当前位置:文档之家› 合理选择丁腈橡胶胶筒本构模型探讨

合理选择丁腈橡胶胶筒本构模型探讨

合理选择丁腈橡胶胶筒本构模型探讨
合理选择丁腈橡胶胶筒本构模型探讨

第29卷第5期2007年10月

西南石油大学学报

JournalofSouthwestpetroleumUrfiversity

Vol29No5

0ct20CH

文章编号:1000—2634(2007)05—0141—04

合理选择丁腈橡胶胶筒本构模型探讨+

伍开松1,袁新生2,张元2,翟志茂1,古剑飞1

(1西南石油大学机电工程学院,四川成都615000;2新疆石油管理局)

摘要:根据大变形橡胶理论和试验数据,利用最小二乘法原理,导出了确定橡胶本构模型系数的公式和评价本构模型优劣的公式。以两种封隔嚣肢苘材料—701#和29#T腈橡胶的压缩试验数据为倒.确定了二常数、三常数、五常数和九常数Mooney-Rivlin(简称M—R)本构模型和Y即h三班幂奉构模型的特定系数,进行了模型的误差评估和比较。嬉果表明:Yeoh三次幂本构模型拟舍701#和29#材料试验敷据能够满足精度要求,但M—R二常数本构模型误差太太;701#丁腈棒胶材料应选择M—R五常数J:‘上奉构模型;29#T腈棒腔材料应选择三常数以上本椅模型。

关键词:封隅嚣胶茼;丁腈橡胶;本构模型;M帅ney—Pdvlin;Yeoh

中图分类号:TE831文献标识码:A

引言

封隔器压缩式胶筒的材料大多数采用丁腈橡胶。这种材料在大变形压缩条件下仍具有很好的力学性能““…。如何选择合适的本构关系描述其力学行为?一直是封隔器胶筒研究者们所关注的核心问题。大变形橡胶本构模型很多,如Mooney—Riv|in,Yeoh,ogden和Gem等”’2o。不同的橡胶本构模型适用于不同的橡胶材料。当进行封隔器胶筒形状设计和参数优化时,橡胶本构模型选择是否正确直接关系到其产品设计的成功与否和结果的可信性。尤其是在利用有限元分析设计时,显得更是至关重要”。。

本文以某油田封隔器边胶筒材料701#丁腈橡胶(邵氏硬度为88)和中胶筒材料29#丁腈橡胶(邵氏硬度为72)的压缩试验数据为例,说明了丁腈橡胶材料本构模型选择的重要性。即使是同类的丁腈橡胶,其所含填料的多少不同,所选择的本构模型也可能会不同。

形=[,。厶,。‘砰丘‘E£,2矗,,,厶一材料变形的第一和第二张量不变量。

‘=^:+^;+^;一3(2)

,2=^:A;+A撕+^2。^j一3(3)式中,A.,^:,^,一三个主方向的伸缩比。

1最小二乘法优选本构模型的原理

1.1橡胶弹性大变形理论”1

以M.R本构模型的应变能密度函数形的通式为例

Ⅳ=∑“tE(o)式中,州一整数,可取1,2,3…;

≈,f_-整数,取0,1,2,3…;%,z≤_v;

%~待定常数;当截取一个常数项(含C。。项)时,该方程称之为Neo.Hookean方程;根据截取的项数不同,分别称之为二常数、三常数、五常数和九常数的M—R本构模型。

当N=3时,为了叙述和书写的方便将co。,c。。,c…C∞,…,co,的九个系数分别编为C。,c:,…,C,的序列形式。

则式(0)可改写为

畦][c.c2…c9]7(1)

^。=1+s。(i=1,2.3)(4)

式中,6i一第i主方向的应变量。

这里假设橡胶的体积压缩量很小,所以可以视为几乎不可压缩橡胶。其第三变形张量不变量厶=

?收稿日期:2006一呻一21

作者简介:伍开松(1961一),男(汉族)-期北仙桃^,副教授.博士.主要执事有限元分析,现代设计方法,机械系统动力学仿真和石油矿场机械等方面的研究。

142西南石油大学学报2007正

A2。^:2^;一1应该为零,即有下式

^÷A;^:=1(5)

也就是说,橡胶材料的三个主应变方向只有两个方向的应变是独立的。

Rivlin已经证明,均匀变形弹性体的应力、应变和应变能之间存在如下关系式

糕=z(署州2面0W)㈤蕊t2-t3=z(署“笔)㈣两t3-t1=z(面OW州薏)(8)

式中

f一真实应力(与变形后尺寸有关的应力),MPa,难以测量到;盯一工程应力(与初始尺寸有关的应力),MPa,也叫实侧应力,二者之问的关系如下t。=F。^:(i=1,2,3)(9)1.2最dx--乘法确定待定常数

将M.R本构模型式(1)的应变能密度函数形,分别对,。和‘求偏导数得

.0—W——.

d,。一

[10‘2Ia0£21.L3to]c(10)—a—W—一

鸸一

[011102/22/.L日03E]c(11)式中,c一待定常数向量,

C=[cIC2c3qc5c6C7CaC9]1

将式(10)、(11)和(4)代人式(6)一(8),就得到了M—R模型描述的应变和应力之间的本构关系。为了书写和叙述的方便将其写成通用的函数表达式形式

旷=且C1,G,…,C9;FI,F2,s3)(12)

由最dx--乘法原理,根据单轴拉伸或压缩、或剪切、或双轴拉伸或双轴压缩试验的数据可以确定式(12)中的待定系数C。设试验的数据为(s”s。,岛;听)(j=1,2,…,村,,村为试验数据的点数。则矿的理论值为:舌,=“C1,c2,…,C9;F”P:.,8≈),它与试验观测值,rs(j=1,2,…,_|lf)的最佳拟合,也就是参数cI帅CC∥“.c9应使

ⅣⅣ

Q2蒿[毋一甸]22;[q—f(Ci,c2,…,c,;q,%,%)】2.tmi“‘13’

由微分学求极值的原理可知,c,,c:,仁,…,c9满足下列代数方程组

警=0(i=1,2,…,R)(14)

aL-

因此对二常数、三常数、五常数和九常数的M-R本构模型,分别只需求解一个二元、三元、五元和九元的线性方程组,即求解式(14)就可确定式(13)中的最优待定常数值£‘J=1,2,…,R;月可以取2、3、5或9。再将c?J=1,2,…,R代人式(1)就确定了试验材料的二常数、三常数、五常数和九常数的M—R本构模型的应变能密度函数。最后。进行回代,就能得到式(12)所描述的应变和应力之间的理论本构关系式。

1.3本构模型的优劣评价

为了度量不同本构模型的精确程度,可以取试验数据点处的工程应力值与理沧本构模型计算的应力值的差值的均方根。作为本构模型的误差评价指标,表达式如下

_【进竺篙型】+式中

尺一待定系数的个数。如M.R本构模型,R可以

取2、3、5或9;

^f_试验数据的采样点数。

口‘越小表示理论本构模型精度越高,说明理论

本构模型能比较真实地反映材料试验的力学行为。(15)

同理,Yeoh三次幂本构模型的应变能密度函数W为“一"

w=c.JI+c2丘十C3,J(16)

可以按照上述同样的步骤确定其最优待定常数c?,c;,c;的值,并利用式(15)评价其理论本构模型的优劣。其它的橡胶类材料的本构模型,也可以采

第5期伍开松等:合理选择丁腈橡腔皎筒本构模型探时143用同样的方法来处理.这里不一一赘述。

2根据试验结果优选本构模型

2.1两种丁睛橡胶的材料试验

整个试验以“GB/T7757--1993硫化橡胶或热

塑橡胶压缩应力应变性能的测定”标准为依据,采

用标准的第一种加载方式,施JJn压-缩力的金属板经

润滑剂润滑。

表1两种丁腩橡胶的压缩应变一应力美系原始试验数据

!1111堕璺堕

应,受a/%应力口/MPa

型!上望塑壁

一应变一%应力一MPa

分别对某油田两种封隔器胶筒用的丁腈橡胶材料(其编号分别为701#和29#)制作了五组试样,试样要求为圆柱体,试验在室温条件下进行,以10mm/min的速度在英国进口的CMT7104试验机上压缩,并连续测量试样的压缩量和相应的载荷,直至压缩变形率达到35%以上,然后以相同的速度放松,如此反复共循环四次,并记录四次的循环结果,对最后的一次结果进行数据处理。29#材料的五个试样在试验前检测到的平均直径为由13.81mm,平均高度630rllln。701#材料的五个试样在试验前检测到的平均直径为十1380mm,平均高度6.31mm。通过对五组数据进行数据处理后其应变和应力之间的关系如表1所示。

2.2两种丁腈橡胶的本构模型选择

由于是单向压缩试验,设压缩方向的压缩比为^,压缩工程应力为盯,据对称性原理和式(5)可以导出下面的关系

^;=A;=Ail=^“(17)再将式(17)代人式(2)和式(3)得

f1=^2+2A~一3(18)

厶=23.+^一3(19)

将式(17)一(19)和式(9)一(11)代人式(6),使用Matiab的符号运算工具运算,且考虑or:=盯,=0,经过运算可以得出M—R的应变和应力之间的本构关系式

or=ETC(201式中

f::::

3A2—3A+33.一2+3A一3—3^一4—3

2^3—6^+6^4—4A一3十2

E=2l4A一2A2+6A一3—2^一5—6

f8A3—183.2—3A一3A一2—27A一3+18A一4+6A~一53.一6+24

J5A4—6A3—18A2+27A一24A2+3h.3十18A“一8A一5十3

I3A5—18A3+9^2+27A一27A一2+36A一一12A一一18

12A2—36h+18A’2—27A一3—93.一4+18^一5—3)t’7+27

C=[clc2c3c4Gc6c7qc9]1以得出Yeoh本构模型的应变和应力关系式与式将式(16)一(19)及式(9)代人式(6),也使用(20)的表达形式相同,只是其中的E和c的内容不Madab的符号运算工具运算,考虑口:=叮,=0,可同而已,其中

r^一^‘2]

E=2I2A3—63.+6A一2—4^一+2l

I-3.^5—18^3+9A2+27^一27A’2+36A一一12A4+27j

C=[Gc2c,]’

144西南石油大学学报2007年

表2M.R和Yeoh本构模型的待定常数和误差均方根值

待定常数

材料模型

MR二常数翌:!三童塑型’!至苎塑竺:!皇童塑!竺!三姿量701#29#701#29#701#29#701#29#

C?19971374720490049735295822726683727477937346502.1286甜3845703593—15652—24911—24592—458706255—51242—32458—04660C?5436904955110617335304419321146606380502724口一14220—2187—937488—228858

C?5170290698649131571142472

c:一249683786986

口3832589—222564

C?一309256—259257

甜6568386396669

0。06344028770102200190001260000400006000040083600713将应变试验数据代人式(4)求出对应的压缩比

^,然后代人式(20),再将式(20)和试验应力数据代人式(13)和(14),经过整理,分别求解二元、三元、五元和九元线性方程组,即可分别确定701#和29#丁腈橡胶材料的M—R二常数、三常数、五常数和九常数本构模型以及含三常数的Yeoh三次幂本构模型的系数矩阵c’,然后再将c‘代入式(15),即可计算对应的本构模型误差的均方根值Q‘,所有计算结果参见表2。

3结论及建议

从表2中Q+的变化规律可眦看出:

(1)无论是701械丕是29#丁腈橡胶,M-R本构模型的待定常数越多,其本构模型的精度越高,即理论本构模型拟合试验数据的误差越小。

(2)对于封隔器胶筒用的701#和29#丁腈橡胶,若采用M—R二常数的本构模型,其误差太大。建议不要选用。在研究封隔器胶筒的力学行为时,有些研究者在文献中使用了M—R二常数的本构模型,笔者们认为其计算结果和结论需谨慎使用。

(3)对于701#和29#丁腈橡胶,选择Yeoh三次幂本构模型可以满足精度要求,其优点是计算工作量较小。

(4)对于含填料很高的封隔器边胶筒701#丁腈橡胶,建议最好选用M-R五常数及其以上的本构模型。

(5)对于封隔器中胶筒29#丁腈橡胶,建议选用M—R三常数及其以上的本构模型。参考文献

[1]詹特AN(美),主编橡胶工程——如何设计橡胶配件[M]张力群,田明,译北京:化学工业出版杜,

2002

[2]徐立,吴桂忠.有限元分析中橡胶应变能函敷的若干形式[J]橡胶工业,1999,46(12):707—711

[3]伍开松.余月明,张新政,等用接触有限元研究胶筒系统的力学行为[J]石油矿场机械,2006,35(3):23

—26.

[4]Yeoh0H.SomefomLsofthestrainenergyfunctionforrubber[J].RubberChemandTechn01.1993,66:754—

7'l

[5]YeohOnCharaclerizationofelasticpropertiesofcarbonblackfilledrubbervadeanizates[J].RubberChemAnd

Teehnol,1990.63(5):792—805

[6]特雷劳尔LRG檬腔弹性物理力学[M].王梦蚊,王培国,薛广智,译北京:化学工业出版社,1982.

[7]弗雷克利K,佩恩PK橡胶在工程中应用的理论与实践[M】.杜承泽,唐宝华,罗东山,等,译北京:化学工

业出版社.1985.

[8]危银涛,杨挺青,杜星文橡胶类太变形本构关系及其有限元方法[J】固体力学学报,1999,20(4):281—

289.

[9]杨晓翔非线性橡胶材料的有限元方法[M]北京:石油工业出版社.1999.

[10]郏明军,王文静,陈政南橡胶Mooney—Rivlin模型力学性能常数的确定[J]橡胶工业,2003,50(8):462—

465

(编辑张云云)

丁腈橡胶的生产设计

B线项目 B线题目:丁腈橡胶的生产设计 专业:高聚物生产技术 班级:高化 0911 学号: 学生姓名: 指导教师: 目录 第一章工艺背景

1.丁腈橡胶的发展简介 (4) 2.丁腈橡胶的性能用途 (4) 3.工艺的研究意义 (4) 第二章设计思路及要解决的问题 1.橡胶的合成设计思路 (5) 2.丁腈橡胶需解决的问题 (5) 第三章丁腈橡胶的化学组成及结构 (6) 第四章丁腈橡胶的合成工艺 1. 主原料及其规格 (7) 2.消费定额 (7) 3.丁腈橡胶的聚合机理和工艺流程 (8) 4.丁腈橡胶过程及影响因素 (11) 第五章丁腈橡胶的性能 1.耐油和耐溶剂性 (12) 2.对化学物质的稳定性 (13) 3.耐氧化和耐日光作用 (13) 4.耐热及耐寒性 (13) 5.物理机械性能 (14)

6.电性能和透气性 (14) 第六章丁腈橡胶的加工工艺及用途 1.丁腈橡胶的加工工艺 (15) 2.丁腈橡胶的应用 (15) 第七章丁腈橡胶的新发展 1.新发展 (16) 2.新品种 (18) 设计总结 (19) 参考文献 (20) 丁腈橡胶的制备的工艺流程 第一章、工艺背景

1.丁腈橡胶的发展简介 丁腈橡胶初始研究于德国,l931 年首先报导了丁二烯与丙烯腈的共聚物,在并对得到的共聚物做了性能鉴定。结果发现,它在耐老化、耐日光、耐热、耐油以及气密性等方面均优于天然橡胶。因而引起人们对这个新问世的高分子材料以极大的注意。时至1937 年德国出于发动侵略战争的需要,积极支持和鼓励国内合成橡胶的生产,致使丁腈橡胶的工业化生产首先在德国获得成功,并出法本(I.G.Farban)公司投入正式生产。 2.丁腈橡胶的性能与用途 丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压制品,如O 形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。 3.合成工艺的意义 丁腈胶因耐油、耐热性能和物理机械性能优异,已经成为耐油橡胶制品的标准弹性体,广泛用于汽车、航空航天、石油开采、石化、纺织、电线电缆、印刷和食品包装等领域,目前国内产不足需,年进口量约 4 万吨。2001 年全球丁腈胶总年产能力约65 万吨,分布在17 个国家和地区。其中,中国周边地区年产能力约27 万吨,占世界总年产能力的40%,除印度外均是中国主要

国内外丁腈橡胶牌 对比分析

国内外丁腈橡胶牌号对比分析(2001/03/23) 作者:马艳丽、、前言 丁腈橡胶(NBR)作为国内特种胶种,具有“零散用户多、应用行业广、使用牌号杂、技术指标要求高、单纯用量少”等特点。世界各国的NBR指标牌号十分系列化、多元化,细分化,而我国丁腈橡胶的品种在兰化引进的1.5万t/a丁腈橡胶装置投产后虽已达到17个左右,但实际生产的牌号远不能满足国内市场需求,这就要求国内丁腈橡胶要市场细分化、产品系列化、牌号多元化,以满足不断变化的市场需求。 1丁腈橡胶牌号的分类和意义 丁腈橡胶与其它合成橡胶相比,总产量虽然不大,但品种繁多,牌号复杂,丁腈橡胶的牌号主要反映NBR 的制造方法、丙烯腈质量分数、门尼粘度以及其它一些特性。NBR按丙烯腈含量的高低,可分为超高腈、高腈、 中高腈、中腈、低腈五类。 表1 丁腈橡胶牌号的分类 丁腈橡胶因含有丙烯腈而具有极性,且因丙烯腈含量的变化,其特性变化很大,表2列出了丙烯腈含量对NBR 影响的定性分析。 表2 丙烯腈含量对NBR性能的影响 2 世界主要丁腈橡胶牌号 目前,世界上有20多个国家和地区生产NBR,NBR的世界总生产能力为64万t/a,占全世界合成橡胶生产能力的4%。其中,美国、德国、日本、俄罗斯和法国的生产能力达43.2万t/a,占世界总生产能力的2/3。 表3 世界主要丁腈橡胶生产国生产情况

根据门尼粘度和丙烯腈质量分数来分,其品种牌号多达400余种,适用于各行业各用户的技术指标要求。表 4-表11列出了世界主要丁腈橡胶生产国生产的具体指标牌号情况,并对台湾南帝(NANCAR)、日本ZEON(NIPOL)、JSR(JSR)、加拿大SARNIA(KRYNAC)公司的NBR商品牌号进行了相应的比照。(表12) 表4 德国BAYER公司NBR指标牌号 表5 意大利埃尼公司NBR指标牌号

关于成立丁腈手套生产加工公司可行性报告

关于成立丁腈手套生产加工公司 可行性报告 投资分析/实施方案

报告摘要说明 一次性健康防护手套按照材质不同可分为丁腈手套、PVC手套、乳胶手套和PE手套,根据品质等级和用途可分为医疗级和非医疗级,医疗级手套 是指需要满足目标国家医疗市场质量认证体系或准入标准的产品,主要用 于医疗手术、医疗检查、医疗护理等领域。 xxx有限责任公司由xxx科技发展公司(以下简称“A公司”)与xxx公司(以下简称“B公司”)共同出资成立,其中:A公司出资1190.0万元,占公司股份58%;B公司出资860.0万元,占公司股份42%。 xxx有限责任公司以丁腈手套产业为核心,依托A公司的渠道资源 和B公司的行业经验,xxx有限责任公司将快速形成行业竞争力,通过 3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx有限责任公司计划总投资19782.18万元,其中:固定资产投 资15524.45万元,占总投资的78.48%;流动资金4257.73万元,占总投资的21.52%。 根据规划,xxx有限责任公司正常经营年份可实现营业收入33163.00万元,总成本费用25391.87万元,税金及附加356.79万元,利润总额7771.13万元,利税总额9199.80万元,税后净利润5828.35万元,纳税总额3371.45万元,投资利润率39.28%,投资利税率

46.51%,投资回报率29.46%,全部投资回收期4.89年,提供就业职位469个。 丁腈手套由于在抗静电、拉伸性、舒适性、耐油性等方面表现出色, 主要用于医疗防护、健康卫生防护领域中对防护强度、防尘量、抗化学性、耐油性与机械防护性等要求较高的场景,属于一次性防护手套中的较高端 产品。相较其他手套品种,丁腈手套属于新增的朝阳品种,在全球范围内 逐步取得用户认可,增量需求空间广阔。

苯乙酮性质、用途及生产工艺

苯乙酮的特性、用途与生产工艺 概述: 苯乙酮,又称乙酰苯,沸点(℃):,相对密度(水=1):(20℃) ,相对蒸气密度(空气=1):,是最简单的芳香酮,其中芳核(苯环)直接与羰基相连。以游离状态存在于一些植物的香精油中。纯品为无色晶体。市售商品多为浅黄色油状液体。有像山楂的香气。微溶于水、易溶于多种有机溶剂,能与蒸气一同挥发。 苯乙酮分子结构:甲基C原子以sp3杂化轨道成键,苯环和羰基C原子以sp2杂化轨道成键。苯乙酮能发生羰基的加成反应、α活泼氢的反应,还可发生苯环上的亲电取代反应,主要生成间位产物。 苯乙酮可在三氯化铝催化下由苯与乙酰氯、乙酸酐或乙酸反应制取。另外,由乙苯催化氧化为苯乙烯时,苯乙酮为副产物。 苯乙酮主要用作制药及其他有机合成的原料,也用于配制香料。用于制香皂和香烟,也可用做纤维素醚,纤维素酯和树脂等的溶剂以及塑料的增塑剂,有催眠性。现在苯乙酮大多以异丙苯氧化制苯酚和丙酮的副产品获得,它还可由苯用乙酰氯乙酰化制得。 苯乙酮的制备: 【仪器及药品】 药品:乙酸酐苯硫酸镁盐酸氯化铝氢氧化钠 仪器:圆底烧瓶冷凝管滴液漏斗蒸馏装置干燥管搅拌装置 【操作步骤】 向装有10ml恒压滴液漏斗、机械搅拌装置和回流冷凝管(上端通过一氯化钙干燥管与氯化氢气体吸收装置相连)的100ml三颈烧瓶中迅速加入13g()粉状无水三氯化铝和16ml(约14g,无水苯。在搅拌下将4ml(约,)乙酐自滴液漏斗慢慢滴加到三颈烧瓶中(先加几滴,待反应发生后在继续滴加),控制乙酐的滴加速度以使三颈烧瓶稍热为宜。加完后(约10min),待反应稍和缓后在沸水浴中搅拌回流,直到不再有氯化氢气体逸出为止。将反应混合物冷到室温,在搅拌下倒入18ml浓盐酸和30g碎冰的烧杯中(在通风橱中进行),若仍有固体不溶物,可补加适量浓盐酸使之完全溶解。将混合物转入分液漏斗中,分出有机层(哪一层),水层用苯萃取两次(每次8ml)。合并有机层,依次用15ml10%氢氧化钠、15ml水洗涤,再用无水硫酸镁干燥。先在水浴上蒸馏回收苯,然后在石棉网上加热蒸去残留的苯,稍冷后改用空气冷凝管(为什么)蒸馏收集195~202℃馏分,产量约为(产率85%)。纯苯乙酮为无色透明油状液体。 【注意事项】 1,滴加苯乙酮和乙酐混合物的时间以10min为宜,滴的太快温度不易控

丁腈橡胶配方设计性能改进及生产工艺

丁腈橡胶配方设计性能改进及生产工艺 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

丁腈橡胶配方设计,性能改进及生产工艺 1 背景 丁腈橡胶是由丁二烯和丙烯腈经乳液聚合法制得的,丁腈橡胶主要采用低温乳液聚合法生产,耐油性极好,耐磨性较高,耐热性较好,粘接力强。丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性;耐热性优于丁苯橡胶、氯丁橡胶,可在120℃长期工作。气密性仅次于丁基橡胶。丁腈橡胶的性能受丙烯腈含量影响,随着丙烯腈含量增加拉伸强度、耐热性、耐油性、气密性、硬度提高,但弹性、耐寒性降低。其缺点是耐低温性差、耐臭氧性差,电性能低劣,弹性稍低;并且不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。 禾川化学是一家专业从事橡胶产品配方分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,做了小试和应用试验,研制了一种新型丁腈橡胶配方技术;丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压制品,如O形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 2 丁腈橡胶 丁腈橡胶常见体系 丁腈橡胶主要采用硫黄和含硫化合物作为硫化剂,也可用过氧化物或树脂等进行硫化。由于丁腈橡胶制品多数要求压缩永久变形小,因此多采用低硫和

含硫化合物并用,单用含硫化合物(无硫硫化体系)或过氧化物作硫化剂。硫黄-促进剂体系是丁腈橡胶应用最广泛的硫化体系。硫黄可使用硫黄粉,也可使用不溶性硫黄。由于硫黄在丁腈橡胶中的溶解度比天然橡胶低,所以应注意控制用量。硫黄用量增加,定伸应力、硬度增大,耐热性降低,但耐油性稍有提高,耐寒性变化不大。一般软质橡胶由于丁腈橡胶不饱和度低于天然橡胶,所需硫的用量可少些,一般用量~2份,硫化促进剂用量可略多于天然橡胶,常用量1~份。丁腈橡胶的软质硫化胶最宜硫黄用量为份左右。不同丙烯腈含量的丁腈橡胶所需硫黄用量也不同,当丙烯腈含量高,而丁二烯相对含量低时,由于减少了不饱和度,所需硫黄用量可酌量减少。如丁腈-18,硫用量~2份;丁腊-26,硫用量~份,具有良好的综合性能。低硫配合可提高硫化胶的耐热性,降低压缩永久变形及改善其他性能,因此丁腈橡胶常采用低硫(硫黄用量份以一下)高促硫化体系。 丁睛橡胶使用的促进剂主要是秋兰姆类和噻唑类,其中秋兰姆类促进剂的硫化胶特性较好,特别是压缩永久变形性良好,而且加工安全,故应用更为普遍。此外还使用次磺酰胺类促进剂。胺类和胍类促进剂常作为助促进剂使用。硫黄与不同促进剂并用具有不同的性能,例如用二硫化秋兰姆(如促进剂TMTD,TRA,TRT用量~份)与硫黄并用,采取低硫或无硫配合,耐热性优异;硫黄与促进剂DM或CZ并用,胶料强伸性能好,是一种常用的硫化体系;硫黄与一硫化四甲基秋兰姆(如TS)并用,胶料具有较低的压缩永久变形和最小的焦烧倾向。高量秋兰姆类与次磺酰胺类并用或秋兰姆类与噻唑类并用的低硫配方,硫化胶的物理机械性能优异,耐热性良好,压缩永久变形小,并且不易焦烧和喷霜。

2205双相不锈钢的焊接工艺规程完整

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。 1.1 我国双相不锈钢的应用 双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于

丁腈手套生产加工项目投资计划书

丁腈手套生产加工项目投资计划书 投资分析/实施方案

摘要说明— 一次性健康防护手套通常是由橡胶薄片或薄膜制成的一类手套。在一 些手套更换频率较高的行业,通常建议使用一次性手套,不但可以避免交 叉污染,更可以大大节约成本,比如医疗行业、实验室、食品加工业等对 卫生要求较高的行业。根据材质,一次性防护手套可分为丁腈手套、PVC手套、乳胶手套和PE手套。按照用途一次性健康防护手套可分为医疗级和非 医疗级,医疗级是指满足国家医疗质量认证的产品,主要用于医疗手术、 医疗护理、医疗检查等领域。医疗级产品的好坏直接影响到感染率的高低,因此医疗机构对医疗级手套的质量要求很高。非医疗级别手套一般用于食 品加工、实验室、电子化工、餐饮和家庭清洁等领域。一次性健康防护手 套按照材质不同可分为乳胶手套、丁腈手套、PVC手套和PE手套。 该丁腈手套项目计划总投资7443.52万元,其中:固定资产投资 6084.84万元,占项目总投资的81.75%;流动资金1358.68万元,占项目 总投资的18.25%。 达产年营业收入10784.00万元,总成本费用8454.22万元,税金及附 加139.07万元,利润总额2329.78万元,利税总额2790.20万元,税后净 利润1747.34万元,达产年纳税总额1042.87万元;达产年投资利润率 31.30%,投资利税率37.48%,投资回报率23.47%,全部投资回收期5.76年,提供就业职位179个。

一次性健康防护手套按照材质不同可分为丁腈手套、PVC手套、乳胶手套和PE手套,根据品质等级和用途可分为医疗级和非医疗级,医疗级手套 是指需要满足目标国家医疗市场质量认证体系或准入标准的产品,主要用 于医疗手术、医疗检查、医疗护理等领域。 报告内容:基本情况、项目基本情况、项目调研分析、项目建设方案、项目选址说明、项目工程方案分析、工艺技术分析、环境保护可行性、安 全管理、项目风险性分析、节能说明、实施进度计划、投资分析、经济收 益分析、结论等。 规划设计/投资分析/产业运营

对甲苯乙酮的制备

对甲苯乙酮的制备 作者:xxx 学号:xxx 摘要:以甲苯和乙酸酐为原料,无水氯化铝为催化剂,制备对甲基苯乙酮。在实验过程中,要求掌握实验室中利用Friedel Crafts酰基化制备对甲基苯乙酮的原理和方法。同时要求掌握带有气体吸收装置的加热回流等基本操作,学会控制无水的反应条件。 关键词:对甲苯乙酮、傅克酰基化反应、乙酸酐、尾气吸收 The preparation of toluene Acetophenone Author: xxx Number: xxx Abstract: Toluene and acetic anhydride is as raw materials,Anhydrous aluminium chloride is as catalyst to preparate for methyl acetophenone. In the experimental process, we require to master the principle and method of preparing methyl acetophenone using Friedel Crafts acyl laboratory. At the same time,we require to master with gas absorption heating reflux device and other basic operations,to learn to control the anhydrous reaction conditions. Keywords: absorption of toluene acetophenone, Friedel Crafts acylation reaction,acetic anhydride, tail gas 对甲基苯乙酮为无色略带黄色的透明液体,在稍低的温度下凝固,具有山楂子花的芳香及紫苜蓿、蜂蜜和香豆素的香味,且香气较苯乙酮较为柔和,极度稀释后有及草莓似的甜香味。对甲基苯乙酮的沸点为226度,熔点为28度,密度为1.0051,折射率为1.5335,闪点为92度,易溶于乙醇、乙醚、氯仿和丙二醇等,几乎不溶于水和甘油。对甲基苯乙酮有毒,应避免吸入对甲基苯乙酮的蒸气,避免与眼睛、皮肤接触,其存在于烤烟烟叶、白肋烟烟叶、香料烟烟叶、烟气中。天然存在于可可、黑醋栗、玫瑰木油、巴西檀木油、西藏柏木油、芳樟油,以及含羞草中。制备对甲基苯乙酮主要是采用乙酰化法,以甲苯和醋酸酐为原料,在无水三氧化铝催化剂存在下,进行乙酰化反应,然后冰解、中和、水洗、分离、蒸馏而得。也可以从巴西檀香木、玫瑰木等天然原料中经精馏提取而得。对甲基苯乙酮常用于调和花精油,也用于香皂及草莓等水果味香料的制造。对甲基苯乙酮也常用于烘烤食品、糖果、布丁,可用于日化香精和食用香精的配方中。 1.结果与讨论 1.1.实验装置的选取

丁腈橡胶的生产工艺与技术进展

丁腈橡胶的生产工艺与技 术进展 Prepared on 24 November 2020

丁腈橡胶的生产工艺与技术进展 丁腈橡胶的生产工艺 2.1.1 丁腈橡胶的生产工艺 工业上生产丁腈橡胶采用连续或间歇式乳液聚合工艺,按聚合温度不同,分为热法聚合与冷法聚合两类。冷法聚合的反应温度一般控制在5~15℃,热法聚合则为30~50℃。冷法聚合通常采用连续聚合工艺,热法聚合通常采用间歇聚合工艺。目前世界上生产厂家,如朗盛公司、美国Lion Copolymer公司、日本瑞翁公司以及日本合成橡胶公司都采用低温乳聚法。产品类型包括固体丁腈橡胶(固体NBR)、氢化丁腈橡胶(HNBR)、粉末丁腈橡胶(PNBR)、羧基丁腈橡胶(XNBR)以及丁腈橡胶胶乳(NBR胶乳)等。 目前世界各国丁腈橡胶生产工艺流程多采用冷法乳液聚合连续生产,其工艺过程与丁苯橡胶类似。主要包括原料配制、聚合、单体回收、胶乳贮存及掺混、胶乳凝聚、干燥及压块包装等工序。 ①生产时,先将一定比例的丁二烯、丙烯腈混合均匀,制成碳氢相。在乳化剂中加入氢氧化钠、焦磷酸钠、三乙醇胺、软水等制成水相,并配制引发剂等待用。 ②将碳氢相和水相按一定比例混合后送入乳化槽,在搅拌下经充分乳化后送入聚合釜。 ③在聚合釜内直接加入引发剂,进行聚合反应,反应热量由列管内液氨蒸发排出。温度控制在30℃或5℃时,转化率可维持在70%~85%。

④而后分批加入调节剂,以调节橡胶的分子量。聚合反应进行至规定转化率时,加入终止剂终止反应,并将胶浆卸入中间贮槽。 ⑤经过终止后的胶浆,送至脱气塔,经三级闪蒸脱除未反应的丁二烯,然后再借水蒸汽加热真空脱出游离的丙烯腈。 ⑥丁二烯经压缩升压后循环使用,丙烯腈经回收处理后再使用。 ⑦经脱气后的胶浆加入凝聚剂、防老剂及其它助剂后,过滤除去凝胶,用食盐水凝聚成颗粒胶,经水洗后挤压除去水分,再用干燥机干燥,然后包装即得成品橡胶。经干燥后的橡胶含水量应低于1%,成品丁腈橡胶一般每包重25千克。 合成丁腈橡胶使用的主要设备有:聚合釜、闪蒸塔、脱气塔、干燥箱、干燥机等。 2.1.2 丁腈橡胶的生产工艺优缺点 冷法(低温)乳液聚合的丁腈橡胶在加工性能上优于高温乳液聚合的丁腈橡胶。冷法乳液聚合工艺优点: 1、以水为分散介质,价廉安全; 2、聚合体系粘度低,易传热,反应温度易控制; 3、尤其适宜于直接使用乳胶的场合。 工艺缺点: 1、产品中留有乳化剂等,影响产品电性能等; 2、要得到固体产品时,乳液需经过凝聚、洗涤、脱水、干燥等工序,成本较高。

某丁腈手套废水处理方法与工艺

2020年国内外对丁腈手套的需求量剧增,在丁腈手套生产企业经济得到了快速发展的同时,丁腈手套生产废水对环境的污染也越来越严重。为了响应国家对环保产业的倡导,丁腈手套废水处理问题备受关注。 丁腈手套生产废水主要来源于“手模清洗、沥滤水、冷却模具、胶料浸渍、设备及地面冲洗”等工序。丁腈手套是以丁腈乳胶为原材料,丁腈乳胶由丁二烯、丙烯腈经乳液聚合而成,其中主要工艺手模清洗烘干,主要产生硝酸洗、氢氧化钠洗、清水洗等废水;凝固剂浸渍:含硝酸钙,其余水和脱模剂。这两道工序会产生大量的含硝酸废水,丁腈手套废水处理是目前较难处理的有机废水之一。 一次性丁腈手套生产废水具有高可生化性、低氨氮、低磷等特点,为了有效去除废水中有机物,常常用A2O工艺对其进行生化处理,这种方法的处理效果不佳,无法彻底达标。 湛清环保针对丁腈手套废水处理的问题,提出一种解决方案—BMP改造工艺,该装备有超累积生物床、富增微生物、高效脱气搅拌三大核心技术优势,相比于传统的处理方式,废水处理效率提升了3~5倍。 某丁腈手套生产废水处理工艺: 生产废水 调节池 曝气 一级气浮沉淀二级气浮二级沉淀 BMP工艺 水解酸化 原有工艺 达标排放 原有工艺新增工艺 多介质 过滤 改造 BMP工艺 苏州湛清环保科技有限公司位于昆山高新区,是一家专业从事工业污染治理的国家高新

技术企业。凭借多年的技术积累与行业经验,并首次提出了“工业废水专科环境医院”的创新模式!拥有专业的研发团队与完善的实验设施,并且与清华大学、华东理工大学、苏州科技大学等高校科研团队建立了深度合作,形成了针对“氮、磷、重金属”三大类特征污染物的完整技术体系。已累计申请专利40余项,为表面处理、精细化工、医药农药、光伏锂电等多个工业领域的上百家企业提供了专业的技术服务,典型客户包括陶氏化学、松下电子、中国电子科技集团、中国兵器工业集团、尚德太阳能、新华制药、蓝帆化工等

不锈钢焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 1适用范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S

3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 见图1。 图1奥氏体不锈钢管道焊接控制流程图 3.3 焊接材料 3.3.1 奥氏体不锈钢管道焊接材料的采购和入库(一级库)由公司物资部负责,按《物资采购控制程序》和《焊接材料保管程序》执行。 3.3.2 奥氏体不锈钢管道焊接材料入二级库的保管、焊剂、烘干、发放、回收由各项目负责,按《焊接材料保管程序》执行

丁腈橡胶的基本性能及用途

字体大小:| | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多, 耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、 软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做 绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、 膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: ??羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 ??充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 ??丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 ??丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 ??预交联丁腈(NBR):NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 ??超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

不锈钢焊接工艺

焊接工艺指导书 一氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0 2 30-50 6 1 6 正接 1 3 2 1.2 2 40-60 6 1 6 正接 1 4 3 1.6-2. 4 3 60-90 8 1-2 8 正接1-2. 5 5 4 1.6-2.4 3 80-100 8 1-2 8 正接1-2.0 6 5 1.6-2.4 3 80-130 8 2-3 8 正接1-2.5 7-8 6 1.6-2.4 3 90-140 8 2-3 8 正接1-2.0 8-9

丁腈橡胶的基本性能及用途

丁腈橡胶的基本性能及 用途 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

字体大小: | | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多,耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: 羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 预交联丁腈(NBR): NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

丁腈手套生产工艺学习记录,张立洲发表

Note 笔记 丁腈手套生产工艺技术: 1.整个流程: 开始→先浸渍硝酸溶液→冷水冲淋→浸渍碱溶液→冲淋→洗模剂→经过刷子槽对手模清洗→浸渍热水清洗→浸渍淀粉凝固剂→淀粉凝固剂干燥→浸渍凝固剂→凝固剂干燥→浸渍丁腈胶乳→沥虑1→胶膜定型干燥→卷边→胶膜干燥→热水沥虑2→浸渍1号清水槽→浸渍氯水→浸渍2号清水槽→浸渍3号清水槽→浸渍4号清水槽→脱模→结束 2.硫化胶乳车间停放条件: ①在车间高位槽停放胶乳必须经过100目滤网过滤。 ②胶乳在车间高位槽与胶槽的胶乳停放时间要≥8小时 ③高位槽每周清洗1次底角料。 ④发现胶乳有大量气泡时需要立即处理 ⑤高位槽及车间停放缸的料须在10天内用完,超过期限的料要重新调配检测合格后才可以使用。 3.生产线控制: ①锅炉油温达到190℃时,生产速度≤14.3米≤65只/分 ②当锅炉油温低于145℃时应根据胶膜干燥程度相应降低车速。

③当锅炉油温低于130℃时应立即采取停机处理。 4.浸渍硝酸液: 硝酸浓度应控制在3%-4%,向硝酸槽中添加硝酸溶液必须是提前配置好的同浓度的溶液,严禁操作工自己随便加水或硝酸到槽中。 5.浸渍碱水: 正常生产时每班向碱槽加5-10Kg食碱,接班加1次4小时后再加1次。碱溶度 6.手模刷洗: ①刷子槽温度应控制在45±15℃ ②洗模水应保持溢流和不断更新水质,每8小时彻底更新水质1次。 ③洗模毛刷应经常检查毛磨损情况,确保刷洗效果。 ④洗模毛刷绝对禁止沾染油类物质。 7.浸渍热水: ①热水槽温度应控制在80±15℃范围内,水质不断更新保持溢流状态。每次酸洗手模要更换1次。 8.浸渍淀粉凝固剂: ①淀粉凝固剂CaCL2 含量控制在8±3%,粘度要求1.8± 0.5mpas ②淀粉凝固剂温度要求65±15℃ ③淀粉凝固剂每50-60分钟要彻底搅拌1次。

苯乙酮的制备

实验十二苯乙酮的制备 【实验目的】 1.学习利用Friedel-Crafts酰基化反应制备芳香酮的原理与方法。 2.巩固无水实验操作的基本实验技巧。 【实验原理】 Friedel-Crafts酰基化反应是制备芳香酮的最重要和常用的方法之一,酸 酐是常用的酰化试剂,无水FeCl 3,BF 3 ,ZnCl 2 和AlCl 3 等路易斯酸作催化剂,分 子内的酰化反应还可用多聚磷酸(PPA)作催化剂。酰基化反应常用作过量的液体芳烃、二硫化碳、硝基苯、二氯甲烷等作为反应的溶剂。该类反应一般为放热反应,通常是将酰基化试剂配成溶液后,慢慢滴加到盛有芳香族化合物的反应瓶中。用苯和乙酸酐制备苯乙酮的反应方程式如下: +(CH3CO)2O3COCH 3 +CH 3 COOH 【仪器与药品】 仪器:三颈烧瓶(100ml)、恒压滴液漏斗、机械搅拌器、回流冷凝管、分液漏斗、蒸馏装置 药品:无水三氯化铝、无水苯、乙酐、浓盐酸、氢氧化钠(10%)、无水硫酸镁 【实验装置图】

【实验步骤】 向装有恒压滴液漏斗、机械搅拌器和回流冷凝管(上端通过一氯化钙干燥管与氯化氢气体吸收装置相连)的100ml三颈烧瓶中[1]迅速加入研细的13g(0.097 mol)无水三氯化铝[2]和16 ml(约14g,0.18 mol)无水苯。在搅拌下自滴液漏斗慢慢滴加4ml乙酐(约4.3g,0.04mol),ml回流,直到不再有氯化氢气体逸出为止(约30 min)。 将反应混合物冷却到室温,在搅拌下倒入18 ml浓盐酸和35g萃冰的烧杯中(在通风橱中进行)。若仍有固体不溶物,可补加适量浓盐酸使之完全溶解。将混合物转入分液漏斗中,分出有机层,水层每次用8 ml苯萃取2次。合并有机层,依次用15 ml 10%氢氧化钠、15 ml水洗涤,无水硫酸镁干燥。 将干燥后的反应混合物在水浴上蒸馏回收苯,然后再石棉网上加热蒸去残留的苯,稍冷却后改用空气冷凝管,蒸馏收集195~202oC馏分,产量约为4g。 纯苯乙酮为无色透明油状液体。 【注释】 [1] 本实验所用仪器和试剂均需充分干燥,否则影响反应顺利进行,装置中凡是与空气相连的部位,应安装干燥管。 [2] 由于芳香酮与三氯化铝可形成配合物,与烷基化反应相比,酰基化反应的催化剂用量大得多。对烷基化反应n(AlCl3)/n(RX)=0.1,酰基化反应n(AlCl3)/n(RCOCl)=1.1,由于芳烃与酸酐反应产生的有机酸会与AlCl3反应,所以n(AlCl3)/n(Ac2O)=2.2。

不锈钢管道焊接工艺规程(1)

奥氏体不锈钢管道焊接工艺规程 1范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求:

3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S 3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 图1奥氏体不锈钢管道焊接控制流程图

丁腈橡胶的详细分析

3.9 丁腈橡胶与改性丁腈橡胶 3.9.1 丁腈橡胶概述 丁二烯-丙烯腈橡胶(acrylonitrile-butadiene rubber)是丁二烯与丙烯腈两种单体经乳液聚合而得的共聚物,简称丁腈橡胶(NBR)。NBR于1930年由德国Konrad和Thchunkur研制成功,1937年由德国I.G. Farben公司首先实现了工业化生产。 NBR的丙烯腈含量为15%~53%,分为低腈、中腈、中高腈、高腈、极高腈五个等级。在市售商品中,丙烯腈含量在31%~37%的NBR占总NBR的40%,尤其是丙烯腈含量为33%的NBR居多数[1]。 NBR的基本特点包括[2]: (1)NBR是非结晶性无定型聚合物,生胶强度较低,须加入补强剂才具有使用价值。丙烯腈 质量分数较高的NBR有助于提高硫化胶的强度和耐磨性,但会使弹性下降。 (2)耐油是NBR最突出的特点,NBR含有极性腈基,对非极性或弱极性的矿物油、动植物油、 液体燃料和溶剂等化学物质有良好的抗耐性。丙烯腈质量分数愈高,耐油性愈好。 (3)耐热性优于NR、SBR和CR,可在120℃的热空气中长期使用。 (4)耐寒性、耐低温性较差,丙烯腈质量分数愈高,耐寒性愈差。 (5)气密性较好,在通用橡胶中仅次于IIR。 (6)耐热氧老化、日光老化性能优于NR。 (7)NBR的介电性能较差,属半导体橡胶。 NBR具有二烯类橡胶的通性,可采用与NR、SBR等通用橡胶相同的方法加工成型,常用的硫化体系为硫磺、过氧化物和树脂硫化体系等。 NBR因其优异的耐油性能,广泛用于制备燃料胶管、耐油胶管、油封、动态和静态用密封件、橡胶隔膜、印刷胶辊、胶板、橡胶制动片、胶粘剂、胶带、安全鞋、贮槽衬里等各种橡胶制品,涉及汽车、航空航天、石油开采、石油化工、纺织、电线电缆、印刷和食品包装等诸多领域[1]。 NBR分子主链上存在不饱和双键,影响了它的耐热、耐天侯等化学稳定性。为了使NBR 性能更符合不同用途制品的要求,国内外相继开发出具有特殊性能的NBR新品种,如氢化丁腈橡胶、羧基丁腈橡胶、粉末丁腈橡胶、液体丁腈橡胶等,以及与不同橡胶共混、橡塑并用等来改善丁腈橡胶的综合性能,使得NBR产品系列化、功能化、高档化。 3.9.2 氢化丁腈橡胶 氢化丁腈橡胶(hydrogenated acrylonitrile-butadiene rubber 简称HNBR)是通过氢化丁腈橡胶主链上所含的不饱和双键而制得,又称为高饱和度丁腈橡胶。由于HNBR具有合理的分子结构,因此不仅继承了NBR的耐油、耐磨等性能,而且还具有更优异的耐热、耐氧化、耐臭氧、耐化学品性能,可以与氟橡胶相媲美,在许多方面可取代氟橡胶、CR、NBR等特种橡胶。 从1984年开始,德国Bayer、日本Zeon、加拿大Polysar等公司相继投产HNBR,目前各厂家均有多种牌号的产品。但是由于工业生产HNBR的方法仍存在诸如流程长、成本高等缺

相关主题
文本预览
相关文档 最新文档