当前位置:文档之家› [材料成型工艺技术基础]韩建民版第二章答案

[材料成型工艺技术基础]韩建民版第二章答案

[材料成型工艺技术基础]韩建民版第二章答案
[材料成型工艺技术基础]韩建民版第二章答案

[材料成型工艺技术基础]韩建民版第二章答案

1.何谓塑性变形?单晶体、多晶体塑性变形的机理各是什么?

金属在外力的作用下,内部产生应力,该应力使原子偏离其原来的平衡位置,当应力

超过金属材料的屈服极限,外力去除后,原子达到新的平衡状态,金属恢复不到原来的形

状和尺寸,产生的永久变形。

单晶体: 晶体在切应力作用下,晶体的一部分与另一部分沿着一定的晶面彼此以刚性

的整体相对滑移,滑移的距离为原子间距的整数倍。

多晶体:内部每个晶粒相互协调和配合,当外力达到一定值后晶界发生变形和破碎,

其中既有晶内的滑移变形,也有晶间的滑动和转动。

2.何谓冷变形,何谓热变形,冷变形后金属的组织和性能会产生怎么样的变化,热变

形后金属的组织和性能会产生怎么样的变化?

金属锻造在升温变形过程中,金属原子获得能量,将低温变形中出现的应力吸收,微

结构中碎晶形核等生长,将变形晶粒全部消失,这个温度就是再结晶温度,此温度以下的

就是冷变形,以上的就是热变形。冷变形后,晶粒在外力作用下倍扭曲拉长,随着变化逐

渐成纤维状,有些晶粒破碎成碎晶,这种结构的晶格对进一步变形有阻碍作用,使金属的

的强度和硬度升高,而塑性和韧性下降;热变形后,冷变形过程中出现的碎晶或杂志为核

心形核并长大,直到全部冷变形晶粒消失为止,消除加工硬化,这个过程是再结晶不是相变,其晶粒均匀生长细化,塑性增加。

3.为什么规定锻造温度范围?碳钢合理的始锻温度和终锻温度应在铁碳合金状态图的

什么位置?

锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原

则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求

的组织和性能。锻造温度范围应尽可能宽一些,加热温度太低,表面会开裂,或者内部裂纹,加热温度过高,导致钢坯过烧,无法成型产品。碳钢的锻造温度范围如图(铁-碳状

态图)中的阴影线所示:钢的始锻温度主要受过热的限制,合金结构钢和合金工具钢的始

锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以钢的始锻温度一般应低于熔点(或低于状态图固相线AE温度)150~200℃。由于钢锭的过热倾向小,始锻温度比同钢种的锻坯和轧材高20~50℃。当采

用高速精锻时由于热效应大,始锻温度可降低越100℃。

图10 碳钢的锻造温度范围

4.纤维组织如何形成的?它的存在有何利弊?

铸锭中的杂质在变形过程中,沿变形方向被拉长成纤维状;利:使金属性能产生方向性,当拉应力方向与纤维长度方向一致时,材料的塑性和韧性比拉应力方向垂直于纤维长

度方向时高。弊:当纤维被切断或方向与拉应力不一致时,会使材料承载能力弱,容易断

5.锻件的冷却方式有几种?冷却速度过快会产生什么后果?哪类锻件需要缓冷?

冷却方式有室冷,坑冷,炉冷;冷却速度过快会使锻件表面硬度过高,产生翘曲变形

甚至出现裂纹。一般缓冷适用于大型锻件和合金含量高的锻件。

6.锻造比常用来表示什么?拔长与敦粗时的锻造比用什么来表示?原始胚料长150mm,若拔长到450mm,锻造比是多少?

锻造比常用来表示变形程度

拔长:Y比= F0 / Fm

式中:F0 ——坯料截面积

Fm ——锻件最大截面积

墩粗:Y比= H0 / Hm

式中:H0 ——坯料高度

Hm ——锻件的最大高度

VV

450HY0 3 VV150

H450

7. 什么是金属的可锻性?其主要影响因素是什么?

金属的可锻性指金属进行塑性变形的难易程度。

影响因素:(1)金属本身的影响金属的化学成分、组织、相结构碳高则可锻性差,纯金属或固溶体可锻性比多相组织好,均匀细晶组织可锻性好;(2)变性条件的影响大

多数金属而言,温度升高,塑性上升,变形抗力下降;变形速度较小时,变形速度提高,

变形抗力增加,可锻性下降,当变形速度超过一定值后,温度效应影响显著,可锻性提高;应力状态影响主要是在三个方向上受压应力数目越多,塑性越好。

8.什么是金属的超塑性?金属超塑性变形有什么特点,主要应用在什么场合?

金属的超塑性是指材料在低载荷作用下,其拉伸延伸率超过100%的现象。特点是:(1)金属塑性显著提高;(2)金属内部晶粒细小,均匀性能优良稳定;(3)尺寸稳定

具有高精度,一般不用进行切削加工。主要应用于工业生产,比如高铬合金,钛合金已用

超塑性方式制造出涡轮盘、叶片等零件。

9.为什么巨型锻件必须采用自由锻的方法制造?

巨型锻件如果采用模锻的方法锻造,所用的设备大,而使用自由锻造的方法是坯料逐

步变形就不需要设备能力的制约就能实现,巨型锻件一般不成批量,质量要求又高,而模

锻压力机的压力不够,辅助设备能力不足。相对模锻来讲,巨型锻件用自由锻造还是比较

经济的。

10. 自由锻有哪些主要工序?为什么重要的轴类锻件在锻造过程中都要安排镦粗工序?

镦粗:是使坯料高度减小、横截面积增大的工序。适于饼块、盘套类锻件的生产拔长:是使坯料横截面积减小、长度增大的工序。适于轴类、杆类锻件的生产。冲孔:是

使坯料具有通孔或盲孔的工序。

弯曲:是使坯料轴线产生一定曲率的工序

扭转:是使坯料的一部分相对于另一部分绕其轴线产生一定角度的工序。

错移:是使坯料的一部分相对于另一部分平移错开的工序。

对于重要的轴类锻件,单一的拔长,锻件切向性能不好,反复墩粗可以使综合机械性

能得到提升,再者可以破碎材料生产过程中的树枝状组织,细化晶粒。

11.图2-100所示的两种不同的砧铁拔长时效果有何不同?

左边与右边的比,周围受力均匀,可以更好的控制拔长方向和各处均匀的拔长,可以

获得更大的拔长效果。

12.图2-101所示锻件是否适合于自由锻工艺要求?如不适合,应如何修改?

图a:将加强筋去掉,将凸台变成凹坑自由锻后再切削加工;原则:自由锻件表面避

免凸起,加强筋等结构。

图b:将曲面改为平面,将中间凹坑改为平面;原则:锻件外表面不该有空间曲线,

不该有凹坑。

图c:将斜面改为平面:原则:自由锻件不应有锥面斜面等结构。

13.图2-102所示的零件在自由锻时应考虑哪些因素?并画出自由锻件图,计算培料

质量和尺寸。

考虑:锻件余量,敷料(工艺余块) ,锻件公差;

G锻件=7.85×(0.82·3.1+0.682·2.84)=20.33kg

G烧损=3%×G锻件=0.53kg

G切=0.22×7.85×0.553=0.29kg

G坯料

=20.33kg+0.53kg+0.29kg=21.15kg

14.锤上模锻分模面的选用原则是什么,为什么不能冲出通孔?锻件上为什么要设有

模锻斜角和圆角?

选用原则:(1)要保证锻件能从模膛中取出;(2)上下模分模面的模膛轮廓应相同,这样在安装锻模时和生产中容易发现错模现象;(3)应尽量使模膛宽度最大而深度最浅,这样模具容易制造,并且金属容易充满模膛,锻件容易取出;(4)节约金属,减少工艺

余块;(5)使锻造流线分布合理。

至于金属为什么不能冲出通孔:因为金属在镦粗时,随着坯料的变形,均匀变形区越

来越小,逐步消失,大变形区越来越小,难变形区越来越大,并且变得重迭。当冲到一定

程度时,就很难变形了,产生很大的变形力,容易将冲头折断,或使设备损坏。

斜度是为了便于从模腔中取出锻件;

圆角则是为了增加锻件强度,使锻造金属易于充满模腔,避免锻模上的内尖角处产生

裂纹,减缓锻模外尖角处磨损,从而提高模具使用寿命。

15.图2-103所示的三种连杆,采用锤上模锻时,选择最合适的分模面。

选择分模面的原则:要保证锻件能从模膛中取出;上下分模面的轮廓应相同,不然容

易产生错模现象;选择时应尽量使模膛宽度最大而深度最浅;并且尽量使分模面在最大平

面内;为了容易取模应避免曲面结构。

16.图2-104所示的零件是否适合于模锻件生产?若不适合,试改正其不合理之处。

图a.不适合,上面柱体部分中孔,2倍孔径小于孔深不适合锻造:下面薄壁部分太薄

不适合锻造,设计的更厚一些。

图b.不适合,主要错误中间部分太薄不可锻造获得。

图c.不适合,中间结构角处应设计为圆角,减小金属流动时的摩擦阻力和使金属液充分的填满模膛;中间柱体结构应有一定的拔模斜度,便于拔模;连接处应设计得更厚,不

然金属容易冷却,不易充满模膛;上下应设设计成对称,使金属易于充满模膛和减少锻造

工序,皮带轮处应由机加工获得,不能通过锻造工艺获得。

17.胎膜锻与自由锻和锤上模锻相比有何特点?

(1) 和自由锻相比:① 操作简便,生产率高;② 锻件尺寸精度高,形状复杂,敷料少,加工余量小;

(2) 和锤上模锻相比:① 胎模锻不需昂贵设备,使用自由锻设备即可;② 工艺、操

作灵活,可以局部成形,小设备可锻大锻件;③ 模具结构简单,制造容易,可降低锻件

成本。缺点是:锻件尺寸精度不如模锻件,工人劳动强度大,胎模易损坏,生产率不够高。

18.摩擦压力机、曲柄压力机和平锻机上模锻各有何特点?

摩擦压力机上模锻的特点:

1)滑块运动速度低,可锻造低塑性合金钢和有色金属;

2)承受偏心载荷能力差,仅适合单膛模锻;

3)打击速度低,可用组合模具,降低生产成本,缩短生产周期;

4)滑块行程不固定,故工艺性广泛。

曲柄压力机特点:

1)锻造力是压力,坯料的变形速度较低,可锻造较低塑形合金;

2)锻造时滑块的行程不变,每个变形工步在一次行程中即可完成,便于实现机械化

和自动化,具有很高生产率;

3)滑块运动精度高,使模锻斜度、加工余量、锻造公差减小,锻件精度比锤上模锻高。

4)振动和噪音较小,劳动条件改善。

5)设备费用高,模具结构复杂;

6)滑块行程和压力不能在锻造过程中调整,因此不能进行拔长、滚压等制坯。

平锻机上模锻特点是:

1)坯料都是棒料或管材,坯料长度几乎不受限制,并且只进行局部(一端)加热和

局部变形加工,因此可锻造立式锻压设备上不能锻造的某些长杆类锻件。

2)锻模有两个分模面,锻件出模方便,可以锻出在其它设备上难以完成的在不同方

向上有凸台或凹槽的锻件。

3)需配备对棒料局部加热的专用加热炉。

4)是高效率、高质量、容易实现机械化的锻造方法,但设备结构复杂,价格贵,适

用于大批量生产。

5)材料利用率可达85%-95%;④生产率高,每小时可生产400-900件;

19.画出图2-105零件的模锻件图。(改为:应考虑哪些内容?)

(1)首先要考虑锻件余量、锻件公差和敷料;(2)选择合适的分模面,就选在上部

结构中间位置处,使模膛深度最浅,以便于充型;(3)拔模斜度,模锻件上平行于锤击

方向的表面保持5-15度的的的斜度,以便于从模膛中取出锻件;(4)模锻圆角,所有两

平面的交角均需做成圆角,外圆角1.5-12mm,内圆角比外圆角大2-3倍;(5)冲孔连皮,中间孔部分符合锻造条件,但由于模锻不能锻出通孔,所以孔中需留出冲孔连皮;(6)最后

还要考虑飞边。

20.板料冲压生产有何特点?应于范围如何?

板料冲压的特点:(1)可以冲压出形状复杂的零件,废料少;(2)产品精度、表面

质量高,互换性好;(3)冲压件质量轻,耗材少,强度、刚度较高;(4)冲压操作简单,便于机械化自动化生产,生产效率高,成本低。

适用范围:(1)材料:原材料必需有足够的塑性,如低碳钢、铜合金、铝合金、镁

合金及塑性好的高合金钢;其形状为板料、条料或带料。(2)规模:大批量生产。

21.板料冲压工序分几大类?各自成型特点和应用范围如何?

板料冲压工序大致可分分离工序和变形工序。板料冲压的特点:1)可以冲压出形状

复杂的零件,废料少;2)产品精度、表面质量高,互换性好;3)冲压件质量轻,耗材少,强度、刚度较高;4)冲压操作简单,便于机械化自动化生产,生产效率高,成本低。适

用范围:1)材料:——原材料必需有足够的塑性,如低碳钢、铜合金、铝合金、镁合金

及塑性好的高合金钢;其形状为板料、条料或带料;2)规模:大批量生产.。

22. 分析模具间隙的大小对冲裁件质量和模具寿命的影响?

模具间隙的大小影响裂纹的形成与扩展,从而影响冲裁件的断面质量;冲裁过程中,凹

模与落料件之间,凸模与被冲孔之间均存在摩擦,使模具磨损,影响到模具寿命,间隙越小,

磨损越严重。

23.简单模,连续模,复合膜各有何优缺点。

简单模:在冲压机中一次行程内只完成单一工序的模具。结构简单,容易制造,但生

产率低,适用于中小批量生产;

连续模:在冲压机一次行程内,在模具的不同部位同时完成两道或以上工序的模具。

特点是生产率高,易于实现生产机械化和自动化,适于大批量生产,但是在冲压过程中必

须严格定位才能保证精度;

复合模:指在一次行程内,模具不同部位完成多道工序的模具。优点是精度高,生产

率比简单模高,缺点是结构复杂,不易制造。

24.板料的回弹现象对弯曲件有何影响?怎么消除这种影响?

板料回弹直接影响产品的精度,在生产过程中,可在弯曲变形处压制加强筋、弯曲后

施加一定的校正压力都可减少反弹;同时在设计模具的时候使模具角度比零件弯曲角度小

一个回弹角度,或修整凹凸模工作部分,都可以减小回弹。

25.比较落料模与拉深模结构有何不同?为什么?

两者在结构上最大的区别在于凹模跟凸模直接的间距,落料模比拉深模的间距要小得多;原因在于落料模目的在于切割材料,最小间隙是为了保护模具的寿命而设计;而拉深

模则用于材料的变形,其间距是拉深时材料变形区。

26.用Φ250X1.5的板料能否一次拉深成Φ50的拉深件?应采取哪些措施才能保证正

常生产?因为:m d500.20.5 (m为拉深系数,查询拉深系数表可知板料的D250

最低拉深系数为0.5),所以此件不能一次拉深成形。

应采取的措施是:①多次拉深;②多次拉深后,对工件进行退火处理,保证足够的塑性;③加润滑剂,来减少摩擦阻力。

27.翻边件的凸缘高度尺寸较大难以一次翻边成型时,应采取什么措施?

措施1:首先将坯料拉深成形,然后将底部冲孔,最后将底部内缘金属翻边形成凸缘。措施2:首先将坯料拉深成形,然后切掉底部金属。

28.在成批大量生产外直径40mm,内径20mm,厚度2mm的垫圈时,应选用何种模具进

行冲压才能保证内径与外圆的同轴度?

大批量生产垫圈可用复合模,内孔外圆一次即可获得,精度高。

29.简述图2-106所示压紧弹簧座的冲压工序。

落料——拉深——冲孔——翻边

30.图2-107所示冲压件的结构是否合理?改正不合理之处。

图a. 冲裁件的孔间距和孔

与边沿的距离不能太小,否则凹

模强度和冲裁件的质量都不易

保证。其间距和边距参考图右所

示,要求b≥2t,并不能小于3~

4mm,此垫圈件的环宽为1.5mm,

而件厚时3mm,环太窄不易冲裁,

须加厚;

图b.不合理,冲裁件的内外转角处要避免尖角,判断原则如下图:

图c.不合理,弯曲直边不能过小,直边部分长度H>2s,而图中(12-7)<2×3。图d.不合理,同样存在直边部分长度太小的问题,可以加大余量来进行弯曲。

图e.不合理,图中结构不可通过冲裁获得,转角需要改成圆角,同时上部分结构宽度应于下部结构相同。

图f.不合理,弯曲件带孔时,为防止孔型过大,空边缘应离变形区距离L>1.5~2s,

图中靠的太近,可挪动孔的位置采用先弯曲在冲孔的工艺。

31.精密模锻采用哪些措施才能保证产品的精度?

(1)精密下料:精确计算原始胚料的尺寸,严格按坯料质量下料;(2)清理坯料表面:坯料表面的氧化皮脱碳皮须清理干净;(3)减少表面氧化:一般采用无氧或少氧化

加热方式,防止因氧化而使得粗糙度升高;(4)采用高精度模具:模具的精度对锻件的

影响很大,一般要比工件精度高两级,模具要有导柱和导套,保证合模准确;(5)锻造

时严格控制模具温度和锻造温度,并在锻造过程中加润滑剂来润滑、冷却模具;(6)锻

件的冷却与普通模锻不同,必须在介质中冷却,防止氧化,降低精度。

32.零件的轧制方法有几种?各有什么特点?

根据轧辊轴线与坯料轴线方向的不同,轧制分为纵轧,横轧,斜轧和楔横轧等;

纵轧:包括辊轧(坯料局部变形,所需设备吨位小,结构简单,生产率比锤上模锻高,但精度较低)和碾轧(能改善金属的组织,质量高,材料利用率高);

横轧:是一种少或无切削加工新工艺,适于加工模数较小的大批量生产;

斜轧:两个轧辊带有螺旋形槽,成一定角度同向旋转,使坯料既自转又做轴向运动,

在运动中坯料受压变型获得所需零件。

楔横轧:与横轧相似,不同的是轧辊上带有楔型模具,轧辊每旋转一周,楔模楔入金属、展宽、精整,得到所需工件,其主要用于加工阶梯轴,锥形轴等对称的零件或毛坯。

33.零件挤压按温度的不同分为哪几种方法?各有什么特点?

零件挤压按温度的不同分为冷挤压、热挤压和温挤压。

冷挤压:是在再结晶温度以下的挤压方式,金属不需要加热,便面粗糙度低,尺寸精度高,力学性能好,生产率高,但金属变形抗力大,需具备一定的塑性成型能力,金属与模具的磨损较大,模孔强化处理并进行润滑保护。

热挤压:是金属坯料温度在再结晶温度以上的挤压方式。特点是金属变形抗力小,一次变形量较大,但产品精度较低,表面粗糙。

温挤压:是介于冷挤压和热挤压之间的一种挤压方式。特点是,与冷挤压相比挤压力小,每次允许变形量较大,提高模具寿命,扩大冷挤压材料品种,与热挤压相比,坯料氧化脱碳少,表面粗糙度低,尺寸精度高。

34.何谓高速高能成型?其特点是什么?

高速高能成型是指在极短的时间内将化学能、热能、电磁能作用在金属坯料上,使其高速成型的成型工艺。特点就是在极短的时间内将化学能、热能、电磁能作用在金属坯料上,成型速度快。

工程材料及成形技术基础A答案

、单项选择题(每小题1分,共15 分) 一、填空题(每空1分,共20分) 1. 机械设计时常用屈服强度和抗拉强度两种强度指标 2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。 3. 实际金属存在点 _____、 ____ 线______ 和面缺陷等三种缺陷。 4. F和A分别是碳在、丫-Fe 中所形成的间隙固溶体。 5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。 6. QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa。 7?金属晶体通过滑移和孪生两种方式来发生塑性变形。 8 ?设计锻件时应尽量使零件工作时的正应力与流线方向相_同^而使切应力与流 线方向相垂直。 9?电焊条由药皮和焊芯两部分组成。 10 .冲裁是冲孔和落料工序的简称。 1. 在铁碳合金相图中,碳在奥氏体中的最大溶解度为(b )。 a 、0.77% b 、2.11% c 、0.02% d 、4.0% 2. 低碳钢的焊接接头中,(b )是薄弱部分,对焊接质量有严重影响,应尽可 能减小。 a 、熔合区和正火区 b 、熔合区和过热区 c、正火区和过热区d 、正火区和部分相变区 3. 碳含量为Wc= 4.3 %的铁碳合金具有良好的(c )。 a、可锻性b 、可焊性c 、铸造性能d、切削加工性 4. 钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而(b ) a 、增大V K b、增加淬透性c、减少其淬透性d、增大其淬硬性

5. 高碳钢淬火后回火时,随回火温度升高其(a ) a 、强度硬度下降,塑性韧性提高 b 、强度硬度提高,塑性韧性下降 c、强度韧性提高,塑性硬度下降 d 、强度韧性下降,塑性硬度提高 6. 感应加热表面淬火的淬硬深度,主要决定于因素(d ) a 、淬透性b、冷却速度c、感应电流的大小d、感应电流的频率 7. 珠光体是一种(b ) a 、单相间隙固溶体b、两相混合物c、Fe与C的混合物d、单相置换固溶体 8. 灰铸铁的石墨形态是(a ) a 、片状 b 、团絮状 c 、球状 d 、蠕虫状 9. 反复弯折铁丝,铁丝会越来越硬,最后会断裂,这是由于产生了( a )

材料成型工艺基础考试复习要点精编版

材料成型工艺基础考试 复习要点 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

材料成型工艺基础 复习资料 13上午九到十一点 一号公教楼407 1铸件的凝固方式及其影响因素 凝固方式:(l)逐层凝固方式 (2)糊状凝固方式 (3)中间凝固方式 影响因素:(l)合金的结晶温度范围:结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。低碳钢近共晶成分铸铁倾向于逐层凝固,高碳 钢、远共晶成分铸铁倾向于糊状凝固。 (2)逐渐的温度梯度:在合金的结晶温度范围已定时,若铸件的温度梯度↑由小到大,则凝固区由宽变窄,倾向于逐层凝固。 2铸造性能含义及其包括内容,充型能力含义,影响合金流动性因素(合金种类、成分、浇注条件、铸型条件) 铸造性能:合金铸造成形获得优质铸件的能力,、 合金的铸造性能:主要指合金的流动性、收缩性和吸收性等 充型能力:液态合金充满铸型型腔,获得形状完整轮廓清晰的铸件的能力。 影响合金流动性因素:(l)合金的种类。灰铸铁、硅黄铜流动性最好,铝合金次 之,铸钢最 差。

(2)合金的成分。同种合金,成分不同,其结晶特点不 同,流动性也不同。 (3)浇注温度越高,保持液态的时间越长,流动性越好; 温度越高,合金粘度越低,阻力越小,充型能力越强。 在保证充型能力的前提下温度应尽量低。 生产中薄壁件常采用较高温度,厚壁件采用较低浇注温 度, (4) l.铸型的蓄热能力越强,充型能力越差 2.铸型温度越高,充型能力越好 3.铸型中的气体阻碍充型 3合金的收缩三阶段,缩孔、缩松、应力、变形、裂纹产生阶段 l.收缩。合金从液态冷却至常温的过程中,体积或尺寸缩小的现象。 合金的收缩过程可分为三阶段(l)液态收缩 (2)凝固收缩 (3)固态收缩 缩孔(1)形成条件:金属在恒温或很窄的温度范围内结晶,铸件壁以逐层凝固方式凝固。(2)产生原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。 (3)形成部位:在铸件最后凝固区域,次区域也称热节。 缩松(1)形成条件:形成铸件最后凝固的收缩未能得到补足,或者结晶温度范 围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,

材料成型技术基础试题答案

《材料成形技术基础》考试样题答题页 (本卷共10页) 、判断题(每题分,共分,正确的画“O ”,错误的打“X ”) 、选择题(每空1分,共38分) 三、填空(每空0.5分,共26分) 1.( 化学成分) ( 浇注条件) ( 铸型性质) 2.( 浇注温度) 3.( 复杂) ( 广) 4.( 大) 5.( 补缩) ( 控制凝固顺序)6.( 球铁) ( 2 17% ) 7.( 缺口敏感性) ( 工艺)8.( 冷却速度) ( 化学成分) 9.( 低) 10.( 稀土镁合金)11.( 非加工)12.( 起模斜度) ( 没有) 13.( 非铁) ( 简单)14.( 再结晶)15.( 变形抗力) 16.( 再结晶) ( 纤维组织)17.( 敷料) ( 锻件公差) 18.( 飞边槽)19.( 工艺万能性)20.( 三) ( 二) 21.( -二二) ( 三)22.( 再结晶退火)23.( 三) 24.( -二二)25.( 拉) ( 压)26.( 化学成分) ( 脱P、S、O )27.( 作为电极) ( 填充金属)28.( 碱性) 29.( 成本) ( 清理)30.( 润湿能力)31.( 形成熔池) (达到咼塑性状态) ( 使钎料熔化)32.( 低氢型药皮) ( 直流专用)

Ct 230 图5 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) ? 2J0 环O' 4 “ei吋 纯 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序(6 分)。 O O 2 令 i 1 q―1 孔U 400 圈6 3、请修改图7?图10的焊接结构,并写出修改原因。 自由锻基本工序: 拔长、局部镦粗、拔长 图7手弧焊钢板焊接结构(2 分)图8手弧焊不同厚度钢板结构(2 分) 修改原因:避免焊缝交叉修改原因:避免应力集中(平滑过 度)

材料成形技术基础习题集答案

作业2 铸造工艺基础 专业_________班级________学号_______姓名___________ 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×)2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O)3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O)

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

《材料成形技术基础》习题集答案.doc

作业 2 铸造工艺基础 专业 _________班级 ________学号 _______姓名 ___________ 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有 利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(× )2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松 的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。( O)3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶 温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔, 从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。( O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严 格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以 当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共 晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的 铸造性能。(×) 7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还 降低了铸件的气密性。( O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂 程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。( O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有( A .减弱铸型的冷却能力; B .增加铸型的直浇口高度; C.提高合金的浇注温度;D. A 、 B 和 C;E.A 和 C。 D )。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适 合于( D ),而同时凝固适合于( B )。 A .吸气倾向大的铸造合金;C.流动性差的铸造合金; B .产生变形和裂纹倾向大的铸造合金; D .产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A .采用同时凝固原则; B .提高型、芯砂的退让性;

材料成形技术基础试题

材料成形技术基础复习题 一、填空题 1、熔模铸造的主要生产过程有压制蜡模,结壳,脱模,造型,焙烧和浇注。 2、焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 3、接的主要缺陷有气孔,固体夹杂,裂纹,未熔合,未焊透,形状缺陷等。 4、影响陶瓷坯料成形性因素主要有胚料的可塑性,泥浆流动性,泥浆的稳定性。 5、焊条药皮由稳弧剂、造渣剂、造气剂、脱氧剂、合金剂和粘结剂组成。 6、常用的特种铸造方法有:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造和陶瓷型铸造等。 7、根据石墨的形态特征不同,可以将铸铁分为普通灰口铸铁、可锻铸铁和球墨铸铁等。 二、单项选择题 1.在机械性能指标中,δ是指( B )。 A.强度 B.塑性 C.韧性 D.硬度 2.与埋弧自动焊相比,手工电弧焊的优点在于( C )。 A.焊接后的变形小 B.适用的焊件厚 C.可焊的空间位置多 D.焊接热影响区小 3.A3钢常用来制造( D )。 A.弹簧 B.刀具 C.量块 D.容器 4.金属材料在结晶过程中发生共晶转变就是指( B )。 A.从一种液相结晶出一种固相 B.从一种液相结晶出两种不同的固相 C.从一种固相转变成另一种固相 D.从一种固相转变成另两种不同的固相 5.用T10钢制刀具其最终热处理为( C )。 A.球化退火 B.调质 C.淬火加低温回火 D.表面淬火 6.引起锻件晶粒粗大的主要原因之一是( A )。 A.过热 B.过烧 C.变形抗力大 D.塑性差 7.从灰口铁的牌号可看出它的( D )指标。 A.硬度 B.韧性 C.塑性 D.强度 8.“16Mn”是指( D )。 A.渗碳钢 B.调质钢 C.工具钢 D.结构钢 9.在铸造生产中,流动性较好的铸造合金( A )。 A.结晶温度范围较小 B.结晶温度范围较大 C.结晶温度较高 D.结晶温度较低 10.适合制造齿轮刀具的材料是( B )。 A.碳素工具钢 B.高速钢 C.硬质合金 D.陶瓷材料 11.在车床上加工细花轴时的主偏角应选( C )。 A.30° B.60° C.90° D.任意角度 12.用麻花钻加工孔时,钻头轴线应与被加工面( B )。 A.平行 B.垂直 C.相交45° D.成任意角度 三、名词解释 1、液态成型液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。 2、焊缝熔合比熔焊时,被熔化的母材金属部分在焊道金属中所占的比例,叫焊缝的熔合比。 3、自由锻造利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻 4、焊接裂纹在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面所产生的缝隙称为焊接裂纹。 5、金属型铸造用重力浇注将熔融金属浇入金属铸型(即金属型)中获得铸件的方法。 四、判断题: 1、铸造的实质使液态金属在铸型中凝固成形。(√) 2、纤维组织使金属在性能上具有了方向性。(√) 3、离心铸造铸件内孔直径尺寸不准确,内表面光滑,加工余量大。(×)

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料成形技术基础习题集答案

2?顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适 合于( D ),而同时凝固适合于( B A .吸气倾向大的铸造合金; B .产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D ?产生缩孔倾向大的铸造合金。 3 ?铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是 ( D );消除铸件中机械应力的方法是( C )o A .采用同时凝固原则; B ?提高型、芯砂的退让性; C.及时落砂; D .去应力 退火。 4.合金的铸造性能主要是指合金的( B )。 C )和( G )。 作业 2 铸造工艺基础 2-1 判断题(正确的画0,错误的画X ) 1 .浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有 利于获得 形状完整、 轮廓清晰、 薄而复杂的铸件。 因此, 浇注温度越高越好。 (X ) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松 的基本原 因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。 ( 0 ) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶 温度范围 小的合金或共晶成分合金, 原因是这些合金的流动性好, 且易形成集中缩孔, 从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。 4 .为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严 格限制 钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以 当 合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共 专业 班级 学号 姓名 O ) O ) (X) 晶成分合金由于在恒温下凝固, 即开始凝固温度等于凝固终止温度, 结晶温度范围为 零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的 铸造性能。 7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还 降低了 铸件的气密性。 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂 程度,并 耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。 (X) O ) O ) 2- 2 选择题 1 .为了防止铸件产生浇不 足、 A .减弱铸型的冷却能力; 冷隔等缺陷,可以采用的措施有( B .增加铸型的直浇口高度; D . A 、B 和 C ; E . A 和 C o )。

工程材料及成型技术基础考试题目

工程材料及成型技术基础考试题目 一、填空 1、常见的金属晶体结构:体心立方晶格、面心立方晶格、密排立方晶格。 2、晶体缺陷可分为:点缺陷、线缺陷、面缺陷。 3、点缺陷包括:空位、间隙原子、置换原子。 线缺陷包括:位错。位错的最基本的形式是:刃型位错、螺型位错。 面缺陷包括:晶界、亚晶界。 4、合金的相结构可分为:固溶体、化合物。 5、弹性极限:σe 屈服极限:σs 抗拉强度:σb弹性模量:E 6、低碳钢的应力应变曲线有四个变化阶段:弹性阶段、屈服阶段、抗拉阶段(强化阶段)、 颈缩阶段。 7、洛氏硬度HRC 压印头类型:120°金刚石圆锥、总压力:1471N或150kg 8、疲劳强度表示材料经无数次交变载荷作用而不致引起断裂的最大应力值。 9、冲击韧度用在冲击力作用下材料破坏时单位面积所吸收的能量来表示。 10、过冷度影响金属结晶时的形核率和长大速度。 11、以纯铁为例α– Fe为体心立方晶格(912℃以下) γ– Fe为面心立方晶格(1394℃以下)、δ– Fe为体心立方晶格(1538℃以下) 12、热处理中,冷却方式有两种,一是连续冷却,二是等温冷却。 13、单晶体的塑性变形主要通过滑移和孪生两种方式进行。 14、利用再结晶退火消除加工硬化现象。 15、冷变形金属在加热时的组织和性能发生变化、将依次发生回复、再结晶和晶粒长大。 16、普通热处理分为:退火、正火、淬火、回火。 17、退火可分为:完全退火、球化退火、扩撒退火、去应力退火。 18、调质钢含碳量一般为中碳、热处理为淬火+高温回火。 19高速钢的淬火温度一般不超过1300℃、高速钢的淬火后经550~570℃三次回火。 三次回火的目的:提高耐回火性,为钢获得高硬度和高热硬性提供了保证。 高速钢的淬火回火后的组织是:回火马氏体、合金碳化物、少量残余奥氏体。 20、铸铁的分类及牌号表示方法。P142

材料成型工艺基础部分(中英文词汇对照)

材料成型工艺基础部分0 绪论 金属材料:metal material (MR) 高分子材料:high-molecular material 陶瓷材料:ceramic material 复合材料:composition material 成形工艺:formation technology 1 铸造 铸造工艺:casting technique 铸件:foundry goods (casting) 机器零件:machine part 毛坯:blank 力学性能:mechanical property 砂型铸造:sand casting process 型砂:foundry sand 1.1 铸件成形理论基础 合金:alloy 铸造性能:casting property 工艺性能:processing property 收缩性:constringency 偏析性:aliquation 氧化性:oxidizability

吸气性:inspiratory 铸件结构:casting structure 使用性能:service performance 浇不足:misrun 冷隔:cold shut 夹渣:cinder inclusion 粘砂:sand fusion 缺陷:flaw, defect, falling 流动性:flowing power 铸型:cast (foundry mold) 蓄热系数:thermal storage capacity 浇注:pouring 凝固:freezing 收缩性:constringency 逐层凝固:layer-by-layer freezing 糊状凝固:mushy freezing 结晶:crystal 缩孔:shrinkage void 缩松:shrinkage porosity 顺序凝固:progressive solidification 冷铁:iron chill 补缩:feeding

材料科学基础课后习题谜底第二章

第2章 习题 2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积V K 之间的关系式为 ;2 K K V V G G ?=- ?b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何? a) 证明 因为临界晶核半径 2K V r G σ =- ?临界晶核形成功 3 2 163()K V G G πσ?= ?故临界晶核的体积 3423K K K V r G V G π?== ?所以 2 K K V V G G ?=-?b) 当非均匀形核形成球冠形晶核时,SL 2K V r G σ=- ?非 临界晶核形成功 3 3 2 4(23cos cos )3() K SL V G G πσθθ?=-+?非 故临界晶核的体积 3 31(23cos cos ) 3 K K V r πθθ=-+非()3 33 3SL 3 281(23cos cos )(23cos cos )33() SL K V V V V V G G G G σπσπθθθθ?=--+?=-+??()所以 2 K K V V G G ?=- ?非2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。为什么形成立方体晶 核的△G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 326V V G V G A a G a σσ ?=?+=?+令 () 0d G da ?=得临界晶核边长4K V a G σ=- ?临界形核功 用管线敷设技术。线缆敷设过关运行高中资料试卷技术要求电力保护装置做到准确

333 3222 2 44649632()6()()()()K t K V K V V V V V V G V G A G G G G G G σσσσσσσ?=?+=-?+-=-+=?????,球形核胚的临界形核功2K V r G σ =- ?3 322 42216(4()33()K b V V V V G G G G G σσπσππσ?=-?+= ???将两式相比较 3 232 163()1 3262()K K b V t V G G G G πσπσ??==≈??可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。 2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的,只有△T>0时,才能造成固相的 自由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属)。熔化时表面自由能的变化为: () GL SL SG G G G A σσσ?=-=+-表面终态始态式中G 始态表示金属熔化前的表面自由能;G 终态表示当在少量液体金属在固体金属表面形 成时的表面自由能;A 表示液态金属润湿固态金属表面的面积;σGL 、σSL 、σSG 分别表 示气液相比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固 体金属,根据润湿时表面张力之间的关系式可写出:σSG ≥σGL +σSL 。这说明在熔化时, 表面自由能的变化△G 表≤0,即不存在表面能障碍,也就不必过热。实际金属多属于这种 情况。如果固体金属熔化时液相不与气相接触,则有可能时固态金属过热。

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编 第一章金属液体成型 1。液态合金的填充能力是多少?它与合金的流动性有什么关系?为什么不同化学成分的合金有不同的流动性?为什么铸钢的填充能力比铸铁差? ①液态合金的填充能力是指液态合金填充型腔并获得轮廓清晰、形状完整的高质量铸件的能力 ②流动性好,合金熔体充型能力强,容易获得尺寸准确、外观完整的铸件如果流动性不好,填充能力差,铸件容易出现冷隔、气孔等缺陷。不同成分的 ③合金具有不同的结晶特征。共晶合金的流动性最好,其次是纯金属,最后是固溶体合金 ④与铸钢相比,铸铁更接近共晶成分,结晶温度范围更小,流动性更好。2.既然提高浇注温度可以提高液态合金的填充能力,为什么要防止浇注温度过高呢?铸造温度过高( )会增加合金的收缩率,增加空气吸力,并导致严重氧化。相反,铸件容易出现缺陷,如缩孔、缩松、粘砂、夹杂物等。 3。缩孔和气孔的存在会减小铸件的有效承载面积,并引起应力集中,导致铸件的力学性能下降。缩孔 大且集中,容易发现。它可以通过特定的工艺从铸件主体上移除。缩孔较小且分散,多多少少存在于铸件中。对于普通铸件来说,它通常不被视为缺陷,只有当铸件具有高气密性时,才可以防止它液态合

金填充型腔后,如果在冷却和凝固过程中液态收缩和凝固收缩的量没有得到补充,在铸件的最终凝固部分将形成一些型腔。大而集中的空洞变成了缩孔,而小而分散的空洞被称为缩孔 的不足之处是砂类充填不充分。冷绝缘是指在施加一定的力之后,铸造工件出现裂纹或断裂,并且氧化物夹杂出现在断裂表面或没有熔合在一起。 出风口的作用是在铸造过程中排出型腔内的气体,防止铸件产生气孔,便于观察铸件情况。冒口是附加在铸件顶部或侧面的辅助部件,以避免铸造缺陷。在 分步凝固过程中,其横截面上的固相和液相被边界线清楚地分开。在定向凝固中,熔融合金根据所需的晶体取向在与热流相反的方向上凝固。 5。定向凝固的原理是将冒口放置在铸件可能出现缩孔的厚而大的部分,同时采用其他技术措施,从铸件远离冒口的部分到冒口建立逐渐增加的温度梯度,从而实现从远离冒口的部分如冒口方向的顺序凝固。 铸件相邻零件或铸件凝固开始和结束的时间相同或相似,甚至同时完成凝固过程,顺序和方向没有明显区别,称为同步凝固 定向凝固主要用于大体积收缩的合金,如铸钢、球墨铸铁等。同时,凝固适用于凝固收缩小的合金和壁厚均匀、结晶温度范围宽的合金铸件,但对致密性要求不高。6.不均匀冷却使得铸件的慢冷却部分拉伸,而快冷却部分压缩。零件向下弯曲。手动建模和机器建模的优缺点是

相关主题
文本预览
相关文档 最新文档