当前位置:文档之家› 高中数列求和方法大全

高中数列求和方法大全

高中数列求和方法大全
高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

(2)等比数列的求和公式?????≠--==)

1(1)1()1(11q q

q a q na S n

n (切记:公比含字母时一定要讨论)

3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式:

111)1(1+-=+n n n n ;

1111()(2)22

n n n n =-++ )1

21

121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=?

5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法:

8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:

1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:

例1.求和:①321ΛΛ个

n n S 111111111++++=

②22222)1

()1()1(n n n x

x x x x x S ++++++

=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9

110101011112

-=

++++==k

k

k k a Λ321Λ个

]

)101010[(9

1

)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81

10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++

=n

n

n x x x x x x S Λ

n x x x x x x n

n 2)111(

)(242242++++++++=ΛΛ (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)

1()

1)(1(21)1(1)1(2

2222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③

k

k k k k k k k k k a k 2

3

252)]23()12[()]1()12[()12(2)12(2-=-+-=

-+-+++++-=Λ

2

)

1(236)12)(1(25)21(23)21(2522221+-++?=+++-+++=

+++=n n n n n n n a a a S n n ΛΛΛ

)25)(1(6

1

-+=

n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。 2.错位相减法求和

例2.已知数列)0()12(,,5,3,11

2

≠--a a

n a a n Λ,求前n 项和。

思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列1

2

,,,,-n a a a a Λ对应项

积,可用错位相减法求和。 解

()1)12(5311

2--++++=n n a n a a S Λ

()2)12(5332n

n a n a a a aS -++++=Λ

()()n n n

a n a a a a S a )12(22221)1(:21132--+++++=---Λ

n

n n n a a a S a a )12()

1()1(21)1(,12

1----+=-≠-时 2

1

)

1()12()12(1a a n a n a S n n n --++-+=+ 当2

,1n S a n ==时

3.裂项相消法求和

例3.求和)

12)(12()2(5343122

22+-+

+?+?=n n n S n Λ 思路分析:分式求和可用裂项相消法求和.

:

)1

21

121(211)12)(12(11)12)(12(11)2()12)(12()2(22+--+=+-+=+-+-=+-=k k k k k k k k k k a k

1

2)1(2)1211(21)]121121()5131()311[(2121++=

+-+=+--++-+-+=+++=n n n n n n n n a a a S n n ΛΛ练习:求n n a n a a a S ++++=Λ32321 答案: ???

????≠----=+=)1()1()1()1()1(2)

1(2a a a a n a a a n n S n n n

4.倒序相加法求和

例4求证:n

n n n n n n C n C C C 2)1()12(53210+=+++++Λ 思路分析:由m

n n m n C C -=可用倒序相加法求和。

证:令)1()12(53210n

n

n n n n C n C C C S +++++=Λ

则)2(35)12()12(0

121n

n n n n n n n C C C C n C n S ++++-++=-Λ m

n n m n C C -=Θ

n

n n n n n C n C n C n C n S )22()22()22()22(2:)2()1(210++++++++=+∴Λ有 n n n n n n n n C C C C n S 2)1(])[1(210?+=+++++=∴Λ 等式成立

5.其它求和方法

还可用归纳猜想法,奇偶法等方法求和。

例5.已知数列{}n n

n n S n a a 求],)1([2,---=。

思路分析:n

n n a )1(22---=,通过分组,对n 分奇偶讨论求和。

解:n

n n a )1(22-+-=,若∑=-+++++-===m

k k

m n m S S m n 21

2)

1(2

)2321(2,2Λ则

)1(2)12()2321(2+-=+-=++++-=n n m m m S n Λ

)

12(22)12(])1(2[22)12(,1222212-++-=--++-=-==-=-m m m m m m a S S S m n m m m m n 则

22)1()1(224222---=-+++-=-+-=n n n n m m

???---+-=∴)

(2)()

1(2

为正奇数为正偶数n n n n n n S n 预备:已知n n

n a a a a x a x a x a x f ΛΛ,,,,)(321221且+++=成等差数列,n 为正偶数,

又n f n f =-=)1(,)1(2

,试比较)2

1(f 与3的大小。

解:???=+-+-+-=-=++++=-n a a a a a f n a a a a f n n n 13212

321)1()1(ΛΛ???==+∴??

???==+∴2222)(12

1d n a a n d n n n a a n n

12122)1(111-=∴=∴?

??==-++∴n a a d n

d n a a n

n

n

n f x n x x x x f )2

1

)(12()21(5)21(321)21()12(53)(3232-++++=-++++=ΛΛ

可求得n n n f )2

1)(12()21(3)21(2---=-,∵n 为正偶数,3)2

1

(<∴f

巩固练习

1.求下列数列的前n 项和n S :

(1)5,55,555,5555,…,5(101)9

n

-,…; (2)

1111,,,,,132435(2)

n n ???+L L ; (3

)n a =;

(4)23,2,3,,,n

a a a na L L ;

(5)13,24,35,,(2),n n ???+L L ; (6)2222sin 1sin 2sin 3sin 89++++o o o o L L .

2.已知数列{}n a 的通项65()

2()n n n n a n -?=??

为奇数为偶数,求其前n 项和n S .

解:(1)555555555n n S =++++678L L 个5

(999999999)9

n =++++678L L 个

235

[(101)(101)(101)(101)]9n =-+-+-++-L 235505

[10101010](101)9819n n n n =++++-=--L . (2)∵

1111

()(2)22n n n n =-++, ∴11111111[(1)()()()]2324352n S n n =-+-+-++-+L 1111

(1)2212

n n =+--++.

(3

)∵n a

===∴n S =+L

1)=+++

L 1=.

(4)2323n

n S a a a na =++++L ,

当1a =时,123n S =+++ (1)

2

n n n ++=

, 当1a ≠时,23

23n S a a a =+++…n na + ,

23423n aS a a a =+++…1n na ++,

两式相减得 2

3

(1)n a S a a a -=+++ (1)

1(1)1n n n n a a a na

na a

++-+-=--,

∴212

(1)(1)n n n na n a a

S a ++-++=-.

(5)∵2

(2)2n n n n +=+,

∴ 原式2

2

2

(123=+++ (2)

)2(123n ++?+++…)n +(1)(27)

6

n n n ++=.

(6)设2222sin 1sin 2sin 3sin 89S =++++o o o o L L , 又∵2222sin 89sin 88sin 87sin 1S =++++o o o o L L , ∴ 289S =,892

S =

. 2.已知数列{}n a 的通项65()

2

()n n n n a n -?=??为奇数为偶数,求其前n 项和n S .

解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列;

当n 为奇数时,奇数项有12n +项,偶数项有1

2

n -项,

∴1

121(165)

4(14)(1)(32)4(21)221423

n n n n n n n S --++--+--=+=+

-, 当n 为偶数时,奇数项和偶数项分别有2

n

项,

∴2(165)

4(14)(32)4(21)221423n n n n n n n S +----=+=+

-, 所以,1(1)(32)4(21)

()23

(32)4(21)()23n n n

n n n S n n n -?+--+??=?--?+??

为奇数为偶数.

高中数学经典的解题技巧和方法(等差数列、等比数列)

跟踪训练题

一、选择题(本大题共6个小题,每小题6分,总分36分)

1.已知等差数列{a n}的前n项和为S n,若a2=1,a3=3,则S4=( )

(A)12 (B)10 (C)8 (D)6

2.设数列{x n}满足log2x n+1=1+log2x n,且x1+x2+x3+...+x10=10,则x11+x12+x13+ (x20)

值为( )

(A)10×211(B)10×210

(C)11×211(D)11×210

3.已知正数组成的等差数列{a n},前20项和为100,则a7·a14的最大值是( )

(A)25 (B)50 (C)100 (D)不存在

4.已知为等比数列,S n是它的前n项和。若,且与2的等差中项为,则=( )

A.35 .33 C

5. 设是任意等比数列,它的前项和,前项和与前项和分别为,则下列等式中恒成立的是( )

A、B、

C、D、

6.(2010·潍坊模拟)已知数列{a n}是公差为d的等差数列,S n是其前n项和,且有S9

则下列说法不正确的是()A.S9

C.S7与S8均为S n的最大值D.a8=0

二、填空题(本大题共3个小题,每小题6分,总分18分)

7.将正偶数划分为数组:(2),(4,6),(8,10,12),(14,16,18,20),…,则第n组各数的和是 .(用含n的式子表示)

8.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N*,则a2 009=_______;a2 014=_______.

9.已知等差数列{a n}的前n项和为S n,a4=15,S5=55,则过点P(3,a3),Q(10,a10)的直线的斜率为_______.

三、解答题(10、11题每小题15分,12题16分,总分46分)

10.数列的通项试问该数列有没有最大项若有,求出最大项和最大项的项数;若没有,说明理由

11.在等比数列{a n}中,前n项和为S n,若S m,S m+2,S m+1成等差数列,则a m,a m+2,a m+1成等差数列.

(1)写出这个命题的逆命题;

(2)判断逆命题是否为真并给出证明.

12.已知数列中,前n项和为,,并且(),

(1)求,的值;

(2)设,若实数使得数列为等差数列,求的值。

(3)在(2)的条件下,设数列的前n项和为,求证:

参考答案

一、选择题

1.【解析】选==2×(1+3)=8.

2.【解析】选B.∵log2x n+1-log2x n=1,∴{x n}为等比数列,其公比q=2,

又∵x1+x2+…+x10=10,∴x11+x12+…+x20=q10(x1+x2+…+x10)=210×10.

3.【解析】选A.∵S20=×20=100,∴a1+a20=10,

∵a1+a20=a7+a14,∴a7+a14=10. ∵a n>0,∴a7·a14≤()2=25.

4.【解析】选

由,又得

所以,,,,

5.【解析】选 D,设等比数列的公比为,由题意,

,,所以,故D正确。

6.【解析】选A 由题意知d<0,a8=0,所以

二、填空题

7.【解析】前组共有偶数的个数为故第组共有个偶数,且第一个偶数是正偶数数列的第,所以第n组各数的和为答案:

8.【解析】依题意,得a2 009=a4×503-3=1,a2 014=a2×1 007=a1 007=a4×252-1=0. 答案:1 0

9.【解析】∵a4=15,S5=55. ∴55==5a3,∴a3=11. ∴公差d=a4-a3=15-11=4.

a10=a4+6d=15+24=39. ∴P(3,11),Q(10,39) k PQ==4.答案:4

三、解答题

10. 【解析】方法1:

∴当n<9时,

当时,

当n>9时,,

故,

∴数列中最大项为或.其值为,其项数为9或10

∴数列中最大项为或.其值为,其项数为9或10

11.【解析】(1)在等比数列{a n}中,前n项和为S n,若a m,a m+2,a m+1成等差数列,则S m,S m+2,S m+1成等差数列.

(2)设数列{a n}的首项为a1,公比为q.由题意知:2a m+2=a m+a m+1,即2a1q m+1=a1q m-1+a1q m.

∵a1≠0,q≠0,∴2q2-q-1=0,

12. 【解析】(1)由()得

即()∵∴

(2)由条件

∵为等差数列∴即解得

∴且,∴,

即数列是公差为,首项为的等差数列

(3)由(2)得()

∴= = =

知识要点梳理

知识点一:通项与前n项和的关系

任意数列的前n项和;

注意:由前n项和求数列通项时,要分三步进行:

(1)求,

(2)求出当n≥2时的,

(3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.

知识点二:常见的由递推关系求数列通项的方法

1.迭加累加法:

则,,…,

2.迭乘累乘法:

则,,…,

知识点三:数列应用问题

1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.

2.建立数学模型的一般方法步骤.

①认真审题,准确理解题意,达到如下要求:

⑴明确问题属于哪类应用问题;

⑵弄清题目中的主要已知事项;

⑶明确所求的结论是什么.

②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.

③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).

精析

类型一:迭加法求数列通项公式

1.在数列中,,,求.

解析:∵,

当时,

将上面个式子相加得到:

∴(),

当时,符合上式

故..

举一反三:

【变式1】已知数列,,,求.

【答案】

【变式2】数列中,,求通项公式.

【答案】.

类型二:迭乘法求数列通项公式

2.设是首项为1的正项数列,且,求它的通项公式.

解析:由题意

∵,∴,

∴,

∴,又,

∴当时,,

当时,符合上式∴.

举一反三:

【变式1】在数列中,,,求.

【答案】

【变式2】已知数列中,,,求通项公式. 【答案】由得,∴,

∴,

∴当时,

当时,符合上式

类型三:待定系数法求通项公式

4.已知数列中,,,求.

法一:设,解得

即原式化为

设,则数列为等比数列,且

法二:∵①

由①-②得:

设,则数列为等比数列

法三:,,,……,

总结升华:

1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.

2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.

举一反三:

【变式1】已知数列中,,求

【答案】令,则,

∴,即

∴,

∴为等比数列,且首项为,公比,

∴,

故.

【变式2】已知数列满足,而且,求这个数列的通项公式.

【答案】∵,∴

设,则,即,

∴数列是以为首项,3为公比的等比数列,

∴,∴.

∴.

类型五:和的递推关系的应用

5.已知数列中,是它的前n项和,并且, .

(1)设,求证:数列是等比数列;

(2)设,求证:数列是等差数列;

(3)求数列的通项公式及前n项和.

解析:

(1)因为,所以

以上两式等号两边分别相减,得

即,变形得

因为,所以

由此可知,数列是公比为2的等比数列.

由,,

所以, 所以,

所以.

(2),所以

将代入得

由此可知,数列是公差为的等差数列,它的首项,

故.

(3),所以

当n≥2时,

由于也适合此公式,

故所求的前n项和公式是.

总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.

举一反三:

【变式1】设数列首项为1,前n项和满足.

(1)求证:数列是等比数列;

(2)设数列的公比为,作数列,使,,求的通项公式.

【答案】

(1),

∴,

①-②

∴,

∴是一个首项为1公比为的等比数列;

(2)

∴是一个首项为1公比为的等差比数列

【变式2】若, (),求.

【答案】当n≥2时,将代入,

∴,

整理得

两边同除以得(常数)

∴是以为首项,公差d=2的等差数列,

∴,

∴.

【变式3】等差数列中,前n项和,若.求数列的前n项和.

【答案】∵为等差数列,公差设为,

∴,

∴,

∴,

若,则, ∴.

∵,

∴,∴,

∴,

∴①

①-②得

数列求和知识点总结(学案)

数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式②等比数列的前n 项和公式 (2)分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (5)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广

2.常见的裂项公式 (1)1n (n +1)=1n -1n +1 . (2)1(2n -1)(2n +1)=12? ?? ???12n -1-12n +1. (3)1n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知数列{a n }的前n 项和S n = n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{ b n }的前2n 项和. 【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列{a n }的通项公式是a n =2·3n

-1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 高频考点二 错位相减法求和 例2、(2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式; (2) 当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n . 【感悟提升】用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

数列求和方法小结

数列求和方法小结 等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和. 下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法) 将数列转化为等差或等比数列,直接使用等差或等比数列的前n 项和公式求得. 常用公式:等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= , 等比数列的求和公式?????≠--==) 1(1)1() 1(11q q q a q na S n n (切记:公比含字母时一定要讨论), 另 外 222221 (1)(21) 1236 n k n n n k n =++=+++ += ∑ , 2 3 333 3 1 (1)1232n k n n k n =+?? =+++ +=???? ∑ 例1 . 二、倒序相加法 此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和. 例2已知函数()x f x = (1)证明:()()11f x f x +-=; (2)求128910101010f f f f ?? ?????? + +++ ? ? ? ??? ?? ?? ?? 的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 1928551101010101010f f f f f f ????????????+=+==+ = ? ? ? ? ? ??? ???? ?? ???? 128910101010S f f f f ?? ?? ????=+ +++ ? ? ? ?????????令 982110101010S f f f f ?? ??????=+ +++ ? ? ? ??? ?? ?? ?? 则

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

数列求和知识点总结.doc

数列求和 1.求数列的前 n 项和的方法 (1) 公式法 ①等差数列的前 n 项和公式 ②等比数列的前 n 项和公式 (2) 分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和, 即等比数列求和公式的推导过程的推广. (5) 倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 2.常见的裂项公式 1 1 1 (1) n (n +1)= n -n +1 . (2) 1 1 1 1 . n - )( n + ) = 2 n - - n + 1 2 1 2 (212 1 1 = n + - n (3) 1. n + n +1 高频考点一 分组转化法求和 例 1、已知数列 { a n } 的前 n 项和 S n = n 2+ n , n ∈ N * . 2 (1) 求数列 { a n } 的通项公式; (2) 设 b n = 2a n + ( - 1) n a n ,求数列 { b n } 的前 2n 项和.

【感悟提升】 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差, 从 而求得原数列的和, 这就要通过对数列通项结构特点进行分析研究, 将数列的通项合理分解 转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列 { a n } 的通项公式是 a n =2·3n - 1+ ( - 1) n ·(ln2 - ln3) + ( - 1) n ln3 ,求其前 n 项和n . n S 高频考点二 错位相减法求和 例 2、(2015 ·湖北 ) 设等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,等比数列 { b n } 的公比为 q ,已知 b 1= a 1 ,b 2= 2, q = d , S 10= 100. (1) 求数列 { a n } , { b n } 的通项公式; n a n n n (2) 当 d>1 时,记 c = ,求数列 { c 的前 n 项和 T . b n 【感悟提升】用错位相减法求和时,应注意: (1) 要善于识别题目类型,特别是等比数列公比为负数的情形; (2) 在写出“ S n ”与“ qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ S n - qS n ”的表达式; (3) 在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解. 【变式探究】已知数列 n 满足首项为 1 n + 1 n * n 2 n { a } a = 2, a = 2a ( n ∈ N ) .设 b = 3log a - * n n n n 2( n ∈ N ) ,数列 { c } 满足 c = a b . (1) 求证:数列 { b n } 为等差数列; (2) 求数列 { c n } 的前 n 项和 S n . 高频考点三 裂项相消法求和 例 3、设各项均为正数的数列 2 2 2 { a n } 的前 n 项和为 S n ,且 S n 满足 S n -( n + n - 3) S n - 3( n +n ) = 0, n ∈ N * . (1) 求 a 1 的值; (2) 求数列 { a n } 的通项公式;

数列求和的常用方法

数列求和的常用方法 主要方法: 1.求数列的和关键是看数列的通项公式形式注意方法的选取: 2.求和过程中注意分类讨论思想的运用;转化思想的运用; 一、公式法 二、分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 1、求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 2 、 求 数 列 的 前 n 项 和 : 231 ,,71,41, 1112-+???+++-n a a a n ,… 三、 合并求和法: 1、求22222212979899100-++-+-Λ的和。 2、1-2+3-4+5-6+7-8+9-……….+ n 1-1 n +)( 3(2014山东19文) 在等差数列{}n a 中,已知2d =,2a 是1a 与4a 等比中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()12 ,n n n b a += 记()1231n n n T b b b b =-+-++-L ,求n T . 4.( 2014山东19理) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 5、(2011山东理数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:()1ln n n n n b a a =+-,求数列{}n b 的前n 项和n S . 6、(2011山东文数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-, 求数列{}n b 的前2n 项和2n S . 四、 错位相减法:.×. 1、已知数列)0()12(,,5,3,11 2 ≠--a a n a a n Λ,求前 n 项和。 2、 132)12(7531--+???++++=n n x n x x x S 3、求数列 ??????,2 2,,26,24,2232n n 前n 项的和 4、{2}.n n n ?求数列前项和 5、设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=

(甘志国)数列求和的七种基本方法

数列求和的七种基本方法 甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15) 数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法. 1 运用公式法 很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记: 还要记住一些正整数的幂和公式: 例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤?>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时, 所以 2 2 32(1,2,,16)32512 (17,) n n n n T n n n n * ?-=?=?-+≥∈??N L 且 例2 求1)2(3)1(21?++-?+-?+?=n n n n S n Λ. 解 设2 )1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和. 高考题1 (2014年高考浙江卷文科第19题(部分))求数列{}21n -的前n 项和n S . 答案:2n S n =. 高考题2 (2014年高考四川卷理科第19题(部分))求数列{}24n -的前n 项和n S . 答案:23n S n n =-. 高考题3 (2014年高考福建卷文科第17题)在等比数列{}n a 中,253,81a a ==. (1)求n a ; (2)设3log n n b a =,求数列{}n b 的前n 项和n S . 答案:(1)1 3 n n a -=;(2)22 n n n S -=. 高考题4 (2014年高考重庆卷文科第16题)已知{}n a 是首项为1,公差为2的等差数列,

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列求和优秀教案设计

题组教学:“探索—研究—综合运用”模式 ——“数列的裂差消项求和法解题课”教学设计 【课例解析】 1 教材的地位和作用 本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。 2 学情分析 在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。本节课的容和方处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。【方法阐释】 本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节. 本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。 【目标定位】

1 知识与技能目标 掌握裂项相消法解决数列求和问题的基本思路、方法和适用围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂差消项求和法的探究过程、深化过程和推广过程。培养学生发现问题、分析问题和解决问题的能力。体会知识的发生、发展过程,培养学生的学习能力。 3 情感与价值观目标 通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。 4教学的重点和难点 本节课的教学重点为裂项相消求和的方法和形式。能将一些特殊数列的求和问题转化为裂项相消求和问题。 本节课的教学难点为用裂项相消的思维过程,不同的数列采用不同的方法,运用转化与化归思想分析问题和解决问题。 【课堂设计】 一、创设情景、导入新课 教师:请同学们回忆一下,我们在推导数列求和公式时,先后发现了哪几种数列求和的方法? 学生1:在等差数列求和公式的推导时我们用到了倒序相加法。在等比数列求和公式的推导中我们发现了错位相减法、裂差消项求和法。 学生2:在学习求和过程中,我们还发现了分组求和法和通项转换法。

数列求和的常用方法(三课时)

数列求和的常用方法(三课时) 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 2 1 3)]1(21[+==∑=n n k S n k n 例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列. (2)令31ln 12n n b a n +== ,,,, 求数列{}n b 的前n 项和T . 解:(1)由已知得12313 27:(3)(4)3.2 a a a a a a ++=?? ?+++=??, 解得22a =. 设数列{}n a 的公比为q ,由22a =,可得132 2a a q q ==,. 又37S =,可知2 227q q ++=,即22520q q -+=, 解得121 22 q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +== ,,,, 由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-= {}n b ∴是等差数列. 12n n T b b b ∴=+++ 1()2 (3ln 23ln 2) 23(1)ln 2. 2 n n b b n n n += += += 故3(1) ln 22 n n n T += .

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧 数列求和的七种解法 1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。 2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。例如等差数列的求和公式,就可以用该方法进行证明。 3.错位相减:形如An=Bn?Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q?Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。这种数列求和方式叫做错位相减。 4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。 5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。 6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。 7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜

想证明起到了关键作用。 高中数学解题方法实用技巧 1 解决绝对值问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2 因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是: 提取公因式 选择用公式 十字相乘法 分组分解法 拆项添项法 3

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

相关主题
文本预览
相关文档 最新文档