当前位置:文档之家› 双各向异性超材料的有效参数反演法

双各向异性超材料的有效参数反演法

双各向异性超材料的有效参数反演法
双各向异性超材料的有效参数反演法

滑坡稳定性计算书

第一部分参数选取 根据钻探揭露,滑带土为黄褐色粉质亚粘土夹少量砂板岩角砾,位于人工堆积层与下层基岩之间,深度在2-7m不等,厚约0.2-0.3m,断面光滑。 2、滑带土参数的取值 (1)参数反演 滑坡中的滑带土为基覆交界面的亚粘土层,由于野外取样时,所取滑带土样为已经扰动过的土样,因此在进行岩土试验参数统计及经验类比的取值时,滑带土的C、φ值采用滑坡在暴雨工况下,取稳定系数为1.03时反演取值,其反演计算模型,选定H1滑坡的2-2’剖面。反演计算剖面及内容见计算书。 采用反演公式和 经反演,滑坡滑带土在暴雨条件下C、φ值见下表。 (2)工程类比经验:借鉴蜀通公司对H2滑坡所做的勘查工作,天然条件下C 值为6.7KPa,φ为18.5°,暴雨条件下C值为3.3-4.6KPa,φ为12.3°。 (3)试验值: (4)综合取值: 根据滑带土的试验、剖面反演及工程类比的结果,滑带土而天然工况下的取值主要依据试验结果,在暴雨工况下参数取值主要采取加权平均,对试验值、反演值和工程类比值采取加权平均方法从而得出暴雨工况下的滑带土的c、φ值。目前各滑坡处于蠕动变形阶段,因此对试验值取较高的权重。三种取值的权重分别是0.5、0.3、0.2。据此得出暴雨工况下的滑带土的参数值。 滑带土参数取值为天然重度为19.0 kN/m3,饱和重度为20.5kN/m3,天然条件下C值为7.0KPa,φ为18.5°;饱和条件下c值为3.8KPa,φ为13.0°。 一、2-2’反演 滑坡剩余下滑力计算 计算项目: 2-2暴雨 ===================================================================== 原始条件: 滑动体重度= 19.000(kN/m3) 滑动体饱和重度= 20.500(kN/m3) 安全系数= 1.030 不考虑动水压力和浮托力 不考虑承压水的浮托力 不考虑坡面外的静水压力的作用 不考虑地震力 坡面线段数: 41, 起始点标高 0.000(m) 段号投影Dx(m) 投影Dy(m) 附加力数 1 0.144 0.351 0 2 0.386 1.579 0 3 0.279 0.673 0 4 0.541 0.977 0 5 0.232 0.793 0 6 0.601 0.846 0 7 0.475 0.781 0 8 0.266 0.496 0 9 0.353 0.812 0 10 0.518 0.658 0 11 0.110 0.265 0 12 0.102 0.204 0 13 0.197 0.490 0 14 0.234 0.464 0 15 0.197 0.147 0

常用注塑材料性能

目录 1.ABS 丙烯腈-丁二烯-苯乙烯共聚物 (2) 2.PA6 聚酰胺6或尼龙6 (3) 3.PA12 聚酰胺12或尼龙12 (3) 4.PA66 聚酰胺66或尼龙66 (4) 5.PBT 聚对苯二甲酸丁二醇酯 (6) 6.PC 聚碳酸酯 (6) 7.PC/ABS 聚碳酸酯和丙烯腈-丁二烯-苯乙烯共聚物和混合物 (7) 8.PC/PBT 聚碳酸酯和聚对苯二甲酸丁二醇酯的混合物 (7) 9.PE-HD 高密度聚乙烯 (8) 10.PE-LD 低密度聚乙烯 (8) 11.PEI 聚乙醚 (9) 12.PET 聚对苯二甲酸乙二醇酯 (9) 13.PETG 乙二醇改性-聚对苯二甲酸乙二醇酯 (10) 14.PMMA 聚甲基丙烯酸甲酯 (10) 15.POM 聚甲醛 (11) 16.PP 聚丙烯 (11) 17.PPE 聚丙乙烯 (12) 18.PS 聚苯乙烯 (13) 19.PVC (聚氯乙烯) (13) 20.SA苯乙烯-丙烯腈共聚物 (14)

ABS 丙烯腈-丁二烯-苯乙烯共聚物 典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 注塑模工艺条件: 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90℃下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280℃;建议温度:245℃。 模具温度:25~70℃。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 注射压力:500~1000bar。 注射速度:中高速度。 化学和物理特性: ABS 是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。

临界状态滑坡土层参数反演在工程中的应用

文章编号:1009-6825(2013)01-0048-02 临界状态滑坡土层参数反演在工程中的应用 收稿日期:2012-10-26作者简介:王树州(1983-),男,硕士,工程师; 刘强(1978-),男,工程师 王树州 刘强 (安徽省交通规划设计研究院有限公司,安徽合肥230008) 摘 要:针对芜湖至铜陵高速K51+354 K51+500段出现的裂缝及下挫现象,分析了其产生变形的原因,通过不平衡推力法算出 滑坡剩余下滑力, 提出了采用抗滑桩结合挡土墙支护边坡的方案,并在工程运用中得到了很好的效果。关键词:滑坡,临界状态,反演,裂缝及下挫,不平衡推力法 中图分类号:TU435 文献标识码:A 0引言 随着国民经济的飞速发展,大量铁路、公路、矿山等设施的修建,特别是丘陵和山区建设中,人类工程活动中开挖和堆填的边坡数量会越来越多, 高度也将越来越大。如北京—福州高速公路福建段200余千米内高度大于30m 的边坡多达150多处。由于地质条件复杂, 加之人类改造自然规模愈来愈大,设计施工方法不当,高边坡开挖后发生变形和造成灾害的事故频繁发生,给工程运营和人身安全带来很大隐患。 芜湖至铜陵高速K51+354 K51+500为开挖路段,右侧挖方较长,坡高较大,最大坡高31m 。该项目已建成运营近三年时间,于2010年4月K51+420 K51+480段右侧一级坡出现裂缝宽2cm 5cm ,一级坡护面墙局部开裂,二级坡裂缝宽10cm 30cm ,二级坡平台下挫20cm 40cm ,估计松动方量4000m 3,坡 脚未出现剪出口。该滑坡体处于蠕动变形阶地, 若遇到暴雨天气,雨水下渗,有可能会加速下滑,危及人的生命安全。 1滑坡区工程地质概况1.1地形地貌 边坡区地貌属低山丘陵区,区内地形较简单,岗凹相间内,岗丘顶部浑圆,坡面平缓,覆盖层主要为残坡积层,凹地上部覆盖第四系全新统冲积层。 1.2地层结构及岩土体特征 滑坡区上部覆盖层为第四系中更新统残坡积层(Q el +dl 2 )的粗粒土和高液限粘土,粗砾土层厚7.5m 10.7m ,高液限粘土层厚8.0m 12.4m ,工程性质差;下伏基岩为三叠系下统南陵湖组(T 1n )灰岩。 1.3水文地质特征 滑坡区主要赋存少量残坡积松散层孔隙水,主要来源于大气 降水补给,季节性变化较大,但由于上部的碎石土夹砂砾石及少量细粒土,渗透性较好,降雨时大量的地表水下渗,而中部高液限 粘土及下部基岩为相对不透水层,致使高液限粘土含水量增高, 而高液限粘土遇水后性质变差,形成软弱层,对边坡稳定不利,滑坡区应设置好防渗及排水措施。 2滑坡基本特征及成因分析2.1 滑坡基本特征 滑坡区位于K51+354 K51+500的右侧,整体坡度为36?, 坡形整体呈上缓下陡,只有护面墙护坡,如图1所示。该滑坡分三级台阶,第三级台阶的护面墙已经损坏,可能是导致降雨入渗的主要原因。第一、第二级台阶的护面墙也有拉裂地方。滑坡区右侧一级坡出现裂缝宽2cm 5cm ,二级坡裂缝宽10cm 30cm ,二级坡平台下挫20cm 40cm ,如图2所示。 图1 滑坡区地貌特征 图2第二级台阶开裂下挫 2.2滑坡成因分析 1)雨水下渗。边坡排水沟、截水沟日渐淤积堵塞,护面墙开裂,导致降雨下渗不能及时的排出坡体,使得坡体含水率增高。而第一级、第二级台阶主要分布着高液限粘土,富含高岭土,具有膨胀性,当坡体含水率增高时,坡体内土体膨胀,膨胀力使得护面墙开裂,同时土体的抗剪强度降低。三级坡的粗粒土夹有少量的 砾石, 渗透性较好,又是雨水下渗的良好通道。2)支挡不足。该边坡坡度较高,1?1 1?1.3的坡率只能保证每一级台阶是安全的,整体边坡是欠稳定的。整个边坡缺乏有效的支挡, 仅仅修筑护面墙是不能抵抗坡体变形产生的下滑力櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 。On engineering features of collapsible loess ZHANG Ai-fang (Shanxi Jinzheng Construction Engineering Program Management ,Co.,Ltd ,Hejin 043304,China ) Abstract :According to the distribution regions ,the horizontal and vertical distribution features of the collapsible loess of Shanxi Aluminum Plant ,the paper illustrates the conditions for the self-weight collapsibility ,features for the moment of the self-weight collapsible deformation after being soaked in water ,as well as the scopes for the deformation ,identifies the deformation features of the natural and compacted foundation un-der the measurement of additional collapsible volume ,and concludes the measured self-weight collapsible volume is less than the one of the in-door test calculation ,and the adopted correction factors in the new regulation is fundamentally consistent.Key words :collapsibility deformation ,subsidiary stress ,self-weight collapsible volume · 84·第39卷第1期2013年1月 山西 建筑 SHANXI ARCHITECTURE Vol.39No.1Jan.2013

滑坡计算参数反演分析

滑坡计算参数反演分析的优化算法 1 引言 在滑坡稳定性计算和工程设计中,滑带土的粘聚力(C)和内摩擦角(?)取值正确与否至关重要。目前确定滑带土抗剪强度参数(C、?)值的方法有试验、工程类比和反演分析3种。滑带土剪切试验分为现场或室内两种,受试样和试验条件的限制,滑带土试验数据通常很离散,需要进行分析计算来确定。工程类比法在确定滑带土的抗剪强度参数时具有很强的主观性,在确定类比指标时又受到类比滑坡客观条件的限制。反演分析是确定滑带土抗剪强度参数的一种有效的方法,根据滑坡的宏观变形状况假设滑坡的稳定性系数,再反算滑带土抗剪强度参数。反算是滑坡稳定性计算的逆过程,得到的参数更符合滑坡的变形情况,参数可以作为试验数据选取的参考,若没有试验数据时,可以直接作为稳定性计算、工程设计的参数。 目前,滑带土抗剪强度参数反演分析的方法分为单参数反演和双参数反演两种。前者假定一个参数已知的前提下,反算另外一个参数,通常选择对滑坡稳定性影响较敏感的作为未知参数。后者在反演中有两个未知的参数,通常选择两个距主滑动面等距的剖面建立极限平衡方程求解。本文以三峡库区太山庙滑坡为例,在C、?值未知的情况下,综合采用经验类比和反演分析方法确定滑带土的抗剪强度参数,分析时兼顾了滑坡的区域相似性和个体特性,所得到的结果更为准确、可靠。 2 滑坡概况 欧家湾滑坡位于奉节县白帝镇坪上村2、3组,长江支流石马河左岸,属于三峡库区三期专业监测崩塌滑坡灾害点。滑坡无详细的勘察资料,仅在监测设计阶段做了地面调查。 滑坡自然坡角约25~40°,滑坡前缘临近石马河处零星分布石马河一级阶地,滑坡区属低山丘陵剥蚀地貌。滑坡体的主滑方向为5°,平面形态呈箕形,由后缘向前缘逐渐变宽,滑坡东西宽约350~400m,南北向主轴长约420m。后缘高程约325m,前缘高程约170m,左侧以山脊为界,右侧以冲沟为界,总变形规模约507×104m3。滑体主要由第四系碎块石土夹粘性土组成,滑床为巴东组第三段(T2b3)的泥灰岩,岩层产状为280°∠3°,为斜交坡,图1是滑坡的工程地质剖面图。 图1 欧家湾庙滑坡工程地质剖面图 Fig.1 The engineering geological profile of Oujiawan landslide 滑坡为老滑坡,滑坡区经过过去的剧烈滑动后,在改变了当时的地形地貌后形成了现今的老滑坡体地形。经对现场的调查踏勘发现,滑坡体上树木歪斜,现仍有滑移变形产生。在滑坡中部多户民房附近,近年每逢雨季都有蠕动滑移。从地表调查和发展趋势上看,目前该滑坡处于不稳定状态。 3 滑带土抗剪强度参数统计 对三峡库区二期崩塌滑坡治理工程和三期规前勘(调)察中的崩塌滑坡点的勘察试验资料进行分类统计,得到本区滑带土抗剪强度参数值,可以用于验证和优化反演得到的参数。经统计得到适合该滑坡的抗剪强度参数分布函数如表1,图2是滑带抗剪强度参数统计直方图。 表1 T2b1和T2b3滑带土的抗剪强度参数统计表 Table 1 The shear strength parameters statistic table of sliding zone of T2b1 and T2b3 strata

塑料密度及收缩率

密度收缩率材料缩写 [g/cm3] [%] 聚苯乙烯PS 1.05 0.3-0.6 聚苯乙烯,中.高冲击性HI-PS 1.05 0.5-0.6 聚苯乙烯-丙烯晴SAN 1.08 0.5-0.7 丙烯晴-丁二烯-苯乙烯ABS 1.06 0.4-0.7 苯烯晴-苯乙烯-丙烯酸ASA 1.07 0.4-0.6 低密度聚乙烯LDPE 0.954 1.5-4.0 高密度聚乙烯HDPE 0.92 1.5-3.6 聚丙烯PP 0.915 1.0-2.5 聚本烯-GR PPGR 1.15 0.5-1.2 聚甲基戊烯PMP 0.83 1.5-3.0 软质聚氯乙烯PVC-soft 1.38 1.0-2.5 硬质聚氯乙烯PVC-rigid 1.38 0.1-0.6 聚氟亚乙烯PVDF 1.2 3.0-6.0 聚四氟乙烯PTFE 2.12-2.17 3.5-6.0 聚甲基丙烯酸甲脂(丙烯)PMMA 1.18 0.1-0.8

聚氧甲烯(乙缩烯)POM 1.42 1.8-3.5 聚苯撑氧或聚氧化亚苯PPO 1.06 0.1-0.7 聚苯撑氧-GR PPO-GR 1.27 <0.7 醋酸纤维素CA 1.27-1.3 0.5 醋酸-丁酸纤维素CAB 1.17-1.22 0.5 丙酸纤维表素CP 1.19-1.23 0.5 聚碳酸醋PC 1.2 0.4-0.8 聚碳酸脂-GR PC-GR 1.42 0.15-0.55 聚乙烯对苯二甲酸乙酯PET 1.37 0.2-2.0 聚乙烯对苯二甲酸乙酯-GR PET-GR 1.5-1.57 1.2-2.0 聚丁烯对苯二酸PBT 1.3 0.9-1.8 聚丁烯对苯二酸-GR PBT-GR 1.52-1.57 0.3-1.2 尼龙6(聚酸胺6)PA 6 1.14 0.8-1.5 尼龙6-GR PA 6-GR 1.36-1.65 0.3-1 尼龙6/6 PA 66 1.15 1.2-1.8 尼龙6/6-GR PA66-GR 1.20-1.65 0.5-1.5 尼龙11 PA 11 1.03-1.05 0.5-1.5 尼龙12 PA 12 1.01-1.04 0.5-1.5

常用塑料缩水率表

常用塑料缩水率表 ABS(丙烯腈/丁二烯/苯乙烯)共聚物 0.50% SAN(苯乙烯-丙烯腈)共聚物 0.40% PC聚碳酸酯 0.60% ABS+SAN(丙烯腈/丁二烯/苯乙烯)共聚物+ (苯乙烯-丙烯腈)共聚物 0.40% PVC 2.00% POM聚甲醛 1.70% PP聚丙烯 1.60% PMMA聚甲基丙烯酸甲酯 0.50% HDPE高密度聚乙烯(低压) 2.00% LDPE低密度聚乙烯(高压) 2.00% GPPS普通聚苯乙烯 0.50% PBT聚对苯二甲酸丁二酯 1.70% PET聚对苯二甲酸乙二酯 1.70% 尼龙6(PA6) 1.20% 尼龙66(PA66) 1.50% 尼龙1010(PA1010)

1.50% EV A(乙烯-醋酸乙烯)共聚物 2.00% 塑料的收缩率是指塑料制件在成型温度下尺寸与从模具中取出冷却至室温后尺寸之差的百 分比。它反映的是塑料制件从模具中取出冷却后尺寸缩减的程度。影响塑料收缩率的因素有:塑料品种、成型条件、模具结构等。不同的高分子材料的收缩率各不相同。其次塑料的收缩率还与塑件的形状、内部结构的复杂程度、是否有嵌件等有很大的关系。常用塑料收缩率如下: PE:1.2~1.28% PP:1.2~2.5% PVC(硬质):0.4~0.7% PVC(软质):1.0~5.0% PS:0.3~0.6% ABS:0.4~0.7% ABS(加玻纤):0.2~0.4% PC:0.6~0.8% PMMA:0.3~0.7% POM:1.8~3.0% PET:1.2~2.0% PPO:0.5~0.9% PPS:1% PEEK:1.2%

常用塑胶材料特性大全

常用塑胶材料的特性及使用范围 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本 ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子模具设计 1.排气

为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。 圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 二、聚乙烯(PE) 优点: 1、柔软、无毒、透明易染色. 2、耐冲击、耐药品,绝缘性佳。 缺点: 1、不易押出、不易贴合 2、热膨胀系数高 4、耐温性差 用途: HDPE主要用于具有一定硬度和韧性的场合,如水管、燃气管,工业用化学容器、重包装袋和购物袋、洗发水瓶等。 LDP E绝缘体、胶管、胶布、胶膜、农用薄膜 最小壁厚0.5mm(LDPE),0.9mm(HDPE)(0.5-7.6mm一般1.6mm) 收缩率:HDPE 1.5%-3.5%取2% LDPE 1.5%-3%取1.5% 三、聚丙烯(PP) 优点: 1.半透明、刚硬有韧性.抗弯强度高,抗疲劳、抗应力开裂 2.质轻,无毒、无味,耐高温、绝缘性佳。(0.9G/cm3) 缺点 1、在0℃以下易变脆,不易接合;

塑料缩水率表

塑料缩水率表 简 称 全 名 密度 (g/cm) 缩小率 熔融温度 (℃) 模具温度 (℃) 射出压力 (Mpa) *145=PSI 射出速度 性质 ASA Acrylonitrile-Styrene-Acrylate 1.07 0.4~0.6 230~260 40~90 - - 非 结 晶 性 塑 胶 ABS Acrylonitrile-Butadiene-Styrene 1~1.2 0.5~0.6 195~240 38~93 120~140 平、慢 HIPS 耐冲击聚笨乙烯 1~1.1 0.4~0.7 180~280 10~85 100~200 快 PAI Polyamide-imide 1.4~1.6 0.1~0.2 305~370 205~200 160~200 快 PAS Polyaryl-Sulfone 1.36 0.6 340~370 120~155 138~200 PC Polycarbonate 1.2~1.5 0.4~0.7 270~325 80~110 138~200 快 PEI Polyether-imide 1.3~1.5 0.5~0.7 340~425 65~175 100~160 中等、快 PES Polyether-Sulfones 1.2~1.6 0.3~0.6 340~380 140~160 160~200 快 PETG PET (copolymer) 1.2~1.3 190~275 20~30 80~100 慢、快 PMMA Polymethy-methacrylate (acrylic) 1.1~1.2 0.4~0.8 200~260 38~60 100~200 各种 Polyester Thermoplastic Polyester 1.3 1.5~1.8 230~260 40~100 80~100 慢、平 PPO Polyphenylene-oxide 1.1~1.2 0.2~0.7 250~315 82~110 120~180 快 PS Polystyrene 1.0~1.1 0.4~0.7 180~280 10~85 100~200 快 PSU Polysulfone 1.2~1.6 0.7 310~400 100~170 慢 PVC Polyvinyl-Chloride 1.2~1.4 0.2~0.5 180~204 20~40 70~140 慢、中等 SAN Styrene-acrylonitrile 1.1~1.3 0.3~0.7 220~270 5~60 35~140 TPOR Thermoplastic Polyurethane 1.2~1.3 0.8~2 190~220 30~65 70~140 强化塑料 之填充材 在塑料材料中填加一些强化材,可提高强度、耐热性而且成形之收缩变少。强化材几乎都是纤维。 其中玻璃纤维 (Glass Fiber) 最多,其次为炭纤维 (Carbon Fiber)、Whisker 等。 1. 玻璃纤维:为一般纤维化玻璃称为E 玻璃,这些纤维的粗度为10~13μm 。由纤维之制程产生的分子配向愈细愈强,具有超过钢琴线的抗张力 (E 玻璃之抗张力为250kgf/mm 2)。为了使此纤维相缠,介于塑料之中,有助于补强,需要某种程度的纤维长度,但是在利用射出成形机的成形,因利用螺杆揉捏,长的纤维被切断,一般长度为0.5mm 。利用射出成形机之热可塑性塑料为PA 、PC 、POM 、 PSF 、PPE 、AS 、PP 等,玻璃纤维和其基本之塑料 (MATRIX) 的亲和性不佳时,因纤维脱离母料,失去 补强效果。总之,是纤维和母料表面之粘接性的问题。玻璃纤维之充填率一般为10~30%,充填率20%时,抗拉强度变成约2倍,耐热性也稍提高,耐冲击性也常变佳,但是几乎不伸长,将其称为强化热可塑性塑料。 2. 炭纤维:炭纤维利用原料和制法的差异可得到宽广的性质,但是在塑料之强化材上使用强化构造用的高强度品。和玻璃纤维相比,也在抗拉强度和弹性系数上取胜,潜变也少,膨胀系数也小,导电性优异,而且耐热性高,唯一的缺点是价格很贵。因此,只用于部份的运动用品、机械零件。

塑胶材料收缩率简表

成型加工温度,模具温度及射出成型过程的一般塑胶收缩率 材料标称密度玻璃纤维含量平均比热加工温度模具温度收缩率 [g/cm3] [%] [KJ/(kg x K)] [℃] [℃] [%] 聚苯乙烯PS 1.05 1.3 180-280 10 0.3-0.6 聚苯乙烯,中.高冲击性HI-PS 1.05 1.21 170-260 5-75 0.5-0.6 聚苯乙烯-丙烯晴SAN 1.08 1.3 180-270 50-80 0.5-0.7 丙烯晴-丁二烯-苯乙烯ABS 1.06 1.4 210-275 50-90 0.4-0.7 苯烯晴-苯乙烯-丙烯酸ASA 1.07 1.3 230-260 40-90 0.4-0.6 低密度聚乙烯LDPE 0.954 2.0-2.1 160-260 50-70 1.5-5.0 高密度聚乙烯HDPE 0.92 2.3-2.5 260-300 30-70 1.5-3.0 聚丙烯PP 0.915 0.84-2.5 250-270 50-75 1.0-2.5 聚本烯-GR PPGR 1.15 30 1.1-1.35 260-280 50-80 0.5-1.2 聚甲基戊烯PMP 0.83 280-310 70 1.5-3.0 软质聚氯乙烯PVC-soft 1.38 0.85 170-200 15-50 >0.5 硬质聚氯乙烯PVC-rigid 1.38 0.83-0.92 180-210 30-50 0.5 聚氟亚乙烯PVDF 1.2 250-270 90-100 3.0-6.0 聚四氟乙烯PTFE 2.12-2.17 0.12 320-360 200-230 3.5-6.0 聚甲基丙烯酸甲脂(丙烯)PMMA 1.18 1.46 210-240 50-70 0.1-0.8 聚氧甲烯(乙缩烯)POM 1.42 1.47-1.5 200-210 >90 1.9-2.3 聚苯撑氧或聚氧化亚苯PPO 1.06 1.45 250-300 80-100 0.5-0.7 聚苯撑氧-GR P PO-GR 1.27 30 1.3 280-300 80-100 <0.7 醋酸纤维素CA 1.27-1.3 1.3-1.7 180-320 50-80 0.5 醋酸-丁酸纤维素CAB 1.17-1.22 1.3-1.7 180-230 50-80 0.5 丙酸纤维表素CP 1.19-1.23 1.7 180-230 50-80 0.5 聚碳酸醋PC 1.2 1.3 280-320 80-100 0.8 聚碳酸脂-GR P C-GR 1.42 10-32 1.1 300-330 100-120 0.15-0.55 聚乙烯对苯二甲酸乙酯PET 1.37 260-290 140 1.2-2.0 聚乙烯对苯二甲酸乙酯-GR PET-GR 1.5-1.57 20-30 260-290 140 1.2-2.0 聚丁烯对苯二酸PBT 1.3 240-260 60-80 1.5-2.5 聚丁烯对苯二酸-GR PBT-GR 1.52-1.57 30-50 250-270 60-80 0.3-1.2 尼龙6(聚酸胺6)PA 6 1.14 1.8 240-260 70-120 0.5-2.2 尼龙6-GR PA 6-GR 1.36-1.65 30-50 1.26-1.7 270-290 70-120 0.3-1 尼龙6/6 PA 66 1.15 1.7 260-290 70-120 0.5-2.5 尼龙6/6-GR PA66-GR 1.20-1.65 30-50 1.4 280-310 70-120 0.5-1.5 尼龙11 PA 11 1.03-1.05 2.4 210-250 40-80 0.5-1.5 尼龙12 PA 12 1.01-1.04 1.2 210-250 40-80 0.5-1.5 聚醚矾PSO 1.37 310-390 100-160 0.7 聚硫化亚苯PPS 1.64 40 370 >150 0.2 热塑性聚亚胺脂PUR 1.2 1.85 195-230 20-40 0.9 酚甲醛树脂(GP) PF 1.4 1.3 60-80 170-190 1.2 三聚氰胺甲醛(GP)MF 1.5 1.3 70-80 150-165 1.2-2 三聚氰胺酚甲醛MPF 1.6 1.1 60-80 160-180 0.8-1.8 聚脂树脂UP 2.0-2.1 0.9 40-60 150-170 0.5-0.8 环氧树脂EP 1.9 30-80 1.7-1.9 ca.70 160-170 0.2 a 注意与流动方向及横向的不同收缩率,制程影响。 b 共聚物

常用材料性能及收缩率

丙稀晴-丁二烯-苯乙烯(ABS工程塑料) 工艺简单、光泽度好、易于上色,相对其他热塑性塑料来说成本较低。 它的主要物理特性是:坚硬、牢固。树脂等级的ASS能像人造橡胶(或橡胶)一样具有弯曲性能。其中,聚丁二烯提供很好的抗压强度,非结晶苯乙烯热塑性塑料使ABS的加工工艺更为简单(在模具中更易流动),而丙烯腈则增加了ABS的牢度、硬度与抗腐蚀性。有效控制这3种成分使设计师能根据最终产品的需要设计其弹性程度。可能也正因为这一点,ABS 能广泛地应用于家用产品与白色产品之中。尽管它不像其他工程聚合物那样坚韧,但它能有效控制成本。 ABS HFA700HF,ABSPA-766,ABS AF-305都为高温防火型,很多会发热的电器都用它做外壳价格较高,但符合安规。 ABS的吸水性大,而且透光性差,对用于双色成型、电镀来说是非常好的材料,在小家电这一块中,外壳采用ABS材料的相当高.(收缩小,不易变形,中强度带韧性的材料) 缺陷:耐紫外线性能不好 ABS塑料 化学名称:丙烯腈-丁二烯-苯乙烯共聚物 英文名称:Acrylonitrile Butadiene Styrene 比重:1.05克/立方厘米成型收缩率:0.4-0.7% 成型温度:200-240℃干燥条件:80-90℃2小时 特点: 1、综合性能较好,冲击强度较高,化学稳定性,电性能良好. 2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理. 3、有高抗冲、高耐热、阻燃、增强、透明等级别。

4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。 用途:适于制作一般机械零件,减磨耐磨零件,传动零件和电讯零件. 成型特性: 1.无定形料,流动性中等,吸湿大,必须充分干燥,表面要求光泽的塑件须长时间预热干燥80-90度,3小时. 2.宜取高料温,高模温,但料温过高易分解(分解温度为>270度).对精度较高的塑件,模温宜取50-60度,对高光泽.耐热塑件,模温宜取60-80度. 3、如需解决夹水纹,需提高材料的流动性,采取高料温、高模温,或者改变入水位等方法。 4、如成形耐热级或阻燃级材料,生产3-7天后模具表面会残存塑料分解物,导致模具表面发亮,需对模具及时进行清理,同时模具表面需增加排气位置。 ABS树脂是目前产量最大,应用最广泛的聚合物,它将PS,SAN,BS的各种性能有机地统一起来,兼具韧,硬,刚相均衡的优良力学性能。ABS是丙烯腈、丁二烯和苯乙烯的三元共聚物,A代表丙烯腈,B代表丁二烯,S代表苯乙烯。 ABS工程塑料一般是不透明的,外观呈浅象牙色、无毒、无味,兼有韧、硬、刚的特性,燃烧缓慢,火焰呈黄色,有黑烟,燃烧后塑料软化、烧焦,发出特殊的肉桂气味,但无熔融滴落现象。 ABS工程塑料具有优良的综合性能,有极好的冲击强度、尺寸稳定性好、电性能、耐磨性、抗化学药品性、染色性,成型加工和机械加工较好。ABS树脂耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。 ABS工程塑料的缺点:热变形温度较低,可燃,耐候性较差。

基于强度折减概念的滑坡稳定性三维分析方法_I_滑带土抗剪强度参数反演分析

2003年12月 Rock and Soil Mechanics Dec. 2003 收稿日期:2002-04-25 基金项目:国家自然科学基金项目(编号:50279051),国家重点基础研究发展规划项目(编号:2002CB412702)和中科院武汉岩土力学研究所领域前沿 基金项目(编号:Q110215)资助。 作者简介:邓建辉,男,1965年生,博士,研究员,现主要从事滑坡灾害机制及其预测控制技术研究工作。 文章编号:1000-7598-(2003) 06―0896―05 基于强度折减概念的滑坡稳定性三维分析方法(I): 滑带土抗剪强度参数反演分析 邓建辉,魏进兵,闵 弘  (中国科学院武汉岩土力学研究所 岩土力学重点实验室, 湖北 武汉 430071) 摘 要:滑带土抗剪强度是滑坡稳定性分析和防治工程设计中十分重要而又难于确定的参数之一。因此,基于临界状态假定的二维反分析方法得到了广泛应用。但是,自然界发生的滑坡基本上呈三维形态,其主滑方向有时变化也较大,使得有必要研究一种滑带土抗剪强度的三维反分析方法和滑坡稳定性的三维评价方法。笔者建议了一种基于强度折减概念的滑带土抗剪强度反分析方法,即通过逐步折减滑动面的强度参数,使滑动面的塑性区完全贯通,此时,塌滑体处于极限状态,所用强度参数即为滑带土的平均抗剪强度参数。从洪家渡水电站1#塌滑体计算成果来看,反演的滑带土摩擦角较二维反演值低4.1°,反映了滑坡体的三维效应,验证了所建议方法的可行性。 关 键 词:滑坡;滑带土;抗剪强度;反分析;强度折减法 中图分类号:TU 457 文献标识码:A 3D stability analysis of landslides based on strength reduction (I): Back analysis for the shear strength of slip soils DENG Jian-hui, WEI Jin-bin, MIN Hong ( Key Laboratory of Rock and Soil Mechanics, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China ) Abstract: The shear strength of slip soils is one of the prominent, but hard to be determined parameter in the stability analysis and control design of landslides, so 2-dimensional back analysis method is extensively used, which is based on the critical state assumption of slides. However, basically all the landslides are 3 dimensional in shape, and their major sliding direction changes drastically in some cases, thus making it necessary to develop a method for the 3D back analysis of slip soil strength and for the 3D stability analysis of the slide. A back analysis method, which is based on the strength reduction technique, is proposed. That is, the shear strength is obtained by gradually reducing the strength parameters to make the whole slip surface into plastic state (critical state). A case history, the No.1 landslide of Hongjiadu Hydroelectric Project, is examined by the method, with back-analyzed friction angle 4.1° lower than that from 2D analysis. 3D effect of the landslide is demonstrated and the method is thus proved feasible. Key words: landslide; slip soil; shear strength; back analysis; strength reduction technique 1 前 言 滑带土的抗剪强度是滑坡稳定性分析和防治工程设计中十分重要而又难于确定的参数之一,其取值方法大致有三类[1]:一是根据现场及室内试验资料,结合滑带土的地质条件和物理特征选取;二是根据滑带土强度参数和物理性质的经验关系进行估算;三是假定滑坡体的状态,利用极限平衡法进行 抗剪强度反演。滑带土一般为碎石土,即使是取原状样进行室内直剪或三轴剪切试验,由于试样尺寸较小,试验结果也不具代表性。较为可靠的方法是直接使用现场大型直剪试验成果[2]。但应指出,直剪试验也存在受力不均匀,难以测量剪切面的孔隙水压力变化过程,现场加载过程无法进行伺服控制,试验经费较高等缺陷,以致大量的勘察报告没有提供这类试验成果,或者试验成果的离散性较大,从

塑料和产品收缩率

塑料名称:PCTA 实际开模缩水率:0.003 开模产品类型:化装品 塑料名称:PETG 实际开模缩水率:0.004 开模产品类型:化装品 塑料名称:AS 实际开模缩水率:0.005 开模产品类型:化装品 PBT+30%GF 实际开模缩水率:0.004 保安器上下盖,支架 塑料名称:ABS 实际开模缩水率:5/1000 开模产品类型:电器外壳 塑料名称:PP 实际开模缩水率:16/1000 开模产品类型:餐具 塑料名称:POM 实际开模缩水率:16/1000 开模产品类型:胶轮 塑料名称:PC 实际开模缩水率:8/1000 开模产品类型:手机水晶壳 塑料名称:PA6 实际开模缩水率:0.020 开模产品类型:闭锁器摇臂 塑料名称:TPR 实际开模缩水率:0.015 开模产品类型:车仔轮胎

看来这里面多数是做壳子类的高温阻燃材料用得极少塑料名称:LCP 实际开模缩水率:1.5~2/%0 开模产品类型:连接器 塑料名称:PA6T 实际开模缩水率:3~5/%0 开模产品类型:连接器 塑料名称:PA9T 实际开模缩水率:3~5/%0 开模产品类型:连接器 塑料名称:PC940 实际开模缩水率:8/%0 开模产品类型:各式插头座外壳 塑料名称:NTF FR52 实际开模缩水率:3~5/%0 开模产品类型:连接器 塑料名称:pom 实际开模缩水率:0.018 开模产品类型:遥控-开关-支架== 塑料名称:POM M90-44 实际开模缩水率:0.018 开模产品类型:小齿轮 塑料名称:POM TR-20 实际开模缩水率:0.015 开模产品类型:机芯 塑料名称:TPR 实际开模缩水率:0.012 开模产品类型:软胶 塑料名称:PPS+30%GF 实际开模缩水率:0.0045 开模产品类型:测距仪机芯

常用光学塑料性能

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响

日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定

相关主题
文本预览
相关文档 最新文档