带有一定的选择性;②扩散过程,即该被吸着的气体在膜两侧压力差、浓度差的推动下,按不同扩散系数扩散透过膜另一侧;③解吸过程,即该已扩散透过的气体在膜下游侧表面被解吸、剥离过程。

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。 1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

膜分离技术及其应用_童汉清

膜分离技术及其应用 童汉清 海金萍 (蚌埠高等专科学校食品系,蚌埠市233030) 摘 要 针对膜分离技术的一系列独特优点,介绍了工业中常用的各种分离膜的性能、材料及其各自的应用,并简述了世界上最新的膜分离技术及其发展方向。 关键词 膜分离技术 反渗透膜 超滤膜 微滤膜 0 前言 膜分离是用半透膜分离均相混合物中不同组分的一种方法。由于膜分离技术在生产中物料无相变过程,因而无需再沸器、冷凝器等设备,与蒸发、精馏等分离技术相比具有显著的节能、高效等特点,特别是对于食品工业,膜分离技术可以完好地保留食品原有色、香、味,而其营养成分又不会被高温破坏。因而膜技术在世界范围内引起人们极大关注,被誉为重大的新技术革命之一。 现代膜技术的开发还仅仅是近三十年的事情,虽然近年来有了较大的发展,但目前仍处于发展和完善的过程中。国内外膜分离技术已在许多不同行业得到应用,并取得了良好效果。 1 反渗透膜及其应用 1.1 反渗透膜的性能 反渗透膜的孔径在0.3~2nm之间,通常为非对称的微孔结构膜,压差作为操作推动力,工作压力可高达7.0~7.5M Pa,膜通量一般为0.5m3/(m2d)。 反渗透膜能截留住除水分子、氢离子、氢氧根离子以外的其它物质,因而主要用于水和其它物质的分离。 1.2 膜材料 最先开发并成功应用的反渗透膜材料是醋酸纤维素,70年代以来逐渐开发出一些新型反渗透膜材料,如芳香族聚酰胺、聚苯并咪唑、磺化聚苯撑氧、磺化聚磺酸盐、聚酰胺羧酸、聚乙烯亚胺、聚甲苯二异氰酸酯和等离子处理聚丙烯腈等。醋酸纤维素在强酸和弱碱条件下易发生水解且不耐高温,易受微生物和酶的作用,在正常使用时还会发生蠕变使透水速率降低。尽管存在这些缺点,但目前工业上最广泛使用的两种反渗透膜材料,还是首选醋酸纤维素,其次为聚酰胺。 1.3 反渗透膜的应用 1.3.1 海水淡化 反渗透膜分离技术被广泛应用于海水淡化。在全世界海水淡化装置中,约有30%用反渗透方式来实现。反渗透膜由极薄致密表层和多孔支撑层构成,具有高透水率及高脱盐率,可脱去海水中99%以上的盐离子。 1.3.2 果汁、果酒等产品的浓缩 膜浓缩是在常温下进行的。用反渗透膜对果汁、果酒进行浓缩,可保证维生素等营养成分不受破坏以及挥发质不损失,并可保留其原有的风味,这是其它浓缩技术难以做到的。另外,反渗透膜可以完全除去细菌和病毒,使产品不加任何防腐剂而延长储存期,食用更加卫生可靠。 19 《化工装备技术》第20卷第2期1999年

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

膜分离技术及其应用领域分析

膜分离技术及其应用领域分析 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。 一、膜分离技术原理及特点 膜分离技术以选择性透过膜为分离介质,如图1所示,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。膜分离技术以其低能耗、高效率被认为是理想的分离技术之一。 图1膜分离技术原理 利用膜分离技术进行分离所具有的特点包括:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。 基于膜分离技术所具有上述特点,是现代生物化工分离技术中一种效率较高的分离手段,完全可以取代传统的过滤、吸附、蒸发、冷凝等分离技术,所以膜分离技术在生物化工分离工程中起着很大的作用。 二、膜分离技术种类分析 按照膜孔径和成膜材料分类,常用的膜分离技术主要有微滤、超滤、纳滤、反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。按分离原理和按被分离物质的大小区分的分离膜种类,从下表可以看出,几乎所有的分离膜技术均可应用于任何分离、提纯和浓缩领域。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。

液-液萃取分离法

液-液萃取分离法 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形式存在在有机相中以OsO4和(OsO4)4两种形式存在。 (3)分配系数与分配比 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如: CCl4——水萃取体

膜分离技术及其应用和前景

膜分离技术概论 XXX 机械工程及自动化专业机械104班1003010414 摘要:膜分离是在20世纪60年代迅速发展起的一门分离技术,膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,前景,概况 Membrane-Seperating technology Abstract: Membrane-Seperating technology is a separating technology which developed fast in the 1960s. This technology involves in various functions like separating、concrntrating、purifying and refining,what else, for it’s easily to operate it’s now widely used in the fields of water supplyment、medicine production、food、environment protecting、waste water recycling and so on, make great economical and social benefits. This passage first explain some concepts membrane technology、main theory involved and sort of it. Key words: Membrane-Seperating,technology,introduction,prospect 1膜分离技术的原理 现代膜分离技术分离的根本原理在于膜具有选择透过性。膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法,可用于液相和气相。对于液相分离,可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系。以下重点介绍反渗透的基本原理、微滤原理及超滤原理。

《膜分离技术及应用》学习心得

一、学习安排 1、学习目标要明确,做好切实可行的计划; 2、合理安排时间,按时完成学习任务; 3、养成做笔记的习惯; 4、认真地完成布置的作业,养成自主的学习习惯; 5、多向老师和同学请教; 6、及时做好考前的复习工作。 总之,虽然客观制定了个人初步学习计划,还存在许多不完善与不足之处,还需要今后根据自己的切实情况,在学习中不断地补充,加以改进、及时地总结经验,以合格的成绩来完成自己的学业。 二、学习心得 在以前的学习过程中都没有接触过这类知识,所以由对膜的不理解进而升华为对膜的好奇,进而增加了对学习这门课程的兴趣。以前书本中介绍过人体中的一种膜-细胞膜。细胞膜有重要的生理功能,它既使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。细胞膜会对物质进行选择性的进出,那么是不是所有的膜类材料都有此功能呢?带着疑问,带着兴趣开启了胡老师与我们的《膜分离技术及应用》这门课程的学习,在课堂上,通过老师的详细介绍,我收获颇多。 1.超滤膜的简介 超滤(Ultra-Filtration ,UF)是一种压力驱动的膜分离过程,是根据分子的大小和形态进行分离的。自20世纪60年代以来,超滤很快从实验规模发展成为重要的工业单元操作技术,它已广泛用于食品、医药,工业废水处理,高纯水制备及生物技术工业。在工业废水处理方面应用最普遍的是电泳涂漆过程,城市污水处理及其他工业废水处理领域都是超滤未来的发展方向。 2.超滤膜在废水处理中的应用:含油废水处理 机械行业工件的润滑、清洗和石化行业的炼制及加工等都会产生含油废水,

其油一般为漂浮油、分散油和乳化油三种存在形式。其中乳化油的分离难度最大,用电解或化学法破乳使油粒凝聚的费用较高,而超滤就不需要破乳直接可将油水分离,特别适用于高浓度乳化油的处理和回收。超滤处理乳化油废水时,界面活性剂大部分可透过,而超滤膜对油粒子完全阻止,随浓度增加油粒子粗粒化成为漂浮油浮于液面上,再用撇油装置即可撤除。陆晓千等用超滤膜技术处理清洗车床、设备等含油污水,颜色为乳白色,含油(1000~5000)mg/L,COD浓度高达(10000~50000)mg/L,经超滤膜处理后,颜色透明。含油低于10mg/L,COD(1700~5000)mg/L,除油滤99%。 3.纳滤膜的简介 纳滤膜(Nanofiltration membrane,NF)又称疏松型反渗透膜,它是介于反渗透与超滤之间的一种膜分离技术。但纳滤膜多数为荷电膜,其对无机盐的分离行为不仅受到化学势梯度控制,同时也受到电势梯度的影响。其表面由一层非对称性结构的高分子与微孔支撑体结合而成,以压力差为推动力,对水溶液中低分子量的有机溶质截留,而盐类组分则部分或全部透过,从而使有机溶质得到同步浓缩和脱盐的目的。 4.纳滤膜在废水处理中的应用 在金属加工与合金生产中产生的金属废水,含有浓度相当高重金属离子。将这些重金属离子生成氧氧化物沉淀除去是处理含重金属废水的一般措施。采用纳滤膜技术,不仅可以回收90%以上的废水,使之纯化,而且同时使重金属离子含量浓缩10倍左右,浓缩后的重金属具有回收利用的价值。如果条件控制适当,纳滤膜还可以分离溶液中的不同金属。 三、学习总结 通过胡老师对课程的认真讲述,我了解了膜分离技术中的一些概念、膜的种类及其原理,同时也介绍了一些常见的膜分离过程在实际生产中的应用以及我国膜分离技术的发展概况及前景。目前膜分离、浓缩、纯化技术正在被各个领域广泛应用,随着膜技术的不断发展和对产品质量的不断提高,各行业对传统工艺改造更新的要求越来越迫切,膜分离技术也有了更为广阔的应用前景。这几个月来,我们由浅入深,时刻跟着老师的节奏去复习和预习,老师要求的重点我会主动记

膜分离的发展及其工业应用

膜分离技术的发展及其工业应用 摘要:膜分离技术作为新型高科技分离技术之一,倍受众多工业的关注。综述了膜分离技术的发展,及今后的发展趋势,对其在石化行业、水处理、食品行业主要工业应用进行较为详细的阐述。 关键词:膜分离技术;膜发展;膜应用 分离技术的发展与人类的生产实践密切相关,伴随着生产力的发展,科学技术的进步,分离的方法也从简到繁,从低级到高级,工艺从一种方法到多种联用。已由过去简单的蒸馏分离技术发展到现在复杂的超临界萃取技术,膜分离技术等。 膜分离技术[1],顾名思义,是利用一张特殊制造的,有选择透过性能的薄膜,在外力推动下对混合物进行分离、提纯、浓缩的一种新型分离技术。实践证明,当不能经济地用常规的分离方法得到较好的分离时,膜分离作为一种分离技术往往是非常有用的,并且膜分离技术还可以和常规的分离方法结合起来使用,使分离技术投资更为经济。表1是几种主要的膜分离过程及其传递机理,推动力,透过物,膜类型的比较。 表1几种主要的膜分离过程 1发展史 膜分离在生物体内广泛存在,而人们对其的认识、利用、模拟,及至目前的人工合成的过程却是极其漫长而曲折的。膜分离技术发展大致可分为3个阶段: ——50年代,奠定基础的阶段,主要是对膜分离科学的基础理论研究和膜分离技术的初期工业开发; ——60年代~80年代,发展阶段,主要是使一些膜分离技术实现工业化生产,同时又开发研制了几种重要膜分离过程; ——90年代~至今,发展深化阶段,主要是不断提高已实现工业化的膜分离水平,扩大使用范一些难度较大的膜分离技术的开发得到突飞猛进的发展,并开拓了新的膜分离技术。

1.1膜分离技术的起源 200多年前,Abbe Nollet在1748年观察到水可以通过覆盖在盛有酒精溶液瓶口的猪膀胱进入瓶中,发现了渗透现象。但是,直到19世纪中叶Gra-ham发现了透析(Dialysis)现象,人们才开始对膜分离现象重视起来,并开始研究。最初,许多生理学家使用的膜主要是动物膜。1867年Moritz Taube制成了人类历史上第一张合成膜——亚铁氰化钠膜,并以近代的观点予以论述。随后,Preffer用这种膜在蔗糖和其他溶液进行试验,把渗透压和温度及溶液浓度联系起来。接下来Van′t Hoff以Preffer的结论为出发点,建立了完整的稀溶液理论。1911年Donnan研究了荷电体传递中的平衡现象。1920年,Gibbs从热力学角度提供了认识渗透压现象和它与其他热力学性能关系的理论。1925年世界上第一个滤膜公司(Sartorius)在德国Gottingen公司成立。1930年Treorell Meyer,Sievers等对膜电动势的研究,为电渗析和膜电极的发明打下了基础。1950年W.Juda等试制成功第一张具有实用价值的离子交换膜,电渗析过程得到迅速发展。 1.2膜分离技术的发展 60年代末期,加利福尼亚大学的Yuster、Loeb、Sourirajan等对膜材料进行了广泛的筛选工作,结果发现乙酸纤维素也具有特殊的半透性质。为了改进乙酸纤维素的透水性能,他们采用过氯酸镁水溶液为添加剂,经过反复试验,终于在1960年首次制成世界上具有历史意义的高性能非对称的乙酸纤维素反渗透膜,这使得Allied-Singned公司开创了RO工业应用的时代。随后,制膜技术不断机械化、自动化,膜的形式也从平板膜发展到管式膜及中空膜等。1971年Du Pont化学公司也推出三醋酸纤维素中空纤维透过器。微滤、反渗透、超滤、透析及气体分离等膜分离技术都在60~80年代相继得到迅速发展。 1.3发展趋势 近10多年来世界各国对膜分离技术的重视,极大地促进膜技术的发展,90年代Get Gmb H公司推出了渗透蒸发。中科院近来开发的某种新型渗透汽化膜及其工艺过程,将变革MTBE 的生产工艺,产生可观的经济效益。近几年开发的纳滤膜分离技术,其膜的孔径比反渗透膜稍大,截留粒子的直径为几个nm,分子量为200~500,允许通过单价离子,低分子量有机溶剂。我国对纳滤技术的开发和应用也相当广泛。 随着新型膜材料的开发和膜过程的改进,膜分离技术将不仅可以替代某些单元操作,而且可以与许多单元操作相结合,以取得更好的分离效果。例如将膜分离技术与催化反应结合起来形成膜反应器 1 膜分离技术概述 随着纳滤分离技术越来越广泛地应用于食品、医药、生化行业的各种分离、精制和浓缩过程,纳滤膜分离机理的研究也成为当今膜科学领域的研究热点之一。 1.1 微滤 微滤主要是根据筛分原理以压力差作为推动力的膜分离过程。在给定压力下[(50~100) kPa],溶剂、盐类及大分子物质均能透过孔径为(0.1~20)Lm的对称微孔膜,只有直径大于50nm的微细颗粒和超大分子物质被截留,从而使溶液或水得到净化。微滤技术是目前所有膜技术中应用最广、经济价值最大的技术。主要用于悬浮物分离、制药行业的无菌过滤等。在微滤方面今后应着重研究开发廉价膜组件;耐高温抗溶剂的膜及组件;不污染,易清洗的长寿命膜。 1.2 超滤 超滤和微滤一样,也是利用筛分原理以压力差为推动力的膜分离过程。同微滤过程相比超滤的分离技术,可用于传统分离手段较难处理的恒沸物、近沸物系的分离,微量水的脱除及水中微量有机物的去除。渗透蒸发是利用溶液的吸附扩散原理,以膜两侧的蒸汽压差[(0~100)kPa])做为推动力,使一些组分首先选择性地溶解在膜料液的侧表面,再扩散透过膜,最

膜分离技术的发展与应用

膜分离技术的发展与应用 生工121 徐娜2012121104 摘要:膜分离技术是利用具有一定选择透过特性的过滤介质对物质进行分离纯化的技术。近代工业膜分离技术的应用始于20世纪30年代利用半透性纤维素分离回收苛刻碱,60年代以后,不对称性膜制造技术取得了长足的进步,各种膜分离技术也迅速发展,成为最重要的分离技术之一。膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,应用,前景 一、膜分离技术的简介 1、膜分离的概念 利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。 2、膜分离的特点 (1)优点: 操作条件温和:在常温下进行,有效成分损失极少,特别适用于热敏性物质。在食品、医药及生化技术等领域具有独特适用性。 无相态变化:保持原有的风味。 无化学变化:典型的物理分离过程,不用化学试剂和添加剂,产品不受污染。选择性好:可在分子级内进行物质分离,具有普通滤材无法取代的卓越性能。适应性强:处理规模可大可小,可连续亦可间歇进行,工艺简单,操作方便,效率高,费用低,易于自动化。 (2)缺点: 污染难清除,不能耐受极端条件。 需与其它技术结合应用。 3、膜的分类 (1)根据膜的材质,从相态上可分为固态膜和液态膜; (2)从来源上可分为天然膜和合成膜,后者又可分为无机膜和有机膜。 (3)根据膜断面的物理形态,可将膜分为对称膜、不对称膜和复合膜。 (4)依照固体膜的外形,可分为平板膜、管状膜、卷状膜和中空纤维膜。

萃取与分离技术 萃取基本概念及分离方法

模块三萃取技术 学习目标 知识目标 1.掌握萃取操作的基本知识、三角形相图、相平衡关系、单级萃取操作的工艺计算;掌握萃取操作的适用场合;掌握萃取操作、常见事故及其处理方法。 2.理解萃取过程的基本原理,理解萃取操作过程的控制与调节。 3.了解各种萃取操作的基本流程,了解各种萃取设备的结构、特点及其选择方法。能力目标 1.能够用三角形相图表示萃取操作过程,分析萃取操作过程的影响因素,并 能够进行萃取剂的选择,液—液萃取操作的选择。 2.能够了解萃取操作的开停车,常见事故及其处理方法。 素质目标 1.培养学生工程技术观念; 2.培养学生独立思考的能力,逻辑思维的能力; 3.培养学生能应用所学知识解决工程实际问题的能力。 任务单 东方化工集团有限分司,乙酸水溶 液中回收乙酸,这一过程中使用萃取 的方式进行,要求处理量为每批1t, 其中乙酸含量为50%(质量百分率 下同),要求最终乙酸的组成达70% 以上。完成下列任务: (1)确定回收方法; (2)选用适宜的萃取剂; (3)选用合适的萃取设备; (4)计算萃取剂用量。

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取: 萃取剂: 萃取相: 萃余相: 萃取液: 萃余液: 溶质: 原溶剂(稀释剂): 溶解溶解度曲线: 连接线(共轭线): 共轭液层(共轭相): 辅助曲线: 临界混熔点: 分配曲线: 分配系数: 萃取操作的分类及适用场合 萃取操作的分类 适用场合 建议选用分离方法 得分

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取:利用混合物中的各组份在溶剂中的溶解度的不同,而达到混合物分离的目的。萃取剂:萃取剂:所选用的溶剂。 萃取相:以萃取剂为主溶有溶质的相。E 萃余相:以原溶剂为主溶质含量较低的相。R 萃取液:除去萃取相中的溶剂而得到的液体。E’ 萃余液:除去萃余相中的溶剂而得到的液体。R’ 溶质:混合物中被分离出的组份。A 原溶剂(稀释剂):原混合物中与溶剂不互溶或仅部分互溶的组份。 溶解溶解度曲线:将代表诸平衡液层的组成坐标点连接起来的曲线。 连接线(共轭线):萃取相E和萃余相R两点的联线。 共轭液层(共轭相):二元混合物中加入适量的萃取剂,即形成了二个液层萃取相E和萃余相R,把达到平衡时的两个液层称为“共轭液层或共轭相”。 辅助曲线:分别过共轭液层的两点作三角形任意两条边的平行线,其交点的连线。 临界混熔点:辅助曲线与溶解度曲线的交点。 分配曲线:将三角形相图中各组相对应的平衡液层中溶质A的浓度转移到x-y直角坐标上,所到的曲线。 分配系数:组份在萃取相E中浓度与其在萃余相R中的浓度之比值。 萃取操作的分类及适用场合 萃取操作的分类物理萃取:利用溶剂对欲分离的组份具有较大的溶解能力,溶质通过扩散作用转移到溶剂中,从而达到分离的目的的过程。 化学萃取:由于化学作用,溶剂选择性地与溶质化合或络合,从而帮助溶质重新分配,达到分离目的的过程。 适用场合(1)原料液中各组分间的相对挥发度接近于1或形成恒沸物。若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分。若采用蒸馏方法须将大量稀释剂汽化,能耗较大; (3)原料液中需分离的组分是热敏性物质。这种物料蒸馏时易于分解、聚合或发生其它变化。 (4)高沸点有机物的分离。用萃取方法代替技术很高的真空蒸馏、分子蒸馏,可降低能量消耗。 建议选用分离方法 得分

膜分离技术及应用新进展

膜分离技术及应用新进展

膜分离技术及其应用新进展 The development of membrane separation technology and its application prospect 摘要:介绍了纳滤、超滤、微滤、反渗透、渗透汽化等膜分离技术原理、膜技术设备组成及其特点;综合概述了膜分离技术在生物农药、化工生产中的应用进展,展望了膜分离技术的发展趋势。 关键词:膜分离, 原理, 应用, 进展 Abstract: The membrane separation mechanism and characteristics of different kinds of separation technologies were introduced, including nanofiltration, ultrafiltration, microfiltration, reverse osmosis, pervaporation. Further more, the progress of the application of membrane separation technologies in bio-pesticides, chemical production were extensively summarized. Finally, the development trend of membrane separation technology in the future was prospected. Key words: membrane separation, principle, application, progress

各类提取分离方法

总述 1)提取前文献查阅综述和药材生药鉴定2)提取方法 ①粉碎成粗粉 ②有机溶剂法和水提法③水蒸气蒸馏法④升华法 3)分离纯化法 ①根据物质溶解度的不同进行分离 a.温度不同,溶解度不同 b.改变溶液的极性去杂 c.酸碱法 d.沉淀法 ②根据物质分配比不同极性分离 a.液-液萃取法 b.反流分布法 c.液滴逆流层析法 d.高速逆流层析法 e.GC法 f.LC法:LC分配层析载体主要有---硅胶,硅藻土,纤维素等;有正反相之分;压力有低、中、高之分;载量有分析、制备之分。 ③根据物质吸附性不同极性分离 a.※极性吸附剂(如SiO2,Al2O3...)极性强,吸附力大 ※非极性吸附剂(如活性炭-对非极性化合物的吸附力强(洗脱时洗脱力随洗脱剂的极性降低而增大)。 b.化合物的极性大小依化合物的官能团的极性大小 而定; 溶剂的极性大小可按其介电常数(e)大小排列

(极性渐大> ): 己烷苯无水乙醚CHCl3AcOEt乙醇甲醇水e 1.88 2.29 4.47 5.20 6.1126.0 31.2 81.0 c.氢键力吸附聚酰胺吸附层析--洗脱剂的洗脱力由小到大为: 水> 甲醇> 丙酮> NaOH液> 甲酰胺> 尿素水液 ④根据物质分子的大小进行分离 如葡萄糖凝胶(Sephadex G and LH-20...)过泸法等 ⑤根据物质解离程度不同的分离法离子交换法: 强酸:-SO3H 强碱:-N+(CH3)3Cl- 弱酸:-CO2H 弱碱:-NH2(NH,N) 一、糖及苷类的提取和分离 1 溶剂处理法 2 铅盐沉淀法 3 大孔树脂处理法

4 柱色谱分离法 二 醌类化合物的提取和分离 一 提取方法: 一般选用甲醇或乙醇为溶剂,可同时将游离态和成苷的蒽醌类化合物从药材中提取出来,浓缩后再依次用有机溶剂提取(多用索氏提取法),可根据极性大小不同进行初步分离(如将苷和苷元分开)。 对于多羟基蒽醌或具有羧基的蒽醌(如大黄酸),在植物体内多以盐的形式存在,难以被有机溶剂溶出,提取前应先酸化使之游 中 药 Et O H EtOH 提取物 减压回收E t O H 浓缩物 H C l 3提取 Et 2O 3 t O A c 提取 E t O A c 提取液 残留物 (含单糖苷或含糖较少的苷) n-B u O H 提取 n-B u O H 提取液(含糖较多的苷)

相关主题
文本预览
相关文档 最新文档