当前位置:文档之家› 公路桥梁抗风设计规范.ashx

公路桥梁抗风设计规范.ashx

公路桥梁抗风设计规范.ashx
公路桥梁抗风设计规范.ashx

ISBN7—5608—2212—6/Ⅲ?377第十四届全国桥梁学术会议论文集

2000.11.5~7南京

《公路桥梁抗风设计规范》概要

及大跨桥梁的抗风对策

项海帆陈艾荣

(同济大学)

【摘要】随着我国桥集工程的不断发展.迫切需要精帝|适合我国国情的(公路桥梁抗风设计规范)。本文介绍了{莪规范螭翩中的几个主要问题,其中包括基本风速图和风压圈、风衙藏的表达方式、桥檗动力稳定性检验和风洞试验要求等.此外。还讨论了太跨桥集成桥和施工阶段的各种抗风对策。

关键词惭粱抗风设计规范

:碴鹂.

一、撅述…

1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。

1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大跨桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表l所示。

表1<公路桥梁抗风设计规范>专曩的内窖以最报批稿的目曩

专题内容规葩目录1全国基本风建圈和基本风压圈的绘制;第一章总用

2.斛拉桥和慧索桥的基顿的近似公式;第二章基本术语与基本符号

3.桥架的辱敢静阵风荷羲研究;第三章风建计算

4.斜拉桥和怎索侨的阻尼比研究;第四章风荷载计算

5.风参数的合理取值研究;第五章桥檠的动力特性

6.鼻塑桥梁断面的气曲参敷铡定第六章抗风稳定性验算

第七章风致限幅振动

第八章风洞试验要求

第九章风致振动控制

附录

40

本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风嗣试验要求等。

二、全国基本风速图和风压图

基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10rain平均年最大风速。

本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求.致使风速记录明显受人为因素的影响而偏小。本次研究,对其部分计算结果参照周围台站的情况予以适当的修正。与此同时,参照国内其他的规范确定基本风压的下限值1130年一遇为0.35kN/m2,50年一遇为0.30kN脯,10年一遇为0.20kN脯,相应的基本风速下限分别为,24m/s,22m/s和18m/s。全国基本风压图和风速图有如下特点:

1.东南沿海为我国大陆上的最大风压区。风压等值线太致与海岸平行,风压从沿海向内陆递减很快,到达离海岸50km处的风速约为海边风速的75%,到100kin处则仅为50%左右.这和造成这一地区大风的主要天气系统——台风有关。在这一区域内,大致有三个特大风压带,即湛江以南至海南沿海地区、广东沿海地区以及浙江到福建省中部沿海地带,百年一遇风压在0.90kN/m2(38m/s)以上。由于台湾岛对台风屏障作用,福建南部的风压有所减弱。

2.西北至华北北部和东北中部为我国大陆上风压的次大区。这一地区的大风主要与西伯利亚寒流引起强冷空气活动有关,等风压线梯度由北向南递减。

3.青藏高原为风压较大区。这一地区大风主要是因海拔高度较高所造成的。但该区空气密度较小,因此,虽然风速很大,但所形成的风压相对较小。从风压图和风速图的对比中可以反映出这一特点。

4.云贵高原、长江中游以及南丘陵山区风压较小,特别是在四川中部、贵州、湘西和鄂西为我国风压最小的区域。大部分地区风压在0.4kN/mz(25m/s)以下。

5.台湾、海南岛和南海诸岛的风压各自独立成区,台湾是我国风压最大的地区。据分析,其东部沿海风压可达1.75kN/m2(52m/s)以上;海南岛的西、北、东部沿海风压约为0.9kN耐(40m/s)。西沙群岛受南海台风的影响,百年一遇风压达1.80kN/mz(54m/s)。南海其余诸岛的风压略小于西沙。

新版风压分布图在总体上没有改变原全国风压分布的总格局,有降低的,也有提高的,但应该说更趋合理。且此次计算台站数大大超过以往任何一次的分析,资料年限一般均达到30~35年,代表了当前气候背景值。

对重要的大跨径桥梁,宜设立临时桥址风速观测站,观测时段不宜少于1年。由所获得的短期风速资料推求年极值风速,并据此建立与附近气象台站的相关关系。

三、风荷载

桥梁是处于大气边界层内的结构物,由于受到地理位置、地形条件、地面粗糙程度、离地

41

面(或水面)高度、外部温度变化等诸多因素的影响,作用于桥梁结构上的风荷载是随时间和空间不断变化的。从工程抗风设计的角度考虑,可以把自然风分解为不随时间变化的平均风和随时间变化的脉动风的叠加,分别确定它们对桥梁结构的作用。

对于桥梁结构来说,风荷载一般由三部分组成:一是平均风的作用;二是脉动风背景作用;三是由脉动风诱发结构抖振而产生的惯性力作用,它是脉动风谱和结构频率相近部分发生的共振响应。在本规范中将平均风作用和脉动风的背景作用两部分合并,总的响应和平均风响应之比称为等效静阵风系数G。,它是和地面粗糙程度、离地面(或水面)高度以及水平加载长度相关的系数。

为了便于理解新规范中有关风荷载的条文,我们列出了国内外规范中有关风荷载的规定,供参考。

1.在我国1987年的设计规范中,定义横向设计风压为:

w=Kl?K2?K3?K4?%(1)

其中:W。=i之【盔,为基本风压,是基于基本风速得到的。在该规范中基本风速定义为平坦开阔地面离地面20m高度处,100年重现期的10rain平均最大风速;K.为表征桥梁重要程度的重现期系数;K。为风载体型系数;K,为风压高度变化系数;K。为地形、地理条件系数。

该公式仅仅考虑了平均风的静力作用,没有考虑脉动风的背景响应和结构的振动惯性力的影响,是偏于不安全的。

2.日本《道路桥抗风设计便览》适用于跨径小于200m的桥梁。其设计风速和设计风荷载定义为:

uj=ElUloP:告PU:CNA。(2)(3)

其中:P为空气密度;E,为高度及地表粗糙度修正系数;co为桥面阻力系数;A。为桥梁顺风向投影面积;G=l_9,为阵风响应系数,是一个常数。

在上式中。引人了阵风响应系数,体现了风的紊流成分的影响,但没有考虑风的空间相关,对跨径小于200m的桥梁是可以适用的。

3.在日本《本州四国联培桥抗风设计指南》中,大跨度桥梁的设计风速和设计风荷载分别表达为:

%=Ulo?v1?v2岛=告Pu;。。c一。(4)(5)

其中:v1为高度修正系数;u2为水平长度阵风修正系数;v4为动力效应风载修正系数;其余参数意义同上。该式反映了园考虑风的水平相关使风荷载的脉动影响随跨长增加的折减效应。

4.英国BS5400规范也采用等效静阵风荷载的概念,设计风速取为最大阵风风速,其风速与设计风荷载分别表达为:

%=U10‘K1?SI‘S2(6)

乃={Pu:c矿。(7)42

其中:K1为重现期系数;S.为穿谷系数;S2为阵风系数,该系数考虑了水平长度折减。

5.在本次编写的抗风规范中,对横桥向风作用下顺风向的风荷载,将作用在桥墩(塔)、主缆、斜拉索上的风荷载和作用在主粱上的风荷载分开处理。除主梁外,作用在桥梁各构件单位长度上的风荷载可根据各构件不同基准高度上的等效静阵风荷载按下式计算:

Pg2%CoA。(8)式中:只为等效静阵风荷载(N/m);P为空气密度,一般取P=1.225kg/m3;CD为桥梁各构件的阻力系数;A。为桥梁各构件顺风向单位长度上的投影面积(m2),q,=Pv2,/2=0.613《,为各构件基准高度处的等效静阵风风压(N/m2);等效静阵风风速E=GvVz。分析表明地表粗糙度和水平加载长度对等效静阵风系数较敏感,而高度和平均风速的大小的影响却不太。在新的规范中建议的G。值采用基本风速为40m/s,桥面高度为40m,水平相关系数偏安全地取为7。时距为1--3s时的计算结果,如表2所示。

表2等效静阵风系数6。取值

地表水平加载长度(m)

类别<206010020030040050065080010001200150018002100ll291.281261241.2312212l1201191.181171161.161.15Ⅱ135I.331311291.271261.25124123l221.211.201.191.18Ⅲ1491.481451411.39I371.361.341.33I311301.29I.271.26Ⅳ156I.541511.471.441.421.411391.371.351341.321.311.30

作用在主梁上的横桥向风荷载,除考虑等效静阵风荷载外,还应考虑由于抖振响应引起的惯性荷载,横向力可按下式计算:

11

PH=寺PV≯一+只(9)

式中:PH为横向力(N/m);c0为主梁体轴下横向力系数;D为主梁的高度(m)。Pa为因抖振所产生的结构惯性动力风荷载;当桥梁跨径小于200m时,可忽略因抖振所产生的结构惯性动力风荷载;对于跨径大于200m的桥梁,若判定其对风的动力作用敏感,则应通过风洞试验取得必要的参数,然后由抖振分析得到结构惯性动力风荷载。

跨径小于200m的桥梁可以不考虑竖向和扭转力矩的作用。跨径太于200m的桥梁,特别是悬臂施工中的大跨桥梁的竖向力和扭转力矩宜根据风洞试验和详细的抖振响应分析得到。

四、颤振稳定性和静风稳定性

大跨度桥梁在风荷载的静力作用下有可能发生因升力矩过大而发生扭转发散,或因顺风向的阻力过大而引起横向屈陆这两种静力失稳。桥梁在风的作用下还有可能发生一种自激振动,风的能量的不断输入使振幅逐渐加大。根据断面的不同形状,这种发散性的振动可以是弯曲型的驰振、扭转型的颤振或弯扭耦台型的颤振,统称为动力失稳。静力失稳和动力失稳的临界风速的较低者将控制大跨度桥梁的抗风安全。

静力失稳和动力失稳两者都是危险性的,都必须在桥梁设计时加以避免。此次规范除对颤振稳定性和驰振稳定性作了规定外,还对桥梁的横向静力稳定性和静力扭转发散作了规定。本文将主要介绍有关颤振稳定性检算的方法。

43

桥梁的颤振检验风速按下式确定:

[%]_K’产r‘K(12)式中:[v。]为颤振检验风速(m/s);K为设计基准风速(m/s);K为考虑风洞试验误差及设计、施工中不确定因素的综合安全系数,一般可取K=1,2n~为考虑风速脉动影响及水平相关特性的无量纲修正系数。根据不同的地表粗糙类别,按表3取值:

裹3修正系数~IN取tl

\\J畴径(m

1002003加400500650800100012∞15001800

螬毒卷劓\、

A1.301127l251.241231221.21120l20119118B1361331301.291船l271.261251.2412212lC1431391371.35133l311301281.27125l24D

149144142l401381.361351331.311291281

在风攻角一3。≤a≤+3。范围内,颤振临界风速必须满足以下准则:

V。≥[V。,]1,13)

式中:v。为桥梁颤振临界风速(m/s)。

本条文采用的颤振检验风速的表达式和日本《本州四国联络桥抗风设计指南》以及日本的一些其他桥梁的抗风设计指南在形式上是一样的。由于采用的风谱以及地表粗糙度值有所不同,日本《本州四国联络桥抗风设计指南》给出的颤振检验风速修正系数Ⅳ,的取值比本条文要稍微小一些,但日本的设计基准风速的重现期为150年,其总体的结果与本条文接近。

英国BS5400E规范采用在O。风攻角时的检验风速基于为120年lmin的最大风速值(与10rain间的时距系数为对I类地貌为11),其分项安全系数为:,,R=l_38,7。=1.05,7d=1.1。在±2.5‘,折减系数为0.8。

丹麦大海带桥规定的动力稳定性检验风速采用失效概率为P,<10_7的基准,从而得到在±3‘攻角范围内的颤振检验风速为l5U。

表4给出了按不同设计指南或规范所得到的镇江扬州长江公路大桥南汉悬索桥的颤振检验风速值。可以看出按中国抗风设计规范约高于日本《本四指南》,但低于丹麦大海带桥和英国规范的要求。

裹4不同指南【规范)蛤出的镇江一捅州器素桥的颤振检验风速[V。]比较(m/s

I_攻角奉规范本四指南大海带指南BS5400E

10’5452

5666

l±3’54525653(±25’’

对于跨径大于200m的桥梁,本规范还提出一个颠振稳定性验算的分级规定,即按下式计算颤振稳定性指数0,并根据0所在的范围按表5进行不同要求的颤振稳定性验算:

‘=辫(14)式中:正为一阶扭转频率(}lz);B为桥面全宽(m)。

表5桥梁敲振稳定性指数L和分级

分级If风嗣试验要求及抗风措臆

I<25可以不必进行风洞试验.接近似公式计算临界风速

Ⅱ25~40颤振分析,节段模型风洞试验

Ⅲ40~75节段模型试验、气动选型、膏振分析和全模型试验

详细全面的节段模型试验气动选型.颤振丹析和全娇模型试验,Ⅳ>75

必要时.采用振动控制技术

对于跨径大于200m的桥粱,当其颤振稳定性指数It<2.5时,可按下式十分简便地计算其颤振临界风速:

%=仇?仉?V二(16)其中:V毛22t5√一。(吾)’正’B,一为桥梁与空气的密度比t产2意,对悬索桥应包含缆索的质量;6=B/2,为半桥宽;吼为形状系数,%为攻角效应系数,按表6取用。

裹6形状系数碡和攻角效应磊数%

截面形式形状系数轨攻角效应系数%

~平板1I1

阻尼比

O.帅5001O02

1I钝头形0500.55060O.80Il带撬臂065070O.75070

、/带斜腹板o60070090070<:二二二二>带风嘴070o.70080o.80

—<二二二二二二>一带导流080080o80o.80

r———————1开口板桨0.35o40O50o85

五、施工阶段的抗风对策

在大跨度斜拉桥或悬索桥的施工阶段中,结构体系处于不断转换且尚未成型,可能会出现比成桥后更为不利的状态:即刚度较小,变形较大,稳定性较差,甚至发生较大的风致振动响应的情况,其中稳定性问题也十分突出。

一般说来,大跨斜拉桥在最大双悬臂状态和最大单悬臂状态的颤振稳定性比成桥状态要好。在最大双悬臂状态,主要会发生围绕桥塔的桥平面外的水平摆动以及平面内的竖向“翘翘板”振动,在桥塔中产生较大的内力,设置辅助墩或采用临时墩来减小悬臂长度是常用的方法;在最大单悬臂状态,强风作用下主梁的侧向和竖向抖振产生的惯性力较大,若振动不能接受,可以通过设置阻尼器以及临时风缆等方法来抑制振动。

悬索桥在安装初期的结构抗扭刚度主要由主缆提供,其扭转频率随主梁拼装长度的增

45

加而增加。分析和风洞试验表明,当桥面拼装率在10%-40%之阃为最不利的状态,存在一个抗风稳定性的低谷,大跨度悬索桥主粱拼装的抗风低谷应避开大风期。若不能避开,可采用不对称施工方法,即不从中央对称拼装,而是偏离中央一定距离开始拼装主梁,待达到一定长度后再进行对称施工,风洞试验表明该方法可以有救地提高颤振稳定性。

六、大跨桥梁的抗风设计对策

大桥工程的挑战性主要表现在因跨度的超大化所带来的结构非线性、抗风稳定性、施工控制、拉索振动控制,超高桥塔的抗震,以及50m以上的超深水基础和软土锚碇等难题。

1江阴长江大桥和南京长江二桥的建成提供了建造大跨度桥梁的实践经验,使我们树立了自主建设更大跨度的桥梁的信心,但面对超深水基础,千米以上的斜拉桥和2000m以上的悬索桥,我们必须做好充分的技术准备,迎接巨型工程的挑战。

从大桥抗风研究的角度看,对于千米级的斜拉桥如采用斜索面和流线形扁平箱梁的布置已能提供100m/s以上的临界风速,在东南沿海包括香港在内的所有地区都能满足成桥后抗风要求。主要是注意通过临时措施解决施工阶段的抗风问题。

对于刚度相对较小的悬索桥,必须认真地考虑各种改善气动性能的导流措施以便同时解决颤振、涡振、抖振等各类风致振动问题。1500m以上跨度的悬索桥可能还要考虑采用中央开槽的分离箱断面以及增加交叉索形成空间索网等措施以提高结构的刚度和气动性能,满足抗风要求。这也是发达国家为解决世界跨海工程的抗风能力正在研究而尚未实践的课题。如主跨3300m的意大利墨西拿海峡大桥,日本第二国土轴线上主跨2500m的跨海大桥,跨越直布罗陀海峡的多跨3000m的连续悬索桥方案以及印度尼西亚跨海峡的2300m协作体系方案等。

七、结语

我国近年来在桥梁工程方面取得了全世界瞩目的发展,同时也为桥梁抗风的研究提供了机会。在总结全国几十座大跨桥梁的抗风研究基础上,我们编制了我国第一部《公路桥梁抗风设计规范》,该规范的问世将为桥梁工程师在桥梁抗风设计方面提供依据。我们真诚希望桥梁工程师在使用该规范中发现的问题随时反馈给编写部门,并给研究部门提供更多的合作机会进行大跨桥梁方面的抗风研究,以便积累经验,使这一规范不断完善,为我国的大桥建设作出贡献。

参考文献

[1]项海帆等.公路桥粱抗风设计指南.人民交通出版社,1996

【2]本州四国联络桥公团.明石海峡大桥耐风设计要领{案)。同解说.1988年3月

[3]日车道路协会道路桥耐风设计便览1991年3月

[4]Bs5400,Steel,Cdxa'eteandCompositeBd电∞.Part2.Specificationforlo^ds,1978

[s]陈艾荣。黄晨。项海帆.挢集阵风风速系数研究同挤大学学报,Vol26.No.3.1998

[6】陈蓝荣,黄■,项悔帆挢集■振检验风速系数修正系敷研究.公路1996年12月

[7]ESimiu.RobertH.Seanlan,刘尚培,项海帆,谢霁明译.风对结构的作用一风工程导论.同济太学出版杜,1986[8]cl∞Dyrbye、SvendOle盹m%,WindLoadscoaSmaetur8JohnwiIq&SofaLtd.1997.

[9]Ynmm、HK删、YUenmtsu、H.iaruhwa、K.Fujii、Y.TaniiIce,Windload捌windindueedrespon*estima一

【舢intheR删tkmsforLoadson蹦¨ngs,AU1993,Ensineerln8Smmmr巴,VM18,No6.PP399—411,199646

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策作者:项海帆, 陈艾荣

作者单位:同济大学

本文链接:https://www.doczj.com/doc/0016591874.html,/Conference_111193.aspx

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

现代化公路桥梁设计的创新理念

现代化公路桥梁设计的创新理念 发表时间:2019-06-20T11:42:16.230Z 来源:《建筑学研究前沿》2019年4期作者:吴涛 [导读] 城市基础设施建设在不断完善,公路桥梁的设计建设不但要达到城市化的功能需要,同时还应该顺应时代的发展。 安徽省交通规划设计研究总院股份有限公司安徽枞阳 246700 摘要:公路桥梁是现代建筑工程的重点项目,它在人类的日常生活中起着十分重要的作用。随着国民生活水平的不断提高,对于交通基础设施的质量要求也越来越高,传统的公路桥梁设计方案已经无法满足现代社会的实际运输需求。接下来,论文将探析现代化公路桥梁设计的创新理念,以期促进我国基础设施工程的创新发展。 关键词:公路桥梁;设计内容;理念创新 引言 城市基础设施建设在不断完善,公路桥梁的设计建设不但要达到城市化的功能需要,同时还应该顺应时代的发展。所以很多新型的设计理念不断在实际项目中得以运用,下面将重点对当前的公路桥梁设计中新理念的应用展开分析和研究。 1现代化公路桥梁设计相关内容综述 1.1现代化公路桥梁设计理念分解 公路桥梁是现代建筑工程的重要组成部分,它在现代化交通运输体系中扮演着至关重要的角色。与传统设计理念相比,现代化公路桥梁设计的水平得到显著的提升,它不仅可以满足人们的审美需求,还能为人们提供更加多样化的服务。设计人员可以结合建筑地的实际情况,将设计理念与周边的环境相融合,达到更加良好的设计效果。 近年来,我国建筑行业取得了突飞猛进的发展,设计理念也在不断丰富,传统的公路桥梁设计已经无法满足当今社会的建筑需求,现代化公路桥梁设计应当以环保为主要前提,以功能性为依据,不断地提高桥梁整体质量,创建出具有中国特色风格的设计作品。设计人员在开展设计工作前,需要综合考察建筑地周边的环境,必须保证桥梁与周边的环境相吻合,采用高科技环保材料,重视对各项数据的计算,树立起科学的设计理念,进而使桥梁的性能得到显著的提高,为人们的外出通行创造良好的条件。 1.2开展现代化公路桥梁设计的必要性 近年来,我国交通运输事业得到飞快的发展,各区域间的往来越来越频繁,交通基础设施的运输负担不断增大。在公路桥梁的设计实践当中,设计人员往往将重心放在桥梁本身的强度上,而忽略了其耐久性问题,致使桥梁无法达到建筑工程的刚性需求,也无法产生良好的设计效果。公路桥梁进入到使用阶段后,各种大大小小的安全问题随之出现,桥梁很容易受到周边环境及地质灾害等影响,致使后续的维修工程明显增加,为工程项目带来不必要的负担。对此,设计人员应当创新思想,结合不同区域的环境及地质情况,开展现代化设计工作,不断地总结设计经验,充分地掌握影响桥梁安全性与功能性的因素,在此基础上做出科学可行的设计方案,使公路桥梁的质量真正地得到保障。 1.3影响我国公路桥梁设计安全性的因素 目前,影响我国公路桥梁安全性的主要因素为施工技术问题。施工选择的技术方案可行性不够或者施工设备的使用不当,都会影响公路桥梁的总体质量。由于施工人员没有按照国家规定的施工规范开展施工工作,致使许多工程在竣工后都会出现裂缝、移位等问题,为工程项目带来巨大的经济损失。 路桥施工是一个复杂且系统的过程,不同施工阶段需要设置不同的重点规划项目,还需要合理地安排设计时间。但在一些地势情况较为复杂的工程项目当中,由于设计人员并没有对设计方案进行可行性评估,致使后续的施工受到严重的阻碍,使项目最终留下诸多地安全隐患。 此外,除设计与技术问题外,维护工作的缺失也是影响路桥工程质量的关键因素。由于公路桥梁本身具有特殊性,因此需要设计人员采取一定的科学手段,对桥梁进行精细化的维护。如果人员对维护工作不予重视,致使前期维护工作不到位,各项施工都无法达到参数标准,最终导致桥梁损坏。对此,设计人员应制定科学的养护方案,并安排专人开展施工现场监督工作,以实现对施工过程的全方位、动态化维护。 2公路桥梁设计关键性要求 从当前公路桥梁的设计发展历史分析,在最初阶段中,主要体现的是粗犷型的设计,随着人类社会的不断发展和进步,公路桥梁的设计也在逐步的探索发现,已经发生了巨大的改观,具体从以下方面加以突显。 2.1设计基础 公路桥梁的设计理念要体现出精细化的要求,当前很多工程的设计标准要求过高,反而失去了设计的初衷。 2.2成本价值 公路桥梁在设计过程中,首先要保证的是整体工程的质量,同时还应该控制工程的成本,这是提高工程经济效益的关键。 2.3设计环境 在公路桥梁设计中,应该深入了解当前公路桥梁建设施工所在地区的地质条件、影响设计的因素以及周边地理环境所带来的影响,从而确保施工顺利进行。 2.4功能要求 公路桥梁的设计都要从当地的发展趋势方面入手,要以政府的发展需要为导向,还应该考虑到当地的人文历史环境,体现出功能性的具体需要。 2.5实施技术 公路桥梁的设计到实施主要包含了下面两个方面,其一是设计人员要具备非常专业的技术知识,从专业结构设计以及结构数据分析,同时还应该具备较强的审美观;其二是设计人员应该非常清晰的了解设计方案,同时也要具备非常强的专业技术和责任感。

公路桥梁抗风设计规范

公路桥梁抗风设计规范 一、背景情况 《公路桥涵设计通用规范》(JTG D60-2015,以下简称《通规》)明确了桥梁抗船撞的设计原则,规定了IV~Ⅶ内河航道和通航海轮航道的船撞力设计值,是当前公路桥梁抗船撞设计的基本原则和统一标准。近年来,通航船舶呈现出吨位大、航速快的发展趋势,随着我国在建和拟建跨越航道桥梁的不断增多,保障桥梁结构在船舶撞击下的安全十分重要。为进一步保障在船舶撞击下的桥梁安全,完善细化桥梁抗船撞设计,在设计中综合考虑和体现船舶通航密度、船桥撞击概率、风险综合防控、桥墩抗撞性能等系统性和精细化设计要求,交通运输部组织完成了《规范》的制订工作。 二、《规范》的定位 《规范》为桥梁抗船撞设计提供可行或具体技术方法,提出了降低船撞风险的总体要求、降低船撞效应的结构性防船撞设施要求和基于性能的抗撞设计方法(结构设计准则由一系列可实现的性能目标来表示,保证在船舶撞击力作用下实现结构预定功能的抗撞设计方法),是对《通规》的重要补充,作为推荐性标准、与《通规》一起规定了公路桥梁抗船撞设计要求。《规范》贯彻了“综合防控、分级设防”的思想,提升了抗船撞设计的科学性,形成了一套系统的解决方案,引导公路抗船撞设计的标准化与精细化。《规范》充分考虑了与其他标准的衔接,以国内外工程实践和先进研究成果为依托,以安全可靠、先进有效、经济合理、

成熟实用为基本原则,广泛征求意见,具有清晰明确的定位,对进一步提升综合交通和基础设施的安全保障工作具有较强的指导作用。 三、《规范》的特点 《规范》注重落实高质量发展理念和交通强国建设纲要要求,对标国内国际先进水平,吸纳了交通运输行业桥梁抗船撞领域的最新研究成果及工程建设经验,开展了大量的理论研究与试验验证。《规范》的主要内容包括: (一)贯彻“综合防控、降低风险”的理念。一方面加强总体设计,提出了合理确定桥位、桥型、跨径和构造等总体要求,以降低船桥碰撞概率;对非通航孔桥,逐桥考虑船舶到达的可能性进行设计。另一方面,重视防撞设施的布设,规定了必要的结构性防船撞设施,以降低主体结构船撞效应。 (二)采用“性能设计、分级设防”的方法。基于性能的抗撞设计方法,主要包含抗船撞设防目标、设防船撞力与船撞效应计算、抗撞性能验算等内容。根据桥梁重要性等级和失效概率,抗船撞设防目标采用分级设防,桥墩、基础和支座的抗撞性能采用分级评估的分析方法。 (三)落实“风险概率、精细分析”的要求。在抗撞的设防船撞力计算上,提出了操作性很强的分位值法;考虑通航密度、船桥撞击概率等因素,建立了精细化程度高的概率-风险分析法。在抗撞的船撞效应计算上,明确了强迫振动法和质点碰撞法的技术要求,反映了船-桥-防船撞设施撞击效应分析的主流方法。四、实施注意事项

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范新规范删减列表 1.0.4、设计使用年限(新增) 桥涵主体结构和可更换部件的使用年限提出明确要求。 1..0.6、增加抗风、抗震、抗撞设计要求。 3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。 3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。 3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。 3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。 3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。 3.2.7、新增跨线桥桥墩设置及防护要求。 3.4.1、紧急停车带的设计长度要求修改。 3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。 3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。 3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。 3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。 3.6.6、增加桥梁栏杆与桥面板的连接方式描述。 3.6.8、条纹中补充了盆式支座、球钢支座等支座。 3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。 3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》 3.8.2、新增永久观测点的设置要求。(特大桥、大桥) 3.8.4、修改防雷设计要求。(参考《建筑物防雷设计规范》、《高速公路设施防雷设

计规范》) 3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。 3.8.7、新增跨线桥设置防抛网要求。 4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。 4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。 4.1.5、偶然组合:修改作用的分项系数。 4.1.6、取消长期组合、短期组合的说法,改为:准永久组合及频遇组合。 4.1.7、增加钢结构疲劳设计荷载组合规定。 4.2.2、增加预加力标准值计算公式。 4.2.5、第五条,增加水浮力标准值计算公式。 4.3.1、各等级公路桥涵的汽车荷载等级做了一定调整,将二级公路荷载等级标准提高了一半(由偏向公路二级,改为偏向公路一级)。车道荷载中集中荷载Pk的起始计算标准提高,由180KN提高至270KN。对交通组成中重载交通比重较大的公路桥涵,宜采用与该公路交通组成相适应的汽车荷载模式进行整体和局部验算。 4.3.1、汽车横向折减系数改为横向车道布载系数,提高单车道布载系数至1.2。 4.3.3、离心力计算取消了半径的限制,弯桥均需计算离心力。 4.3.7、增加疲劳荷载计算模型。 4.3.8、风荷载标准直接引用《公路桥梁抗风设计规范》,删除原来规范中规定的内容。 4.3.12、无悬臂宽幅箱梁,宜考虑横向温度梯度引起的效应。(新增内容) 4.3.13、支座摩擦系数增加盆式支座、球形支座的规定。 4.4.1、取消内河航道等级为1-3级内河船舶撞击作用设计值,要求按照专题研究确定。

道路桥梁设计

道路桥梁设计

毕业设计(论文) 苏通科技产业园经六纬九路路基工程施工方案 系别:土木建筑系 专业:道路与桥梁工程技术 班级:07道桥 姓名: 学号:0703040210 指导教师: 完成时间:2010年 5 月

摘要 施工方案是指用以指导建设工程项目中分项、分部工程或专项工程施工的技术文件。施工方案的正确与否,是直接影响施工质量的关键所在。为保证建设项目的施工质量,必须编制科学、合理的施工方案。 本项目工程西侧从规划经七路往东至规划经十路,路线全长2185米。道路路基标准横断面全宽36米;本道路按城市支路标准实施,设计时速为40Km/h。 结合本项目工程特点,编制施工方案分为工程概述、施工组织管理、施工工艺、施工平面布置;其中本施工方案针对的是路基工程。其中施工组织管理从人、材、机及现场“三通一平”等方面说明开工前必备的生产要素,指出路基分部工程总体施工思路。施工工艺以流程图的形式介绍路基分部工程各施工工序的先后顺序及逻辑关系。其他施工方法、技术要求及质量标准则以工序施工为研究对象,对其施工思路、程序、操作要点及规范要求等进行说明。施工平面布置则对施工现场生产、生活设施进行合理安排,以满足安全有序施工的需要。 土方是本工程中最大的项目,工期较长且耗用资源较多,结合本工程的特点做好土方的调运,严禁出现因土方欠缺而造成的窝工。 以本项目工程施工图设计及路基分部工程施工技术规范为依据,通过查阅相关施工手册,结合工程实际,编制分部工程施工方案,全面去考虑各项施工条件,确定合理的施工顺序、施工方法,制定了较有效的技术措施,为现场施工提供参考。 关键词:路基工程施工方案施工工艺

公路桥梁抗风设计规范.ashx

ISBN7—5608—2212—6/Ⅲ?377第十四届全国桥梁学术会议论文集 2000.11.5~7南京 《公路桥梁抗风设计规范》概要 及大跨桥梁的抗风对策 项海帆陈艾荣 (同济大学) 【摘要】随着我国桥集工程的不断发展.迫切需要精帝|适合我国国情的(公路桥梁抗风设计规范)。本文介绍了{莪规范螭翩中的几个主要问题,其中包括基本风速图和风压圈、风衙藏的表达方式、桥檗动力稳定性检验和风洞试验要求等.此外。还讨论了太跨桥集成桥和施工阶段的各种抗风对策。 关键词惭粱抗风设计规范 :碴鹂. 一、撅述… 1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。 1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大跨桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表l所示。 表1<公路桥梁抗风设计规范>专曩的内窖以最报批稿的目曩 专题内容规葩目录1全国基本风建圈和基本风压圈的绘制;第一章总用 2.斛拉桥和慧索桥的基顿的近似公式;第二章基本术语与基本符号 3.桥架的辱敢静阵风荷羲研究;第三章风建计算 4.斜拉桥和怎索侨的阻尼比研究;第四章风荷载计算 5.风参数的合理取值研究;第五章桥檠的动力特性 6.鼻塑桥梁断面的气曲参敷铡定第六章抗风稳定性验算 第七章风致限幅振动 第八章风洞试验要求 第九章风致振动控制 附录 40

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

高速公路常规桥梁设计的方案

高速公路常规桥梁设计的方案 一.山区高速公路桥梁的特点 1.山区高速公路的特点 山区高速公路的主要特点是地形地质复杂。地形复杂,表现为地面高差大,变化频繁,横坡陡;地质复杂表现为岩溶、滑坡、不稳定斜坡、崩塌、陡崖、煤气地层等不良地质。受此影响,路线布设时平纵横三个方面都受到约束,一般就是平曲线多,平面半径小,纵坡大,桥梁比例高,横坡陡,半边桥和高挡墙多。山区高速公路桥梁也相应具有上述特点,弯坡桥多,高墩大跨多,墩台形式多,设计中必须协调解决好桥梁各细部构造与地形地质之间的关系。 2.山区高速公路桥梁与路基的关系 2.1桥梁跨越方案与高填方路基方案的比较 山区高速公路桥梁很多不受水文控制而只受地形控制,因不宜采用路基方案而设置为高架桥,路桥设置界限问题,一直是难以把握的关键问题,也是影响公路造价的问题。路基规范强调,“路基中心填方高度超过20m时,宜和桥梁做方案比选。”,项目实际运作中,往往由于工期紧,或认为桥梁跨越方案安全省事,就直接考虑桥梁方案。实际上,对于地质情况较好,虽然填方中心高度为30m,但收敛较快的V型峡谷,且桥隧相连地段,为消化隧道废方,考虑路基方案可能比桥梁方案更安全更经济,因为这样的地形架桥,场地局促,难度大,横纵坡陡,极易引发边坡不稳;而对于宽而平缓地段,虽然填方高度只是20m左右,但如果需跨标段借方,且运距远,填方基底还需花大量资金处理的路段,反而考虑桥梁方案可能更安全更经济。所以笔者认为,山区高速公路路桥界限,不能一概而论,对于填土高度超过20m的路段,应根据地形、地质、前后构造物、前后路段的废方量、工程造价等进行综合比选后决定是否设置桥梁。不能图快图省事,直接考

公路桥涵设计通用规范-JTG-D60-2004

1总则 1.0.1为使公路桥涵的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,制定本规范。 1.0.2本规范适用于公路桥涵的一般钢筋混凝土及预应力混凝土结构构件的设计,不适用于轻骨料混凝土及其他特种混凝土桥涵结构构件的设计。 1.0.3本规范按照国家标准《公路工程结构可靠度设计统一标准》 GB/T50283规定的设计原则编制。基本术语、符号按照国家标准《工程结构设计基本术语和通用符号》GBJ 132和国家标准《道路工程术语标准》GBJ 124的规定采用。 1.0.4本规范采用以概率理论为基础的极限状态设计方法,按分项系数的设计表达式进行设计。 本规范采用的设计基准期为100年。 1.0.5公路桥涵应进行以下两类极限状态设计: 1承载能力极限状态:对应于桥涵及其构件达到最大承载能力或出现不适于继续承载的变形或变位的状态; 2正常使用极限状态:对应于桥涵及其构件达到正常使用或耐久性的某项限值的状态。 1.0.6公路桥涵应考虑以下三种设计状况及其相应的极限状态设计: 1持久状况:桥涵建成后承受自重、车辆荷载等持续时间很长的状况。该状况桥涵应作承载能力极限状态和正常使用极限状态设计; 2短暂状况:桥涵施工过程中承受临时性作用(或荷载)的状况。该状况桥涵应作承载能力极限状态设计,必要时才作正常使用极限状态设计; 3偶然状况:在桥涵使用过程中偶然出现的如罕遇地震的状况。该状况桥涵仅作承载能力极限状态设计。

1.0.7公路桥涵应根据其所处环境条件进行耐久性设计。结构混凝土耐久性的基本要求应符合表1.0.7的规定。 表1.0.7结构混凝土耐久性的基本要求 环境 类别环境条件最大 水灰比最小水泥用量 最低混凝土强度等级最大氯离子含量(%)最大碱含量 Ⅰ温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55 275C25 0.30 3.0Ⅱ严寒地区的大气环境、使用除冰盐环境;滨海环境0.50 300C30 0.15 3.0Ⅲ海水环境0.45 300C35 0.10 3.0 Ⅳ受侵蚀性物质影响的环境0.40 325C35 0.10 3.0 注:1有关现行规范对海水环境结构混凝土中最大水灰比和最小水泥用量有更详细规定时,可参照执行; 2表中氯离子含量系指其与水泥用量的百分率; 3当有实际工程经验时,处于Ⅰ类环境中结构混凝土的最低强度等级可比表中降低一个等级; 4预应力混凝土构件中的最大氯离子含量为0.06%,最小水泥用量为 350kg/m3,最低混凝土强度等级为C40或按表中规定Ⅰ类环境提高三个等级,其他环境类别提高二个等级;5特大桥和大桥混凝土中的最大碱含量宜降至 1.8kg/m3,当处于Ⅲ类、Ⅳ类或使用除冰盐和滨海环境时,宜使用非碱活性骨料。特大桥、大桥的含义见本规范表5.1.2注说明。 1.0.8位处Ⅲ类或Ⅳ类环境的桥梁,当耐久性确实需要时,其主要受拉钢筋宜采用环氧树脂涂层钢筋;预应力钢筋、锚具及连接器应采取专门防护措施。 1.0.9水位变动区有抗冻要求的结构混凝土,其抗冻等级不应低于表1.0.9的规定。

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

桥梁毕业设计方案比选参考

第1章基本资料 1.1基本资料 1.1.1设计标准 荷载:公路-I级+人群作用; 桥面宽度:双向两车道14+2×2m人行道,单车道宽度为3.5米,自行根据规范设计其它细部构造尺寸; 地震荷载:按六度设防; 桥面纵坡:2%,对称设置,需采用圆弧线或缓和曲线连接,曲线设置需符合相关规范要求; 桥面横坡:1.5%。 1.1.2地质情况 表1.1 里程桩号与地面高程 1.1.3 气象情况: 年平均气温20~30℃;月平均高温32.5℃;月平均低温10.6℃;最高温度42℃,最低温度3℃。 1

1.1.4通航要求 V级航道,净宽38m,净高5.0m,航道断面为矩形截面。最高通航水位6.94m。 1.2 设计依据 1、《公路桥涵设计通用规范》(JTG D60-2004) 2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 3、《公路工程抗震设计规范》(JTG/T B02-01-2008) 4、《公路桥涵钢结构及木结构设计规范》(JTG D61-2005) 5、《公路砖石及混凝土桥涵设计规范》(JTG D63-2005) 6、《公路桥涵地基与基础设计规范》(JTG61-2005)

第2章方案比选 2.1 方案拟定 2.1.1设计原则 桥梁设计必须遵照“实用、经济、安全和美观”的基本原则。 (1)符合当地复杂的地质条件,满足交通功能需要。 (2)设计方案力求结构安全可靠,具有特色,又要保证结构受力合理,施工方便,可行,工程总造价经济。 (3)桥梁结构造型简单,轻巧,并能体现地域风格,与周围环境协调。 2.1.2 方案简介 根据当地的地形地质条件、水文条件和技术标准,且由于该桥有通航要求,在布跨的时候桥墩的位置不能影响通航,拟选出以下六个初选方案分别为: 1、方案一:45m+70m+45m连续梁桥; 2、方案二:45m+70m+45mT型刚构; 3、方案三:35m+90m(拱桥)+35m下承式钢管混凝土拱桥; 4、方案四:50m+80m+30m主跨80m边跨50m的独塔斜拉桥; 5、方案五:35m+90m+35m双塔悬索桥; 6、方案六:50m+110m单塔悬索桥。 从总体布局、环境协调、技术先进性、施工可能、景观要求、技术经济等多方面考虑,且在老师的指导下,选择方案一、二、三来作工程量计算,作进一步比较。 2.2方案比较 2.2.1 预应力混凝土连续箱梁桥方案 1、孔径布置 此方案的桥孔径布置主桥为45m+70m+45m连续梁桥。该桥跨越河道是V级航道,设计时必须考虑满足通航净空的要求,还要考虑与两岸接线道路的衔接。采用预应力连续梁桥可以很好的满足上述空间限制的要求,而且施工方便,经济实用。 2、桥跨结构构造 桥跨采用三跨预应力混凝土连续梁,中跨Lmax=70m,边跨与中跨比为0.64,即 3

道路桥梁设计通用规范要求

道路桥梁设计通用规范要求 在计算支点截面和跨中截面弯矩时,其计算跨径取梁肋之间的距离。 由于板厚与肋高之比小于1/4,支点弯矩取-0.7M,跨中弯矩取0.5M(当大于1/4,支点弯矩取-0.7M,跨中弯矩取0.7M)M为简支梁求得的跨中弯矩。 可变荷载不同时组合表:汽车制动力,流水压力,冰压力,支座摩阻力;多个偶然作用不同时参与组合。 永久作用效应的分项系数表;汽车荷载效应(含汽车冲击力、离心力)的分项系数,取1.4;当某个可变作用在效应组合中其值超过汽车荷载的分项系数应采用汽车荷载的分项系数,对专为承受某作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载,其分项系数取与汽车荷载同值。在作用组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载外的其他的可变作用效应的分项系数,取1.4,但风荷载的分项系数取1.1;在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他可变作用效应的组合系数,当永久作用与汽车荷载和人群荷载(或其他一种可变作用)组合时,人群荷载(或其他一种可变作用)的组合系数取0.80;当除汽车荷载(含汽车冲击力、离心力)外尚有两种其他可变作用参与组合时,其组合系数取0.70;当除汽车荷载(含汽车冲击力、离心力)外尚有三种其他可变作用参与组合时,其组合系数取0.60;尚有四种及多于四种的可变作用参与组合时,取0.50。

设计弯桥时,当离心力与制动力同时参与组合时,制动力标准值或设计值按70%取用。 偶然组合:永久作用标准值效应应与可变作用某种代表值效应、一种偶然作用标准值效应相结合。偶然作用的效应分项系数取1.0;与偶然作用同时出现的可变作用,可根据观测资料和工程经验取用适当的代表值。地震作用标准值及其代表式按现行《公路工程抗震设计规范》规定采用。 公路桥涵结构按正常使用极限状态设计时,短期、长期效应组合。 结构构件当需进行弹性阶段截面应力计算时,除特别指明外,各作用效应的分项系数及组合系数应取为1.0;各项应力限值应按设计规范规定采用。 构件在吊装、运输时构件重力乘以动力系数; 永久作用常用材料的重力密度 预加力在结构进行正常使用极限状态设计和使用阶段构件应力计算时,应作为永久作用计算其主效应和次效应,并应计入相应阶段的预应力损失,但不计入预加力偏心距增大引起的附加效应。在结构进行承载力极限状态设计时,预加力不作为作用,而将预应力钢筋作为结构抗力的一部分,但在连续梁等超静定结构中,仍需考虑预加力引起的次效应。

桥梁方案设计说明

桥梁方案设计说明 导语:桥梁方案设计说明是为了更好地理解桥梁的设计。那么,现在,XX要和你们分享有关桥梁方案设计说明的文章,希望你们喜欢! 桥梁方案设计说明本工程位于泉州南安滨海工业园区,跨越三号排洪渠,桥梁中心设计桩号K0+。结构形式采用两跨20m预制空心板,全长47m,桥面总宽度为10m,桥面布置: ++++=。桥梁中心线与排洪渠正交。 1).《公路工程技术标准》 JTJ B01-XX 2).《公路桥涵设计通用规范》 JTG D60-XX 3).《公路圬工桥涵设计规范》 JTG D6l一XX 4).《公路桥涵钢筋混凝土及预应力混凝土设计规范》JTG D62-XX 5).《公路桥涵地基与基础设计规范》 JTG D63-XX 6).《公路桥梁抗震设计细则》JTG/TB02-01-XX 7).《公路桥涵施工技术规范》JTG/T F50-XX 8).《城市桥梁设计规范》 CJJ 11-XX 跨径的比选 桥梁的跨径选择主要从桥梁结构的受力性能、经济性,桥梁景观等方面考虑。 a、受力性能 从受力结构角度考虑,通常跨径35m范围内都是桥梁结

构的常见跨径,无论是现浇结构还是装配式结构都可以满足结构的受力要求。 b、经济性 桥梁的跨径对桥梁工程的造价影响较大:减小跨径可以减少上部结构的费用,但会增加下部结构的费用;反之则相反。因此,从经济性上考虑,桥梁跨径的选择是上下部结构费用平衡的结果。 结合考虑,本桥采用2跨20米简支梁桥。 上部结构的比选 城市桥梁的选型除了要满足以前的安全、适用、经济、美观以外,还要综合考虑桥梁结构在运营期间的服务水平,耐久性,后期养护,对环境、交通的影响等因素。本工程的桥梁结构形式选择即依据这样的原则进行。 a、结构的材料比选: 桥梁结构从材料类型上区分可以分为钢结构、混凝土结构以及钢-混凝土叠合结构。相对于混凝土,钢材具有强度-密度比大,跨越能力强,结构高度低等特点,因此对桥梁结构具有较高的适应性。但由于其造价相对昂贵,而且运营维护期内需多次涂装防护,费用较高。尤其泉州地区位于晋江、洛阳江入海口,钢结构的防腐问题尤其突出。另外,钢结构桥梁的桥面铺装施工工艺复杂,要求较高。因此除非节点跨径要求较高、结构高度受到控制、施工条件较差等因素

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编--问题举例 1、在条文说明中的第3.3.1中的第3款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。”主要疑惑是:路肩指的是硬路肩还是土路肩? 2、规范第3.3.2条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75倍加上0.25m。” 问题如下: (1)以上条款中的0.25m指的是在浪高的0.75倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用? (3)此处的水面是指计算水位还是最高洪水位? (4)最终梁底净空是否需要满足第 3.3.2条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表3.3.2的要求? 3、(1)规范第3.3.6条规定天然气管道不是顺桥过。是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。 (2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压? 4、(1)规范第3.5.8条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)? (2)规范第3.5.8条中“某一规定坡度”具体数值是多少? 对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理? 5、规范第3.6.4条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40。 条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层”,可不按第3.6.4条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4条的厚度及强度要求。 6、《公路桥涵设计通用规范》(JTG D60-2004)第3.7.2条“跨越河流或海湾的特大、大、中桥宜设置水尺或标志,较高墩台宜设围栏、扶梯等”。 请问:(1)本条中“较高墩台”中的“较高”二字有没有一个明确的幅度或范围,即“多高”才算“较高”?(2)本条中“较高墩台宜设围栏、扶梯等”中,设置围栏、扶梯的目的是什么?是为了方便桥墩台的养护还是其他目的?

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

公路桥梁施工组织设计技术标

五、施工组织设计 1.施工组织设计: (1)总体施工组织布置及规划 (2)主要工程项目的施工方案、方法与技术措施(尤其对重点、关键和难点工程的施工方案、方法及其措施) (3)拟投入主要物资计划 (4)拟投入的主要施工机械、设备计划 (5)劳动力安排计划 (6)确保工程质量的技术组织措施 (7)确保安全生产的技术组织措施 (8)确保工期的技术组织措施 (9)确保文明施工的技术组织措施 (10)工程施工的重点和难点及保证措施 (11)施工总平面布置图 2. 施工组织设计附表: 附表一施工总体计划表 附表二分项工程进度率计划(斜率图) 附表三工程管理曲线 附表四分项工程生产率和施工周期表 附表五施工总平面图 附表六劳动力计划表 附表七临时占地计划表 附表八合同用款估算表

(1)、总体施工组织布置及规划 1、项目管理目标 1.1.工期目标:发扬顽强拼搏,团队作战的企业精神,按期顺利完成任务。计划开工时间2017年12月16日,计划交工时间2017年3月15日,计划工期3个月。其中,路基、小桥涵工程计划2017年2月15日完工;路面工程计划2017年3月1日完工;交安设施工程计划2017年3月15日完工。 1.2.质量目标 标段工程交工验收的质量评定:90分及以上;竣工验收的质量评定:90分及以上。 1.3、安全目标: 1)年事故频率控制在1?以内; 2)重大伤亡事故为零; 3)杜绝火灾、设备、管线、食物中毒等重大事故; 4)没有业主、社会相关方和员工的投诉; 5)施工现场安全检查达到JGJ 59—99合格以上标准; 6)安保体系通过DGJ 08—903—2003规范的审核认证; 7)粉尘、污水、噪声达到城市管理要求; 1.4、文明施工目标 严格按省文明工地评审要求及公司各项要求组织施工,确保争创省文明工地。 1.5、环境保护目标 污水达标排放,降低噪声和扬尘,减少废物和降低资源消耗,泥渣、垃圾和施工废物定点弃置,实现外界向业主的零投诉。 2、为本工程施工机构设置 根据本工程分布情况及特点,为确保该工程的工期要求和工程的施工质量,做到安全生产、文明施工,我单位本着“优质、高效、廉洁、安全”的原则,以创优质工程为管理目标,贯彻ISO9001质量标准等一系列现代企业制度,集中一流精良的机械设备,组织优秀的施工队伍进行该工程施工,设立强有力的工程项目经理部,对人员、机械设备、材料实行统一管理,统一调度。

公路桥涵设计通用规范新规范JTGD与老规范JT

公路桥涵设计通用规范-新规范(JTGD-)与老规范(JTGD-)调整内容汇总 公路桥涵设计通用规范-新规范(JTGD60-2015)与老规范(JTGD60-2004)增删内容汇总 1.0.4、设计使用年限(新增) 桥涵主体结构和可更换部件的使用年限提出明确要求。 1.0.6、增加抗风、抗震、抗撞设计要求。 3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。 3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。 3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。 3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。 3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。 3.2.7、新增跨线桥桥墩设置及防护要求。 3.4.1、紧急停车带的设计长度要求修改。 3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。

3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。 3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。 3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。3.6.6、增加桥梁栏杆与桥面板的连接方式描述。 3.6.8、条纹中补充了盆式支座、球钢支座等支座。 3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。 3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》 3.8.2、新增永久观测点的设置要求。(特大桥、大桥) 3.8.4、修改防雷设计要求。(参考《建筑物防雷设计规范》、《高速公路设施防雷设计规范》) 3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。 3.8.7、新增跨线桥设置防抛网要求。 4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。 4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。 4.1.5、偶然组合:修改作用的分项系数。 4.1.6、取消长期组合、短期组合的说法,改为:准永久组合及频遇组合。 4.1.7、增加钢结构疲劳设计荷载组合规定。 4.2.2、增加预加力标准值计算公式。

相关主题
文本预览
相关文档 最新文档