当前位置:文档之家› ADS阻抗匹配原理及负载阻抗匹配

ADS阻抗匹配原理及负载阻抗匹配

ADS阻抗匹配原理及负载阻抗匹配
ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能

2008-05-15 17:51:20 作者:未知来源:电子设计技术

关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。

因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。

匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。

损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。

例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。

耗散损失

现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。

了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。

这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。

由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为:

这里,是负载反射系数,是匹配网络的s参数,

损失就是增益的倒数。因此,耗散损失可以定义为:

Ldiss = 1/GP。

对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为:

在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。

因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。

在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

阻抗来作为源阻抗。由于耗散损失和源阻抗并没有关系,所以,这是一个正确的方法,但是不便于使用。

另一种通用的方法就是采用电路模拟器中的最大增益来计算。由于这一测量采用了ADS,所以它用起来比较方便。但是,它有可能会得到错误的答案。在一个只有50Ω串联电阻的简单电路里,显然,负载也是50Ω,50Ω串联电阻的耗散损失是3dB,因为传输功率是均分给了串联电阻和负载(表1)。在这个例子当中,模拟器可以选择1GΩ的负载阻抗。当50Ω的电阻和1GΩ负载串联在一起时,它上面的电压降非常低,而功率的耗散也非常的少。

正确的计算方法应该是采用工作功率增益。用其他方法可能也能得到相同的结果,但是不能保证一定可以得到结果。当负载为50Ω时,要得到工作功率增益,是非常简单的,我们没有理由不用它。

输出匹配电路

输出匹配的具体电路不同,最终的损失也不同。在微波频谱的低端,传输线占据了太多的空间,所以采用了集总元件的方法。在一个功率放大器模块的典型输出匹配电路中,使用大容量的隔直电容器来防止直流电流从功率放大器电源流到负载中去(图2)。用表面贴装电容器和印制电感器以及表面贴装电感器组成的两节低通匹配网络,可以将50Ω的名义负载阻抗转化成合适的负载线。而负载线的设置是根据指定的功率放大器输出功率和可用的电源电压。手机放大器的负载线变化范围为1Ω到5Ω。

我们可以采用标准的或高Q值电容器。还有另一个正在逐渐流行起来的做法就是采用集成电容。在许多工艺技术(包括GaAs 和CMOS)中,高品质的金属-高介电质-金属结构的储存电容器都是可以用的。有一家供应商提供不使用任何表面贴装元件的完整的GSM功率放大器模块,所有的匹配网络使用的都是引脚框架走线和集成电容。除了可以减小尺寸外,采用集成电容在成本方面有它的优势,这点可以通过采用更好的生产线、降低装配的复杂性、节省物流工作,以及缩短交货时间来实现。

把损失降到最低

即使设计者无法选择不同的技术,在带宽和耗散损失之间,他们仍然可以有很大空间可以在设计方面进行折衷。要想了解一个输出匹配的损耗机制,有一个办法,就是采用无损耗元件来模拟匹配,然后每次在一个元件上引入损耗机制(表2)。

电容器的品质因数与它的电容量是成反比的。要想使输出匹配的耗散损失达到最小,那么在输出匹配中,Cl的值就必须尽可能地小。折衷是在带宽和耗散损失之间做出的。

对于一个功率放大器的效率而言,耗散损失是非常关键的。耗散损失的值就等于匹配网络工作功率增益的倒数,而与源阻抗的任何特性都没有关系。当负载阻抗为50Ω时,耗散损失的计算公式非常简单,且很容易应用在设计上。

也有其他的方式可以测量输出匹配的损耗,但是这些测量方法有时会得到错误的结果。在输出匹配电路上,采用不同的电容器技术会带来不同的损失。集成电容非常适合用在低损失输出匹配上。即使已经选定了电容器技术,在带宽和耗散损失之间还是存在着很大的空间在设计方面进行折衷。

表1 50Ω串联电阻的耗散损失

模拟结果-3.5 dB

最大增益0.0 dB

Gp -3.0 dB

表2 输出匹配的机械损耗

有损失的元件在1GHz时耗散损失

L1 0.17 dB

C1 0.66 dB

L2 0.15 dB

C2 0.11 dB

Cout 0.03 dB

总计1.11 dB

图1 为计算求匹配网络的耗散损失而构造的网络(a)。把匹配网络和负载一起考虑,电源输出一定数值的功率到这个复合网络(b)中。当电源输出Pdel到匹配网络和负载的复合网络时,PL是传输到负载的那部分功率(c)。

图2 一个典型的匹配网络在1GHz时,对功率放大器来讲,是一个数值为4+ j0Ω的的负载阻抗。匹配网络采用的是无损耗元件来进行模拟,所以在匹配网络中,没有功率的耗散出现

近年来,随着冲击波存储测试技术的不断发展,无线传输技术广泛应用于冲击波存储测试领域。针对冲击波测试对无线传输系统通信距离的要求,研究了功率放大电路,设计出低噪声放大电路,从而提高无线传输系统的接收灵敏度,满足冲击波测试对无线传输距离的要求。

2 低噪声放大电路总体设计方案

图1为无线传输系统原理框图。接收端的功率放大电路模块由于信道具有衰减特性,经远距离传输到达接收端的射频信号电平多是μV数量级,因此需放大微弱的射频信号。同时,信道中还存许多干扰信号,即噪声,所以该系统设计应采用低噪声的射频功率放大电路。

2.1 低噪声功率放大电路

低噪声功率放大电路的核心器件是低噪声功率放大器,由于目前市场上的低噪声功率放大器性价比高,因此该低噪声功率放大电路无需设计低噪声功率放大器,而在于其外围电路及阻抗匹配。根据设计要求,所选的低噪声功率放大器应满足:工作频段应覆盖无线收发器的工作频率433 MHz;工作电压为3~3.3 V;高增益;低损耗;小噪声系

数。

以下为射频功率放大器的主要技术参数。

(1)工作频率范围(F)低噪声功率放大器满足各项指标的工作频率范围。要保证各项指标以及放大器的实际工作频率应尽可能在所指定的工作频率范围内。

(2)功率增益(G)是指在输入输出端口相匹配下,输出功率和输入功率的比值。设计过程中要求功率增益越大越好。

(3)噪声系数(NF) 噪声系数常作为接收端的小信号低噪声放大器的主要技术指标,该电路设计要求噪声系数越小越好。

(4)1分贝压缩点输出功率(P1dB)在放大器线性动态范围内,其输出功率随输入功率线性增加。随着输入功率的继续增大,放大器进入非线性区,其输出功率不再随输入功率的增大而线性增大。通常把增益下降到比线性增益低1 dB 时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。动态范围越大越好。

(5)三阶截断点(IP3) 三阶截断点是衡量功率放大器线性度的重要指标,工程上常用三阶截断点表征互调畸变。

(6)输入、输出驻波比(VSWR)VSWR反映放大电路输入和输出端口的阻抗失配情况,因此低噪声放大器的VSWR应满足:VSWR越小,反射越小,匹配越好,传输效率越高。

(7)回波损耗(Reverse Losation)它是信号反射性能的参数。回波损耗说明入射功率的一部分被反射回到信号源。通常要求反射功率尽可能的小,这样就有更多的功率传送至负载。

2.2 低噪声功率放大器选型

根据系统设计要求,以及多种同类器件比较,RFMD公司的RF2361具有高性能、低噪声、高增益、高动态范围,可接收10 dB的输入信号,具有工作等待模式的特点,故选用RF2361作为LNA主器件。

图2为RF2361的引脚排列,其中:RF IN为低噪声功率放大器输入,需通过一阻抗匹配网络达到50Ω阻抗匹配:RF0UT为低噪声功率放大器输出,也需通过一阻抗匹配网络达到50Ω阻抗匹配;同时电源VCC给整个电路提供工作电压。VPD用于控制偏置电流,与偏置电阻R1共同确定偏置电流。GND1、GND2为接地。

2.3 低噪声功率放大电路原理

以低噪声功率放大器RF2361为核心设计的低噪声功率放大电路,如图3所示,其VPD引脚上的并联电容器实现电源VPD的滤波,RFOUT引脚上的电感电容串并联网络可对电源VCC滤波。

2.4 放大电路阻抗匹配网络

典型的放大器一般包括输入匹配网络、晶体管放大电路、阻抗变换网络、直流偏置和输出阻抗匹配网络,如图4所示。确定阻抗匹配网络中元件的参数、类型以及连接关系是实现匹配网络的关键。阻抗匹配是射频电路设计的重要问题,其目的是为了实现能量的最大功率传输,提高能量的传输效率。

阻抗匹配是指在能量传输时,要求负载阻抗和传输线的特征阻抗相等,此时传输的能量不会产生反射,几乎都被负载吸收。反之,如果阻抗失配,那么传输中就会有能量损耗。对于电路中的电流,低频率时,电阻起主要阻碍作用,而在高频时,电容和电感起阻碍作用也明显。因此,在高频时,就要考虑电路的阻抗匹配问题。

阻抗匹配电路的基本要求为:将负载阻抗变换为与功放要求相匹配的负载阻抗,以保证传输最大能量:滤除多余的各次谐波分量,以保证负载能获得所需频率的射频功率:匹配电路的功率传输效率要尽可能高,即匹配电路的损耗要小。而阻抗匹配有2种方式:改变阻抗力和调整传输线。其中,改变阻抗力:是把电容或电感与负载串联起来,即增加或减少负载的阻抗值。

3 测试结果

采用最优性能的RF2361为核心设计的低噪声功率放大电路,使用EDA软件Ansoft designer中的电路优化工具来对射频电路优化分析和仿真,优化低噪声放大电路的技术参数,其电路仿真结果表明:整个功率放大电路已达到50Ω阻抗匹配要求,其网络性能得到优化,解决了射频放大电路设计中电路匹配问题。经过矢量网络分析仪的测量,优化的电路参数比以前有较大改进,并大大简化电路设计。

4 结语

提出射频功率放大电路的总体设计方案,以低噪声功率放大器为核心,设计了低噪声功率放大电路。采用软件匹配方法.解决了射频低噪声放大电路的阻抗匹配问题,使得低噪声放大电路的各项重要参数都得到了优化。需要注意的是选择最优的低噪声功率放大器,有利于增加无线传输系统的通信距离。

阻抗匹配原理及负载阻抗匹配更新于2012-03-02 21:06:36 文章出处:互联网

信号或广泛电能在传输过程中,为实现信号的无反射传输或最大功率传输,要求电路连接实现阻抗匹配。阻抗匹配关系着系统的整体性能,实现匹配可使系统性能达到最优。阻抗匹配的概念应用范围广泛,阻抗匹配常见于各级放大电路之间,放大电路与负载之间,信号与传输电路之间,微波电路与系统的设计中,无论是有源还是无源,都必须考虑匹配问题,根本原因是在低频电路中是电压与电流,而高频中是导行电磁波不匹配就会发生严重的反射,损坏仪器和设备。本文介绍阻抗匹配电路的原理及其应用。

1 阻抗匹配的基本原理

阻抗匹配是使微波电路或是系统的反射,载行波尽量接近行波状态的技术措施。阻抗匹配分为两大类:

(1)负载与传输线之间的阻抗匹配,使负载无反射。方法是接入匹配装置使输入阻抗和特性阻抗相等。

(2)信号源与传输线之间匹配,分为两种情况:1)使信号源无反射,方法是接入信号源与传输线之间接人匹配装置。

2)信号源共轭匹配,方法是信号源与被匹配电路之间接入匹配装置,这种情况下多属于有源电路设计。

2 负载阻抗匹配方法

2.1 集总参数匹配电路

通常情况下,使用电容电感实现阻抗匹配,在比较低的频段使用变压器实现匹配,也可以采用L形、π形、T形实现匹配电路,这类电路体积小、结构简单、应用广泛。

变压器:主要实现低频段,随着工作频段的升高,这类电路的应用越来越少。传输线变压器可以实现宽带阻抗变换,实现4:1和1:4工作模式如图1和图2所示。可以实现平衡和非平衡的变换,尤其在电视机外接天线到同轴线输入端口的连接中得到应用。

L形匹配电路:这类电路具有线路简洁和成本较低的优点,缺点是窄带电路。由于要考虑匹配和功率的损耗,尽量使用电感和电容性的元件,因此共有8种基本的电路可供选择。要设计合理的匹配电路就要选择合适的电容电抗元件参数,计算元件参数有两类方法:通过阻抗直接计算和通过史密斯圆图。前者的优点是计算精确且适合计算机计算,后者是一种直观有效的设计,可以充分合理地选择最优性能。现在可以通过使用计算机和功能强大的软件直接设计。

T形和丌形电路:这类电路可以实现电路的品质因数的调节,灵活性更高。多元件的匹配电路设计能降低电路的品质因数,却可以提高频带宽度。

2.2 分布式参数元件电路匹配

(1)混合型匹配电路(中低频)这类电路设计中尽量的少用电感元件,因为它有较高的电阻损耗且寄生参数也很严重。设计中多使用电容元件的并联和传输线可以完成设计要求。

(2)单分支匹配电路并联单分支电路由一段串联的传输线和一段并联的终端开路或短路传输线构成,设计时通常取恒定的传输线的特性阻抗,通过调节传输线的长度,进行阻抗匹配设计。

(3)双分支匹配电路这类匹配电路更易于实现匹配阻抗的调节,只是设计有点复杂。

2.3 噪声匹配电路

热噪声:在电阻中电子的无规律波动将随温度的上升而增加

可以看出第一级噪声的影响最大。当Rs=Rs0时,F=Fmin噪声电路匹配。

3 各匹配电路分析

4 结束语

无论是精心设计的集总参数电路还是微波电路,需认清特征,如果阻抗值要提高,用串联方式。如果阻抗值要降低,则使用并联方式,两个电抗要有相反的类型,且要产生谐振。14频率低端,多采用集总参数匹配电路,L形匹配电路是最简洁的设计,也是低端的首选。

如果电路设计中要求品质因数,可以使用T形或者丌形匹配电路,因为这类电路的品质因数可调,不过也要考虑多级匹配电路,达到电路的频率响应。使用多级匹配电路设计更灵活,可以满足电路的宽带需要。分布参数匹配电路,使用在中高频段,若介于集总和分布之间的话,最好采用混合匹配电路。若使用双分支电路不能满足要求,可以考虑多级匹配电路。电路的匹配设计不是单一的,要综合考虑偏置电路、反馈电路和频率调节电路的相互连接,要反复进行设计和修改,最终达到满意效果。

传输线理论与电感

目錄 第一章傳輸線理論 一傳輸線原理 二微帶傳輸線 三微帶傳輸線之不連續分析第二章被動元件之電感設計與分析一電感原理 二電感結構與分析 三電感設計與模擬 四電感分析與量測

第一章 傳輸線理論 傳輸線理論與傳統電路學之最大不同,主要在於元件之尺寸與傳導電波之波長的比值。當元件尺寸遠小於傳輸線之電波波長時,傳統的電路學理論才可以使用,一般以傳輸波長(Guide wavelength )的二十分之ㄧ(λ/20)為最大尺寸,稱為集總元件(Lumped elements );反之,若元件的尺寸接近傳輸波長,由於元件上不同位置之電壓或電流的大小與相位均可能不相同,因而稱為散佈式元件(Distributed elements )。 由於通訊應用的頻率越來越高,相對的傳輸波長也越來越小,要使電路之設計完全由集總元件所構成變得越來越難以實現,因此,運用散佈式元件設計電路也成為無法避免的選擇。 當然,科技的進步已經使得集總元件的製作變得越來越小,例如運用半導體製程、高介電材質之低溫共燒陶瓷(LTCC )、微機電(MicroElectroMechanical Systems, MEMS )等技術製作集總元件,然而,其中電路之分析與設計能不乏運用到散佈式傳輸線的理論,如微帶線(Microstrip Lines )、夾心帶線(Strip Lines )等的理論。 因此,本章以討論散佈式傳輸線的理論開始,進而以微帶傳輸線為例介紹其理論與公式,並討論微帶傳輸線之各種不連續之電路,以作為後續章節之被動元 1.1(a)。其中的集總元件電路模型描述,其中 (a) (b) i (z, t ) v z, t ) z

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

射频连接器的阻抗原理

阻抗匹配与史密斯(Smith)圆图:基本原理 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 基础知识 在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

阻抗匹配与史密斯圆图:基本原理

阻抗匹配与史密斯圆图:基本原理 摘要:本文是关于使用史密斯圆图进行射频阻抗匹配计算的教程。本文还提供了一些示例以描绘如何计算反射系数、阻抗、导纳等参数。本文还提供了一个样例,使用图形方法计算工作在900MHz下的MAX2472的匹配网络。 经过实践证明,史密斯圆图仍然是用于判定传输线路阻抗的基本工具。 当处理射频应用的实际实现时,总会碰到一些噩梦般的任务。其中之一就是需要匹配各个互连模块之间的不同的阻抗。通常,这些包括天线到低噪声放大器(LNA),功率放大器输出(RFOUT)到天线,以及LNA/VCO输出到混频器输入。对于信号与能量从“源”到“负载”的正确传输来说,匹配任务是必需的。 在高频率的射频电路中,寄生元素(例如导线电感、层间电容、导体电阻等等)对匹配网络有着显著,但无法预料的影响。在几十兆赫兹频率以上的电路中,理论上的计算与仿真常常是不足够的。在射频实验室测量现场,伴随着调谐工作,必须仔细考虑才能决定合适的最终取值。必须使用计算值以便于建立结构类型与目标元件的取值。 有很多方法可用于计算阻抗匹配,包括: ●计算机仿真:原理复杂但是使用简单,仿真器一般用于区别设计功能,而不是进行阻抗 匹配。设计者必须熟悉需要键入的多重数据输入,以及这些数据输入的正确格式。他们同样需要专门的知识,以便于在大量的结果数据中找到有用的数据。另外,除非计算机被用于进行电路仿真这样的工作,电路仿真软件就不会预安装在计算机上。 ●手动计算:由于计算方程的长度(“上公里的”),以及要进行计算的数字的复杂性,这 种方式被普遍认为是非常单调乏味的。 ●经验直觉:只有当一个人在射频领域中工作过很多年以后,才能取得这样的能力。简而 言之,这种方法只适用于非常资深的专家。 ●史密斯圆图:本文所专注的内容。 本文的主要目标就是回顾史密斯圆图的构造与背景,并且总结如何使用史密斯圆图的实践方式。本文提出的主题包括了参数的实际说明,例如找到匹配网络元件的取值。当然,我们使用史密斯圆图不仅仅只能进行最大功率传输的匹配。史密斯圆图同样能够帮助设计者计算出最佳的噪声系数,确保质量因素的影响,以及评估稳定性分析等等。

总线传输时阻抗匹配的原理

在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。 这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。 当阻抗不匹配时,有哪些办法让它匹配呢? 第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。 第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。 第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。 阻抗匹配基础 标签:终端网络工作图形signal能源 2009-08-11 21:17 38690人阅读评论(11) 收藏举报 目录(?)[+]英文名称:impedance matching 基本概念

阻抗匹配概念

阻抗匹配概念 阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超

(完整版)阻抗匹配的研究

阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才 能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需 要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使 源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信 号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电 源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37?,在高电平时典型的输出阻抗为45?[4];TTL驱动器和CMOS驱动 一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

阻抗匹配和阻抗变换是什么-阻抗变换和阻抗匹配的详细概述

阻抗匹配和阻抗变换是什么?阻抗变换和阻抗匹配的详细概述阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真.因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输入、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路. 下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分。1、纯电阻电路在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2、电抗电路电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感.元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示.其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而.容

阻抗匹配的原理与方法

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

天线阻抗匹配原理

阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真。因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输人、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路。下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分析。 1.纯电阻电路 在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2.电抗电路 电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感。元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示。其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而。容抗和感抗的值除了与电容和电感本身大小有关之外,还与所工作的交流电的频率有关。值得注意的是,在电抗电路中,电阻R,感抗而与容抗双的值不能用简单的算术相加,而常用阻抗三角形法来计算(见图 2)。因而电抗电路要做到匹配比纯电阻电路要复杂一些,除了输人和输出电路中的电阻成分要求相等外,还要求电抗成分大小相等符号相反(共轭匹配);或者电阻成分和电抗成分均分别相等(无反射匹配)。这里指的电抗X即感抗XL和容抗XC 之差(仅指串联电路来讲,若并联电路

阻抗匹配

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF 阻抗匹配的设计指南。文中给出了反射系数、阻抗和导 纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大 器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预 知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ? 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ? 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ? 经验: 只有在RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ? 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 w w w . p c b t e c h .n e t

阻抗匹配基本概念以及高频阻抗匹配

英文名称:impedance matching 基本概念 信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。 匹配条件 ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。 ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 共轭匹配 在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 匹配分类 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 1. 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代

(完整版)ADS软件学习及阻抗匹配电路的仿真设计

ADS软件学习及阻抗匹配电路的仿真设计 专业班级:电子信息科学与技术3班 姓名: 学号: 一、实验内容 用分立LC设计一个L型阻抗匹配网络,实现负载阻抗(30+j*40)(欧姆) 到50(欧姆)的匹配,频率为1GHz。 二、设计原理 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。 要实现最大的功率传输,必须使负载阻抗与源阻抗匹配,这不仅仅是为了减小功率损耗,还具有其他功能,如减小噪声干扰、提高功率容量和提高频率响应的线性度等。通常认为,匹配网络的用途就是实现阻抗变换,就是将给定的阻抗值变换成其他更合适的阻抗值。 基本阻抗匹配理论: ——(1) ——(2),由(1)与(2)可得:——(3)

当RL=Rs时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。 广义阻抗匹配: 阻抗匹配概念可以推广到交流电路,当负载阻抗ZL与信号源阻抗Zs共轭时,即ZL=Zs,能够实现功率的最大传输,称作共轭匹配或广义阻抗匹配。 如果负载阻抗不满足共轭匹配条件,就要在负载和信号源之间加一个阻抗变换网络N,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 三设计过程 1、新建ADS工程,新建原理图。在元件面板列表中选择“Simulation S--param”,在原理图中放两个Term和一个S-Parameters控件,分别把Term1设置成Z=5Oohm,Term2 设置成Z=30+j*40ohm,双击S-Parameters控件,弹出设置对话框,分别把Start设置成10MHz,Stop设置成2GHz,Step-size设置成1MHz。 2、在原理图里加入Smith Chart Matching 控件,并设置相关的频率和输入输出阻抗等参数。 3、连接电路。 4、在原理图设计窗口,执行菜单命令tools->Smith Chart,弹出Smart Component,选择“Update SmartComponent from Smith Chart Utility”,单击“OK”。 5、设置Freq=0.05GHz,Z0=50ohm。单击DefineSource /load Network terminations 按钮,弹出“Network Terminations”对话框,设置源和负载阻抗,然后依次单击“Apply”和“OK”。 6、采用LC分立器件匹配。 7、单击“Build ADS Circuit”按钮,即可以生成相应的电路。 8、进行仿真,要求其显示S(1,1)和S(2,1)单位为dB的曲线。

阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的 作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1.阻抗和史密斯圆图基础

阻抗匹配原理

阻抗匹配原理 抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真。因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输人、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路。下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分析。 1.纯电阻电路 在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2.电抗电路 电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感。元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示。其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而。容抗和感抗的值除了与电容和电感本身大小有关之外,还与所工作的交流电的频率有关。值得注意的是,在电抗电路中,电阻R,感抗而与容抗双的值不能用简单的算术相加,而常用阻抗三角形法来计算(见图2)。因而电抗电路要做到匹配比纯电阻电路要复杂一些,除了输人和输出电路中的电阻成分要求相等外,还要求电抗成分大小相等符号相反(共轭匹配);或者电阻成分和电抗成分均分别相等(无反射匹配)。这里指的电抗X即感抗XL和容抗XC之差(仅指串联电路来讲,若并联电路则计算更为复杂)。满足上述条件即称为阻抗匹配,负载即能得到最大的功率.阻抗匹配的关键是前级的输出阻抗与后级的输人阻抗相等。而输人阻抗与输出阻抗广泛存在于各级电子电路、各类测量仪器及各种电子元器件中。那么什么是输人阻抗和输出阻抗呢?输人阻抗是指电路对着信号源讲的阻抗。如图3所示的放大器,它的输人阻抗就是去掉信号源E及内电阻r时,从AB两端看进去的等效阻抗。其值为Z=UI/I1,即输人电压与输人电流之比。对于信号源来讲,放大器成为其负载。从数值上看,放大器的等效负载值即为输人阻抗值。输人阻抗值的大小,对于不同的电路要求不一样。例如:万用表中电压挡的输人阻抗(称为电压灵敏度)越高,对被测电路的分流就越小,测量误差也就小。而电流挡的输人阻抗越低,对被测电路的分压就越小,因而测量误差也越小。对于功率放大器,当信号源的输出阻抗与放大电路的输人阻抗相等时即称阻抗匹配,这时放大电路就能在输出端获得最大功率。输出阻抗是指电路对着负载讲的阻抗。如图4中,将电路输人端的电源短路,输出端去掉负载后,从输出端CD看进去的等效阻抗称为输出阻抗。如果负载

特性阻抗之原理与应用

特性阻抗之原理與應用 Characteristic Impedance 一、前題 1、導線中所傳導者為直流(D.C.)時,所受到的阻力稱為電阻(Resistance),代表符號為R,數值單位為“歐姆”(ohm,Ω)。其與電壓電流相關的歐姆定律公式為: R=V/I;另與線長及截面積有關的公式為:R=ρL/A。 2、導線中所傳導者為交流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為Z,單位仍為Ω。其與電阻、感抗及容抗等相關的公式為: Z =√R2 +(XL—Xc)2 3、電路板業界中,一般脫口而出的“阻抗控制”嚴格來說并不正确,專業性的說法應為“特性阻抗控制”(Characteristic Impedance Control)才對。因為電腦類PCB線路中所“流通”的“東西”并不是電流,而是針對方波訊號或脈沖在能量上的傳導。此種“訊號”傳輸時所受到的“阻力”另稱為“特性阻抗”,代表的符號是Zo。計算公式為:Zo = √L/C ,(式中L為電感值,C為電容值),不過Zo的單位仍為歐姆。只因“特性”的原文共有五個章節,加上三個單字一并唸出時拗口繞舌十分費力。為簡化起見才把“特性”一字暫時省掉。故知俗稱的“阻抗控制”,實際上根本不是針對交流電“阻抗”所進行的“控制”。且即使要簡化掉“特性”也應說成Controlled Impedance,或阻抗匹配才不致太過外行。 圖1 PCB元件間以訊號(Signal)互傳,板面傳輸線中所遭遇的阻力稱為“特性阻抗” 二、需做特性阻抗控制的板類 電路板發展40年以來已成為電機、電子、家電、通信(含有線及無線)等硬體必備的重要元件。若純就終端產品之工作頻率,及必須阻抗匹配的觀點來分類時,所用到的電路板約可粗分為兩大類:

相关主题
文本预览
相关文档 最新文档