当前位置:文档之家› Ⅰ型三阶系统系统的四阶参考模型

Ⅰ型三阶系统系统的四阶参考模型

Ⅰ型三阶系统系统的四阶参考模型
Ⅰ型三阶系统系统的四阶参考模型

摘要

参考模型法校正是频率法校正中经常使用的一种校正方法。它基于参考模型来修正固有特性从而求得校正装置。因此作图简单,校正方便,没有繁杂的计算。常用的参考模型按照系统阶数划分为二阶参考模型,四阶参考模型等。本文基于Ⅰ型三阶系统的四阶参考模型法设计及仿真研究。研究典型Ⅰ型3阶系统动静态性能特性并完成设计,以达到使该系统满足工程实际性能指标要求。运用经典控制理论中频域理论方法,分析给定的典型系统基本特性,按照实际的工艺指标运用四阶参考模型设计满足要求的闭环系统方案,用MATLAB/SIMULINK对设计系统进行仿真验证。

【关键词】:Ⅰ型三阶系统四阶参考模型仿真。

Abstract

Reference correction is frequency model, a correction method is frequently used in the calibration. It is based on reference model to revise the inherent characteristics of calibration device is obtained. So drawing simple, easy to correction, no complex calculation. Commonly used reference model according to the system order is divided into two order reference model, fourth order reference model, etc. Based on the fourth-order Ⅰthird-order system reference model method of design and simulation research. Research on typical Ⅰtype 3 order system dynamic and static performance characteristics and complete the design, to make the system meet the requirements of practical engineering performance index. By using the theory of classical control theory of intermediate frequency domain method, analysis the basic features typical of a given system, according to the actual technical index using the fourth order reference model design meet the requirements of the closed loop system solutions, using MATLAB/SIMULINK for simulation design system.

【Keyword】:Ⅰtype three order system Fourth order reference model The simulation。

第一章绪论

第一节课题研究的背景

自动控制技术广泛的应用于现代的各行各业,一个国家自动化水平的高低,直接反映了到这个国家的科技水平的高低。从最早的机械转速、位置控制,到后来的温度、压力控制以及现在的人工智能,模糊控制,神经网络,遗传算法。比如智能手机领域的手机语音助手,现在热潮的智能家居,以及将来越来越多的可能威胁人类的智能机器人。自动控制技术已经越来越成为人们生活中不可或缺甚至扮演着越来越重要的角色。

在实际工程中,控制系统的参数一般的事先给出了,在预先的系统经分析后发现不能满足预先设定的性能和指标,就需要对预定系统进行校正以满足现实中的要求。

第二节课题研究的意义

经典控制理论中一般采用根轨迹校正和频域法校正。在工程实际中一般采用频域法校正,本文基于频域法校正中的四阶参考模型校正,也叫按期望特性进行校正。方法简单,易于计算,往往用经验公式进行运算,具有很强的实际意义。

第三节论文的结构

论文首先对课题的背景和意义进行阐述,并概述了论文结构第二章对系统校正的概念、指标、类型进行简要的介绍

第三章对系统进行校正设计

第四章对系统进行仿真模拟

最后总结、致谢。

第二章 系统校正概述

第一节 系统校正的概念

控制系统包括被控对象,检测装置、放大元件、执行机构、当被控对象给定后,就可以按照被控对象的工作条件对执行元件的形式,特性和参数进行选定。这些初步选定的元件及被控对象构成了系统中的不可变部分。控制系统校正的目的是将校正装置与系统的固有部分经过合适的连接,构成新的系统结构,使其完成控制系统的任务要求。

第二节 系统校正基础

一、控制系统的性能指标

实际工程中,系统指标事先给出,当系统的固有部分不能满足系统的性能指标时,需要根据被控对象的控制要求选择适当的校正装置,来满足要求。一般来说,性能指标不应该比实际任务的性能指标高,实际系统的各种性能指标受到组成元件的固有误差,非线性特性及其他各种物理条件的限制。

(一) 时域性能指标

时域性能指标分为动态性能指标和稳态性能指标。动态性能指标主要有上升时间r t 、峰值时间p t 、调节时间s t 、超调量% ;稳态性能指标由稳态误差ss e 描述,分为:静态位置误差系数P K 、静态速度误差系数v K 、静态加速度误差

系数a K 。时域指标直观但是进行校正装置设计使比较困难,实际中通常采用频域法进行设计。

(二)频域性能指标

频域性能指标分为开环频域指标和闭环频域指标。常用的开环频域指标有:截至频率c w 、幅值裕量g K 、相角裕量γ 。

常用的闭环频域指标有:谐振峰值r M 、谐振频率r w 、带宽频率b w 。

(三)典型二阶系统频域指标和时域指标的关系

谐振峰值0.707r M ξ=

<<

谐振频率0.707r w w ξ=<<

带宽频率

b w w =

截止频率c w w =

相角裕量r =

超调量100%

%e σ=

调节时间 3.5

5%s n

t w ξ=

?= (四) 高阶系统开环频域与时域指标的关系

谐振峰值001

,35901 1.8sin r r M M γγ

≤≤≤≤, 超调量

10.160.41sin σγ??

=+-

??? 或

()%0.160.41r M σ=+- ,(1M 1.80)r ≤≤

调节时间

0s c

K t w π=

()()2

02 1.51 2.51,(1 1.8)r r r K M M M =+-+-≤≤

第三节 控制系统校正的方式

根据校正装置在系统中不同位置,校正结构的不同形式可以分为串联校正、联校正、前馈校正等方式,按照校正装置设计方法的同可以分为频域法校正、轨迹校正、时域校正等方法。根据校正装置特性不同可以分为超前校正、滞后校正、滞后-超前校正和PID 控制方法等。

串联校正装置(s)c G 一般在测量点之后和放大器之前,校正装置的功率较小,设计及实现都比较简单,是最常用的校正方式。如图1-1所示,1(s)G 、2(s)G 、

(s)H 为系统固有部分的传递函数,(s)c G 为校正装置传递函数。

校正前系统的闭环传递函数为

1212(s)(s)

(s)1(s)(s)(s)

G G G G H Φ=

+

校正后系统的闭环传递函数

1212(s)G (s)G (s)

(s)1(s)G (s)(s)(s)

c c G G G H Φ=

+

串联校正后系统的零极点发生变化,只要选着合适的校正装置的参数,就可以使校正后的系统满足期望的性能指标,但是,这种方法对参数的变化比较敏感。

图1-1

第四节控制系统的基本控制规律

了解控制系统的基本规律对选择什么样的校正装置和方法非常必要,一般的控制规律分为比例环节、积分环节、微分环节及其组合比例-微分、比例-积分、比例-积分-微分等控制规律。

一、比例控制规律

具有比例控制规律的控制器称为比例控制器,简称P控制器,如图1-2所示。P控制器是一个具有可调增益的放大器,比例元件改变信号的增益而对相位没有影响,在串联校正中,比例控制可以提高控制器的放大系数

K提高系统

p

开环增益,减小系统稳态误差,提高稳态精度,但是,开环增益的增大会降低系统的动态稳定性,甚至有可能使闭环系统不稳定。在控制系统中,仅仅有比例环节很难兼顾系统的稳态精度和动态性能,因此在工程实际中,很少单独只用比例控制器,往往和其他控制器一起使用。

图1-2 比例控制器

比例环节的物理模型

图1-3

10

f R G R =-

二、比例-微分控制规律

具有比例-微分控制规律的的控制器,称为PD 控制器。其输出信号(t)m 和输入信号(t)e 的关系为

(t)

(t)(t)K p p D

de m K e dt

τ=+

其中p K 为比例系数,

D τ 为时间常数,p K 与D τ 都是可调的参数,PD 控制器如图1-4所示

图1-4

比例-微分控制器中的微分控制作用,能反映输入信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定性但是,微分控制系统对系统的噪声非常敏感,存在放大噪声,降低系统抗干扰能力的不利因素,因此微分环节在任何情况下,都不宜与被控对象串联单独使用。通常,微分控制规律和比例控制规律或比例-积分控制规律结合组成PD 或

PID 控制规律。

三、积分控制规律

具有积分控制规律的控制器,称为I 控制器。其输出信号(t)m 和输入信号

(t)e 的关系为

1

(t)K (t)dt (t)t

t

p I

m e e dt τ==

??

其中p K 为可调比例系数。1

I p

K τ=

为积分控制器的积分时间常数。 积分控制器可以提高系统的误差都度和稳定性能,但是积分控制器使系统增加一个位于原点的开环极点,信号产生090 的相位滞后,不利于系统稳定。因此,很少单独用积分环节进行校正。积分控制器如图1-5

图1-5

积分环节的物理模型

图1-6

2101

(s)G C R S

=-

四、比例-积分控制规律

具有比例-积分控制规律的控制器,称为PI 控制器。其输出信号(t)m 和输入信号(t)e 的关系为

(t)K (t)(t)dt

t

p

P I

K m e e τ=+

?

其中p K 为可调比例系数。i τ 为可调积分时间常数。PI 控制器如图1-7所示。

图1-7

比例-积分控制器相当于同时在系统中增加了一个位于原点的开环极点和一个位于S 左半平面的开环零点。位于原点的开环极点可以提高系统的性别,以消除或减小系统的稳态误差;增加的负实数零点则可以提高系统阻尼程度,缓和开环极点对系统稳定性产生的不利影响。只要I τ 足够大,PI 控制器对系统的稳定产生的不利影响就会大大的减小。PI 控制器主要来改善系统的稳态性能。

第五节 常用的校正装置及其特性

一、无源超前校正装置

串联校正装置具有正的相角的频率特性,称该装置为超前校正装置。 无源校正网络由电阻和电容构成,没有其他能源,这种RC 网络的装置称为无源校正网络。这种装置简单,实现方便,但是有明显的负载效应,使得校正装置精度收到影响。其结构如图1-8 、2-9所示

图1-8 无源超前网络

图2-9

U为输入信号,2U为输出信号,如果输入信号的内阻为零且输出端的电阻为无1

穷大,超前网络的传递函数函为

()2111

1

s U Ts G U Ts αα+=

=

+ 1221R R R α+=

> ;1212

R R

T C R R =+ 由公式可知,在原系统中串入无源超前校正装置后,系统的开环增益缩小到原来的

1

α

倍。在实际的校正中,往往先按照系统的稳定条件来设计开环增益,

为了使超前校正装置的参数不影响原系统的稳定性能,一般在装置前设计一个放大器,于是无源超前校正网络的传递函数为

1

(s)(s)1

c Ts G G Ts αα+==

+

超前校正网络(s)c G 的相角为

()arctan arctan c T T ?ωαωω=-

由三角函数的两角公式得

22tan ()1c T T T αωω

?ωαω-=

+

22

(1)T ()arctan 1c T αω

?ωαω

-=+ 对上公式求导并令其为零得最大超前角频率

m ω=

带入原公式得最大超前角

1

arctan 1m α?α-==+

或写为

1sin 1sin m m

?α?+=

-

m ? 处的对数幅值

()20lg (j )10lg c m c m L G ωαωα==

设1ω 为频率

1T α 和1

T

的几何中心,应有

1111lg lg lg 2T T ωα??=+ ???

解得1ω= 与m ω 相同。最大超前相角m ? 是

1T α 和1

T

的几何中心。

二、无源滞后校正装置

具有负的相角的串联校正装置称为滞后校正装置。 由RC 网络组成的无源滞后网络如图2-10所示

图2-10 无源滞后网络

传递函数为

21(s)1

(s)(s)1

c U bTs G U Ts +=

=

+ 公式中

12(R R )C T =+ ;2

12

1R b R R =

<+ 。b 为分度系数,T 为时间常数。

与超前校正网络相似,滞后校正网络会在频率1T

~1bT 的几何中心产生一个最大滞后相角m ? ,可得

m ω=

1

arcsin

1

m b b ?-=+ 图2-10表明,滞后网络对低频有用信号不产生衰减,对高频噪声信号有剥削减作用,b 值越小,通过网络的噪声电平越低。

图2-11

滞后网络对低频段信号不产生衰减,对中频段有衰减作用,滞后校正,正是利用其对中高频段的衰减特性。

第六节 参考模型校正

参考模型校正也叫按期望频率特性校正,又可称为综合法校正。这种方法先将系统的性能指标转化为期望的对数幅频特性,然后,将其与未校正的系统的开环截止频率相减,就得到校正装置的对数幅频特性,传递函数,结构,参数。这

种方法简单、直观,利于工程上的设计,但是,参考模型法只改变对数幅频而相频没有改变,所以只适合最小相位系统。

设期望系统的开环传递函数为(s)G ,未校正系统的开环传递函数为0(s)G ,校正装置的开环传递函数为(s)c G 则有

0(s)G (s)G (s)c G =

0(s)

(s)

c G G G =

在对数幅频特性图上有

0()()()c L L L ωωω=-

c L 、L 、 0L 分别代表校正装置的对数幅频特性、期望开环传递函数的对数幅频特性和原系统的对数幅频特性。有公式可知只要知道校正前和校正后的幅频特性,就可以求出校正装置,所以关键是求期望的也就是校正后的幅频特性。求期望的对数幅频特性一般采用”分段式”的设计方法。典型的期望特性如图3-12所示,23~ωω 为中频段,小于2ω 为低频段,大于3ω 为高频段。

图3-12 典型期望特性

一、中频段的设计

期望对数幅频特性的中频段主要是稳定性能的要求(一般可有相对稳定性及调整时间为依据)所设计。具体形状:在截止频率c ω (在可能的条件下一般尽可能的把c ω 取值大一点)处以20/dec dB - 的斜率通过0dB 线,并保持一定的频带范围,即中频带宽,用h 表示,一般中频带宽4h ≥ 。

二、高频段的设计

第三章 系统的校正

第一节 待校正系统的分析

待校正系统的开环传递函数

()()

0(s)1

(s)(s)121y G u s s s =

=++ 因为

1

0.2ssv v

e K =

≤ 得

5v K ≥

取5v K = 得满足稳态误差的原开环传递函数

()0(s)5

(s)(s)1(2s 1)

y G u s s =

=++ 校正装置增益补偿为

05

51

v c K K K =

== 设原系统的开环截止频率为0c ω 原系统的幅频特性

()A ω=

令()1A ω= 得

0 1.36c ω=

这种方法计算复杂容易出差错,故用另外一种方法

图3-1

由原开环传递函数可知待校正系统的幅频特性。转折频率分别为0.5/rad s 、

1/rad s ,低频段由()20lg

v

K

L ωω

= 得在0.5/rad s 处的0()L ω

00.5()20dB L ω=

低频段的延长线与ω 轴的交点1v

K ω= ,得

5/rad s ω=

20lg100

40lg 0.5lg ω

-=-- 可以求得中频段延长线与ω轴交点为

1.58/1/rad s rad s > 所以图形如3-1所示。令

000

5

20lg

10.5c c c ωωω=??

0 1.36/c rad s ω=

相频特性

0()90arctan arctan 2c c ?ωωω=---

带入0 1.36c ω= 得

0()213?ω=-

相角裕量 000()180()c c γω?ω=+ 得

数与图的完美结合—浅析差分约束系统

数与图的完美结合 -------浅析差分约束系统 华中师大一附中冯威 [摘要] 在面对多种多样的问题时,我们经常会碰到这样的情况:往往我们能够根据题目题面意思来建立一些简单的模型,但却面对这些模型无从下手。这时我们应该意识到,也许能够将这种模型与其他的模型之间搭起一座桥梁,使我们能够用更简单直接的方式解决它。这里我们介绍一种方法,它很好地将某些特殊的不等式组与图相联结,让复杂的问题简单化,将难处理的问题用我们所熟知的方法去解决,它便是差分约束系统。这里我们着重介绍差分约束系统的原理和其需要掌握的bellman-ford算法。然后通过zju1508和zju1420两道题目解析差分约束系统在信息学题目中的应用,并逐渐归纳解决这类问题的思考方向。 [目录] ◆关键字 (2) ◆Bellman-ford算法 (2) ◇算法简单介绍 (2) ◇算法具体流程 (2) ◇例题一ZJU2008 (4) ◆差分约束系统 (5) ◇例题二ZJU1508 (5) ◇线性程序设计 (7) ◇差分约束系统 (7) ◇例题三ZJU1420 (8) ◆结语 (9) ◆附录 (9)

[关键字] 差分约束系统、不等式、单元最短路径、转化 [正文] 在分析差分约束系统之前,我们首先介绍一个解决单元最短路径问题的Bellman Ford算法,它的应用十分广泛,在差分约束系统中更充当着重要的角色。 Bellman-ford 算法 算法简单介绍 这个算法能在更一般的情况下解决最短路的问题。何谓一般,一般在该算法下边的权值可以为负,可以运用该算法求有向图的单元最长路径或者最短路径。我们这里仅以最短路径为例。 Bellman ford 类似于Dijkstra算法,对每一个节点v∈V,逐步减小从起点s到终点v最短路的估计量dist[v]直到其达到真正的最短路径值mindist[v]。Bellman-ford算法同时返回一个布尔值,如果不存在从源结点可达的负权回路,算法返回布尔值TRUE,反之返回FALSE。 算法具体流程 1.枚举每条边(u,v)∈E(G)。 2.对枚举到的边进行一次更新操作。 3.回到步骤1,此过程重复n-1次,以确定没有更可以优化的情况。 4.枚举每条边(u,v)若仍然存在可以更新的边,则说明有向图中出现了负权回路,于是返回布尔值FALSE。 5.返回布尔值TRUE。 注:这里的更新操作是一种松弛技术,以单元最短路径为例这个操作就是保证 dist[v]<=dist[u]+w[u,v],即if dist[v]>dist[u]+w[u,v] then dist[v]=dist[u]+w[u,v],如果是最长路径则是保证dist[v]>=dist[u]+w[u,v]。 定义一个有向图G=(V,E),w(u,v)表示由结点u到v的边的权值。 伪代码如下:

3D模型管理系统技术设计书V

3D模型管理系统技术设计书 2014年9月21日

目录 1.项目背景 (1) 2.建设目标 (1) 3.建设内容 (1) 3.1.模型库建设 (1) 3.2.三维模型管理系统建设 (2) 4.总体设计 (2) 5.数据库设计 (4) 5.1.数据库逻辑结构 (4) 5.2.FTP服务 (8) 6.功能设计 (9) 6.1.模型上传 (9) 6.2.模型文件下载 (9) 6.3.查询 (10) 6.4.统计 (10) 6.5.模型文件浏览 (10) 6.6.删除 (11)

1.项目背景 三维GIS形象真实的描述了城市三维地理空间内容,三维城市模型是三维GIS中非常重要的内容。三维模型不仅给人一种直观的感受,而且广泛应用于城市规划的方方面面。与二维GIS数据相比,三维模型的生产过程、数据内容和数据规模有很大不同,生产过程复杂很多,数据内容更加丰富,数据量成倍增加。 在城市规划中三维模型以文件形式存放,包含Max格式导出的X格式文件、skyline入库打包文件、Jpg格式效果图(含总平图)、CAD格式的总平图。随着现代城市的高速发展,城市建筑更新不断加快,规划管理中的三维模型成倍增加,若仍旧采用文件方式进行管理,将面临如下困难:数据的安全性和共享性得不到保障,历史数据难以有效管理,缺乏对数据的高效查询与检索,缺乏对数据的更新维护机制。建立城市三维模型管理系统,建立三维模型文件的目录索引,对三维模型进行有效的组织和管理,对城乡规划信息化和城乡规划管理具有实际意义。 2.建设目标 基于FTP服务建立三维模型文件库,同时建立与之匹配的关系库,存储模型文件的索引、类别信息,在此基础上建立支持三维模型上传、下载、查询、浏览、统计、历史数据管理的城市三维模型管理系统。 3.建设内容 3.1.模型库建设 (1)基于FTP服务建立三维模型文件库,按照模型的类型和名称对模型中包含的各个部分进行组织存储。每一个模型以唯一的文件标识作为文件夹名称进

第2章 数据库系统的数据模型

第2章数据库系统的数据模型 第二章数据库系统的数据模型 本章主要内容 数据库是个具有一定数据结构的数据集合,这个结构是根据现实世界中事物之间的联系来确定的。在数据库系统中不仅要存储和管理数据本身,还要保存和处理数据之间的联系,这种数据之间联系与就是实体之间的联系。研究如何表示和处理这种联系是数据库系统的一个核心问题,用以表示实体以及实体之间联系的数据库的数据结构称为数据模型。本章将着重介绍一下概念模型、层次模型、网状模型、关系模型、面向对象模型等数据库系统的数据模型的基本概念和设计方法,为后面的数据库设计打下基础。 2.1 数据模型概述 数据模型(Data Model)是对现实世界数据特征的抽象,是用来描述数据的一组概念和定义。 为了把现实世界的具体事物抽象、组织为某一DBMS现实世界支持的数据模型,通常首先把现实世界中的客观对象抽象 认识抽象为概念模型,然后把概念模型转换为某一DBMS支持的数 据模型,这一过程如图2,1所示。概念数据模型:信息世界 数据模型按不同的应用层次可划分为两类: 转换 (1)概念数据模型(又称概念模型) 是一种面向客观世界、面向用户的模型,独立于计算逻辑数据模型:DBMS支持的数据模型机系统的数据模型,完全不涉及信息在计算机中的表示,

只是用来描述某个特定组织所关心的信息结构。概念模型是按用户的观点对数据建模,是用户和数据设计人员之间进行交流的工具,主要是用于数据库设计。例如E,R模型、扩充E,R模型属于这一类模型。 (2)逻辑数据模型(又称数据模型) 是一种直接面向数据库系统的模型,主要用于DBMS的实现。例如层次模型、网状模型、关系模型均属于这一类模型。这类模型有严格的形式化定义,以便于在计算机系统中实现。 2.1.1 数据模型的基本组成 数据模型是现实世界中的事物及其间联系的一种抽象表示,是一种形式化描述数据、数据间联系以及有关语义约束规则的方法。通常一个数据库的数据模型由数据结构、数据操作和数据的约束条件三个部分组成。 (1)数据结构 是指对实体类型和实现间联系的表达实现。它是数据模型最基本的组织部分,规定了数据模型的静态特性。在数据库系统中通常按照数据结构的类型来命名数据模型,例如,采用层次型数据结构、网状型数据结构、关系型数据结构的数据模型分别称为层次模型、网状模型和关系模型。 (2)数据操作 是指对数据库进行的检索和更新(包括插入、删除和修改)两类操作。它规定了数据模型的动态操作。 (3)数据的约束条件 数据的约束条件是一组完整性规则的集合,它定义了给定数据模型中数据及其联系应具 1 有的制约和依赖规则。以确保数据库中数据的正确性、有效性和相容性。

模型参考自适应控制

10.自适应控制 严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。 所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。 10.1模型参考自适应控制 10.1.1模型参考自适应控制原理 模型参考自适应控制系统的基本结构与图10.1所示: 10.1模型参考自适应控制系统 它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。 在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。于是,系统的自适应机构再次发生作用调整控制器的参数,使得受控对象的输出再一次趋近于参考模型的输出(即与理想的希望输出相一致)。这就是参考模型自适应控制的基本工作原理。 模型参考自适应控制设计的核心问题是怎样决定和综合自适应律,有两类方法,一类为参数最优化方法,即利用优化方法寻找一组控制器的最优参数,使与系统有关的某个评价目标,如:J=? t o e 2(t)dt ,达到最小。另一类方法是基于稳 定性理论的方法,其基本思想是保证控制器参数自适应调节过程是稳定的。如基于Lyapunov 稳定性理论的设计方法和基于Popov 超稳定理论的方法。 系统设计举例 以下通过一个设计举例说明参数最优化设计方法的具体应用。 例10.1设一受控系统的开环传递函数为W a (s)=) 1(+s s k ,其中K 可变,要求 用一参考模型自适应控制使系统得到较好的输出。 解:对于该系统,我们选其控制器为PID 控制器,而PID 控制器的参数由自适应机构来调节,参考模型选性能综合指标良好的一个二阶系统: W m (d)= 1 414.11 2 ++s s 自适应津决定的评价函数取 minJ =?t e 2 (t)dt ,e(t)为参考模型输出与对象输出的误差。 由于评价函数不能写成PID 参数的解析函数形式,因此选用单纯形法做为寻优方法。(参见有关优化设计参考文献)。 在上述分析及考虑下,可将系统表示具体结构表示如下图10.2所示。

第3章 SM模型化

课程名称系统工程计划学时 2 授课章节第三章系统模型和模型化(1) 教学目的和要求: 在本讲中,使学生了解系统模型和模型化的概念,建模的基本步骤和方法。 教学基本内容: 1.系统模型的概念 2.系统模型的分类 3.系统模型化的基本步骤 4.系统模型化的基本方法 教学重点和难点: 系统模型化的概念 系统模型化的基本方法 授课方式、方法和手段: 多媒体教学为主,结合板书,同时加以作业和答疑 作业与思考题: 1.系统模型的概念 2.系统模型化的基本步骤 1

第三章系统模型与模型化 第一节系统模型与模型化概述 一、系统模型的定义 系统模型是一个系统某一方面本质属性的描述,它以某种确定的形式提供关于该系统的知识。 模型的特征: (1)是现实世界部分的抽象或模仿; (2)反映了系统本质或特征的主要因素构成; (3)集中体现了主要因素之间的关系。 模型化就是为了描述系统的构成和行为,对实体系统的各种因素进行适当筛选后,用一定方式(数学、图像等)表达系统实体的方法。 二、模型化的本质、作用及地位(见下图) 1.本质:利用模型与原型之间某方面的相似关系,在研究过程中用模型 来代替原型,通过对于模型的研究得到关于原型的一些信息。 2.作用:①模型本身是人们对客体系统一定程度研究结果的表达。这种表达是简洁的、形式化的。②模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、理论、原理的发现。③利用模型可以进行“思想”试验。 3.地位:模型的本质决定了它的作用的局限性。它不能代替以客观系统内容的研究,只有在和对客体系统相配合时,模型的作用才能充分发挥。 三、系统模型的分类 2

数据库系统与数据模型简介

数据库系统与数据模型简介 胡经国 本文作者的话 本文是根据有关文献和资料编写的《漫话云计算》系列文稿之一。以此作为云计算学习笔录,供云计算业外读者进一步学习和研究参考。希望能够得到大家的指教和喜欢! 下面是正文 一、数据库系统及其组成 1、数据库系统的概念 数据库系统(Database System)是用于组织和存取大量数据的管理系统,方便多用户使用计算机软硬件资源组成的系统。它与文件系统的重要区别是数据的充分共享、交叉访问以及应用(程序)的高度独立性。 2、数据库系统的组成 数据库系统由计算机系统、数据库、数据库管理系统、应用程序和用户组成。 ⑴、计算机系统 计算机系统是指用于数据库管理的计算机硬件资源和基本软件资源。其中,硬件资源包括CPU、大容量内存(用于存放操作系统、数据库、数据库管理系统、应用程序等)、直接存取的外部存储设备(硬盘);软件资源包括操作系统、应用程序。 ⑵、数据库 什么是数据库?数据库是提供数据的基地。它能保存数据,并让用户从它那里访问有用的数据。数据库是数据处理的新技术,也是一项先进的软件工程。 数据库中的业务数据,是以一定的组织方式存储在一起的、相互有关的数据整体。数据库中保存的数据是相关数据,是一种相对稳定的中间数据。为了便于管理和处理这些数据,将这些数据存入数据库时,必须具有一定的数据结构和文件组织形式(顺序文件、索引文件)。 “相关数据”、“一定的组织形式”和“共享”是关系型数据库的三个基本要素。 ⑶、数据库管理系统

数据库管理系统(Database Management System,DBMS)包括面向用户的接口功能和面向系统的维护功能两大方面。前者为用户存取数据提供必要的手段,包括处理能力。后者为数据库管理者提供数据库的维护工具,具体包括数据库定义、数据装入、数据库操作、控制、监督、维护、恢复、通信等。 数据库管理系统通常由以下三部分组成:数据库描述语言(DLL)、数据库操作(DML)或查询程序、数据库管理例行程序。 总之,信息的集合是数据库,而数据库管理系统的软件则可用于完成信息的存储和检索。 ⑷、应用程序和用户 数据库管理员(DBA)是系统工作人员,负责对整个数据库系统进行维护。 应用程序员是后台专业用户,对数据库进行检索、插入、删除或更新。 非程序员是终端用户,通过联机终端设备,由基本命令组成的询问语言对数据库进行检索、插入、删除或更新等操作。例如,话务员、管理员、质检员。 二、数据模型 1、数据模型基本概念 数据模型是数据库系统的核心,是对客观事物及其联系的数据的描述,即实体模型的数据化。数据模型是表示实体与实体之间联系的模型。 2、数据模型类型 当前,流行的数据模型有:关系、层次、网状三种数据模型。 ⑴、关系数据模型 关系数据模型是新的DBMS,将数据简单地表示为一个或多个表格的内容。它是由表格形式体现的,这种“表”在数学上称为关系。表中的每一行称为记录,每个记录由若干字段组成:一个记录描述一个事物,它的各个字段是该事物各种性质的描述。在关系数据库中,这些字段称为属性。 ⑵、层次数据模型 层次数据模型,也称为树状模型,是一个以记录类型为结点的有根的定向树。 层次数据模型的特点为:有而且仅有一个实体,向上不与任何实体联系,称为根;有若干实体,向下不与任何实体联系,称为叶;其余的实体,向下可以与任何实体联系,但向上只与唯一的一个实体联系(一对多联系),称为中间节点。根节点在最高层,即第一层。同一层上的节点之间没有联系。具有这些特点的数据结构,称为层次结构。例如大学行政组织结构。典型例子是IBM的IMS。

ug仿真-MADYMO进行新型约束系统部件的开发

MADYMO进行新型约束系统部件的开发 安全带和安全气囊在乘用车上的广泛普及,极大的减小了交通事故中乘员的伤亡,降低了乘员的伤害指数。然而,在离位(OOP)状况下,安全气囊的展开往往可能对乘员,特别是儿童和小身材女性造成伤害。安全带由于其带体较窄,与人体的接触面积较小,在没有限力装置的情况下,极易造成人体体表淤伤甚至胸骨骨折。本文提出了一种可充气式气垫,经折叠后可缝制在安全带肩带上,当碰撞发生后,这个气垫充气并展开,在安全气囊与安全带之间形成额外的保护:1、由于气垫充气后具有一定的厚度,因此在碰撞发生后早期即可与展开的安全气囊发生接触,直接对乘员身体起到缓冲吸能的作用。2、气垫展开后几乎可以覆盖乘员的整个上躯体,使原来安全带带体对乘员的局部载荷分散到乘员的整个上躯体上。3、可以降低安全气囊的触发能量,减小对离位乘员的伤害。本文研究了某微型客车和轿车两种情况,其中该微型客车未安装安全气囊,轿车安装了安全气囊,两种车的乘员约束系统动力学仿真模型都是应用MADYMO 软件建立的,并且都经过了试车碰撞试验验证,本文在此基础上,分别讨论了在以上两款车上新型约束装置的保护作用 仿真模型的建立 新型约束部件结构描述 安全带织带材料为涤纶长丝,宽度为50mm 左右,厚度为1.1~1.2mm。气垫是由两片边长为340mm 的正方形织物缝合起来,并与安全带腰带缝合。正方形织物的四角需导圆,避免展开时划伤人体。缝制时,正方形气垫的对角线与安全带长边方向重合,充气气垫不设泄气孔,不设拉带。 新型约束部件模型建立 根据原型设计,并参考两种车型的安全带几何数据建立起此部件的CAD 模型,而后在有限元软件中进行网格划分。安全带带体与气垫为一体化模型,全部采用三角形单元划分,共有1208 个节点,3212 个三角形单元。(参见图1『::好就好::中国权威模具网』

数据模型与数据库系统结构

数据模型与数据库系统结构 1.数据 为了了解世界,研究世界和交流信息,我们需要描述各种事物,用自然语言来描述虽然很直接,但是过于烦琐,不便于形式化,更不利于计算机去表达,为此,我们常常只抽取那些感兴趣的事物特征或属性来描述它。 例如:XX今天下课回到寝室,跟室友说,啊,兄弟们,我单身了!!~~~~准备请大家吃顿饭庆祝一下~~~~ 大家好奇的问 他叫小雪,21岁,是医护系的,护理专业和我是老乡,遵义人。 我们可以从胡锋的描述中获取到以下一条记录,小雪今年21岁遵义人是医护系护理专业的学生,那这种描述事物的符号记录我们称为数据。 数据有一定的格式,例如姓名在中国而言一般是4个汉字的字符(某些少数民族),性别呢是一个汉字字符,等等,那这些我们称为数据的语法,而数据的含义是数据的语义。我们通过解释、推论,归纳,分析和综合等等方法,从数据中获得有意义的内容称为信息。因此,数据是信息存在的一种形式,只有通过解释或处理才能成为有用的信息。 一般来说,数据库中的数据具有以下两个特征 1)数据的静态特征 包括数据的基本结构,数据间的联系和对数据取值范围的约束 学生管理的例子

在学生基本信息中包括:学号,姓名,性别,出生日期,专业,家庭地址。 这些都是学生所具有的基本特征,是学生数据的基本结构。 学生选课信息中包括:学号,课程号,考试成绩等信息,其中选课信息和学生基本信息中的学号是有一定关联的,即选课信息中的学号所能选取的值必须在学生基本信息中的学号取值范围之内,只有这样,学生选课信息中所描述的学生选课情况才是有意义的。 说白一点,也就是这个学生要存在,他才会有选课信息。这个就是数据之间的联系。 最后,我们再来看看什么是数据取值范围的约束 例如,人的性别一项取值只能是男或女,课程的学分一般是大于0的整数值,而我们的考试成绩一般在0~100分范围内等,这些都是对某个列的数据取值范围进行的限制,目的是在数据库中存储正确的,有意义的数据,这就是对数据取值范围的约束 2)数据的动态特征 数据的动态特征是指对数据可以进行的操作以及操作规则。 对数据库数据的操作主要是有查询数据和更改数据,更改数据一般又包括对数据的插入,删除和修改 通常我们将数据的静态特征和动态特征的描述称为数据模型三要素。即描述数据时要包括数据的基本结构,数据的约束条件和定义在数据

系统建模与仿真-哈尔滨工业大学

《系统辨识》 实验手册 哈尔滨工业大学控制与仿真中心 2018年5月

目录 实验1 白噪声和M序列的产生---------------------------------------------------------- 2 实验2 脉冲响应法的实现---------------------------------------------------------------- 5 实验3 递推最小二乘法的实现---------------------------------------------------------- 9 附录实验报告模板---------------------------------------------------------------------- 13

实验1 白噪声、M 序列的产生 一、实验目的 1、熟悉并掌握产生均匀分布随机序列方法以及进而产生高斯白噪声方法 2、熟悉并掌握M 序列生成原理及仿真生成方法 二、实验原理 1、混合同余法 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: 11 1(*)mod /n n n n x a x b M R x M +++=+?? =? 式中a 为乘子,0x 为种子,b 为常数,M 为模。混合同余法是一种递归算法,即先提供一个种子0x ,逐次递归即得到一个不超过模M 的整数数列。 2、正态分布随机数产生方法 由独立同分布中心极限定理有:设随机变量12,,....,,...n X X X 相互独立,服从同一分布,且具有数学期望和方差: 2(),()0,(1,2,...)k k E X D X k μσ==>= 则随机变量之和1 n k i X =∑的标准化变量 : () n n n k k k X E X X n Y μ --= = ∑∑∑近似服从(0,1)N 分布。 如果n X 服从[0, 1]均匀分布,则上式中0.5μ=,2 1 12 σ= 。即 0.5n k X n Y -= ∑近似服从(0,1)N 分布。

模型参考自适应控制—MIT法

一 原理及方法 模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。一般模型参考自适应控制系统的结构如图1所示。 图1 一般的模型参考自适应控制系统 其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。 基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。 图2 MIT 控制结构图 系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为: ??+=t m d y e B Kc t Kc 0)0()(τ Yp Ym e +__ + R 参考模型 调节器被控对象 适应机构 可调系统 ———kmq(s) p(s) Kc Kp q(s)-----p(s)适应律 R ym yp e +-

MIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。 二 对象及参考模型 该实验中我们使用的对象为: 1 22) ()()(2 ++= =s s s p s q K s G p p 参考模型为: 1 21) ()()(2 ++= =s s s p s q K s G m m 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。A 取1。 三 自适应过程 将对象及参考模型离散化,采样时间取0.1s ,进而可得对象及参考模型的差分方程分别为: )2(0044.0)1(0047.0)2(8187.0)1(8079.1)(-+-+---=k r k r k y k y k y m )2(0088.0)1(0094.0)2(8187.0)1(8097.1)(-+-+---=k u k u k y k y k y p p p 其中u 为经过可调增益控制器后的信号。编程进行仿真,经大量实验发现,取修正常数B 为0.3,可得较好的动态过度过程,如下图3所示:

3D模型管理系统技术设计书

3D模型管理系统技 术设计书

3D模型管理系统技术设计书 9月21日

目录 1.项目背景................................................................. 错误!未定义书签。 2.建设目标................................................................. 错误!未定义书签。 3.建设内容................................................................. 错误!未定义书签。 3.1.模型库建设.............................................................. 错误!未定义书签。 3.2.三维模型管理系统建设 .......................................... 错误!未定义书签。 4.总体设计................................................................. 错误!未定义书签。 5.数据库设计............................................................. 错误!未定义书签。 5.1.数据库逻辑结构 ...................................................... 错误!未定义书签。 5.2.FTP服务................................................................... 错误!未定义书签。 6.功能设计................................................................. 错误!未定义书签。 6.1.模型上传.................................................................. 错误!未定义书签。 6.2.模型文件下载 .......................................................... 错误!未定义书签。 6.3.查询.......................................................................... 错误!未定义书签。 6.4.统计.......................................................................... 错误!未定义书签。 6.5.模型文件浏览 .......................................................... 错误!未定义书签。 6.6.删除.......................................................................... 错误!未定义书签。

数据库课程设计NBA选秀系统数据库模型

NBA选秀系统数据库模型 一、需求分析 (1)、可行性需求分析 需求分析是指准确了解和分析用户的需求,这是最困难、最费时、最复杂的一步,但也是最重要的一步。需求分析是整个设计过程的基础,它决定了以后各步设计的速度和质量。进行数据库设计首先必须准确了解与分析用户需求(包括数据与处理)。 NBA作为世界上水平最高的篮球俱乐部联盟,深受广大篮球爱好者的追捧,而一年一度的NBA 选秀活动,更成为球迷关注的焦点。作为专门的NBA选秀数据库,一定会满足大众的信息需求。(2)具体的系统信息 选秀系统信息包括三个方面,其具体功能如下: A.新秀球员信息:包括球员姓名、年龄、籍贯、身高、顺位以及司职位置;新秀球员信息功能包括对球员信息的录入、删除和查询,以及被那个球队选中、选秀信息等。 B.NBA球队信息:包括球队名称、所在城市、上赛季战绩、球队主教练;NBA球队信息功能还包括对球队信息的录入、删除和查询,以及所选新秀、选秀信息等。 C.选秀信息:选秀信息包括新秀姓名、签约球队、入队时间、合同时间、合同金额、有无保障;选秀信息功能还包括各项数据的录入、删除和查询。 (3)具体的软件信息 在开发过程中,按照软件工程的步骤,从设计到开发采用了面向对象的思想和技术,采用了SQL SERVER 2008数据库服务器,运用c/s技术,使得本系统可以方便的和其他子系统进行数据交换。同时,注意从软件的图形应用界面上优化软件质量,使得本系统具有很强的可操作性。 二、概念结构设计 概念结构设计是指对用户的需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型,是整个数据库设计的关键。 根据各种信息的内容以及它们之间的关系,该数据库系统的E-R图如下:

库存管理系统数据库设计

库 存 管 理 系 统 ----系统设计 一 功能设计 总原则: 首先要保证系统总目标的实现,其次注意模块的独立性要强。各模块的接口应简单明了。 系统结构图:功能模块的划分,数据录入、库存分析、查询系统 各功能模块的描述:输入,输出,功能。 二 数据库设计 1. 数据模型抽象层次 2. E-R 方法的基本思想 在设计过程中引入一个中间步骤,即先设计一个企业模式(该模式纯粹是现实世界的反映,与存储结构、存取方式无关),再将企业模式转换为某个DBMS 上可以实现的数据模型。多数是关系数据模型。 3. 库存管理系统采用这种方法,先设计出概念数据模型,即E-R 模型。 3.1库存管理系统局部E-R 视图 (1) 物料与入库单之间 (2) 物料与领料单之间 (3) 物料与退料单之间 (4) 物料与仓库之间 3.2库存管理系统集成E-R 视图 (1) (2) (3) (4)

4. ER 模型到关系模式的转换 功能要求: 入库单登录 领料单登录 退料单登录 物资短缺/超储分析 物资积压分析 相关数据库表 入库台帐 领料台帐 退料台帐 库存总帐 4.1 实体集的转换 一个实体型转换为一个关系,实体的属性就是关系的属性,实体的关键字就是关系的关键字。 4.2 联系的转换 (1)M :N 联系 一个联系转换为一个关系,相关实体的关键字与联系的属性组合成关系的属性,相关实体的关键字 组合成关系的关键字。 (2)1:N 联系 N 端实体的关键字构成关系的关键字,可以与N 端合并。 (3)1:1联系 任一端实体的关键字构成关系的关键字,可以与任一端合并 5.参考数据库结构 (1)入库台帐(入库单编号,仓库号,进货日期,供货单位,入库数量,材料编号,进货单价,检验员,记账员,备注) input 列名 数据类型 长度 可否为空 注释 rk_id varchar 10 否 入库单编号 ck_id varchar 10 否 仓库号 in_date date 否 进库日期 cl_from varchar 10 否 供货单位 物 料 入库单 领料单 退货单 仓库 领料 退货 存取 入库 1 1 1 N N N N M

学生管理系统CDM模型

第四讲:学生管理系统CDM模型 教学目的:要求学生在理解概念数据模型(CDM: Conceptual Data Model)基本概念的基础上,能够根据“学生管理系统”的具体要求,建立符合功能要 求的概念数据模型,能够根据相关课程中学习的规范化理论的要求对模 型进行合理的简化,并且使得模型能够适用实际开发系统的需求,同时 应用好反规范化的思想。模型中实体之间的联系应该科学合理,学生能 应用Power Designer软件分析设计工具快速解决设计中的问题。 教学重点和难点:实体的抽象、实体的规范化与非规范化、实体间联系的定义教学方式和手段:课堂讲授;课堂演示,师生互动。 教学内容: 一、学生管理系统分析 1、功能要求 学生管理、成绩管理、选课管理、职工管理、活动管理、教材管理、宿舍管理、图书管理、仪器设备使用管理、院系管理 2、可能包含的实体 学生、课程、学校、院系、职工、活动、教材、宿舍、图书、仪器设备等。 3、分析后可能产生的实体 学生简历、学生家庭情况、学生奖励处分情况等等。 二、分析后建立的初步模型 1、标定联系和非标定联系的区别 2、多对多联系的分解 3、字典数据的建立(一般方法) 4、新实体的发现(设备卡片、图书卡片、简历等)

5、规范化实体的建立 6、反规范化的应用(字典名称、代码的问题) 7、递归联系的建立(院系) 8、属性分析(为每个实体添加属性) 9、数据类型定义 三、模型设计中的规范化与反规范化问题 规范化理论是研究实体中实体属性之间关系的科学。非规范化关系存在的问题: ①插入异常 ②修改异常 ③删除异常 例:有如下概念数据模型生成的物理数据模型(MS SQL Server2000),在数据库中存放一些记录,看看这三种异常的情况。

数据库系统与数据模型

第一章数据库系统概论 本章目的在于使读者对数据库系统的基本知识能有一个较为全面的了解,为今后的学习和工作打下基础。本章重点介绍了有关数据库结构和数据库系统组织的基本知识和基本概念,以及常见的三种类型的数据库系统的特点。重点介绍关系数据库的有关知识。 1.1 数据管理技术发展史 随着生产力的不断发展,社会的不断进步,人类对信息的依赖程度也在不断地增加。数据作为表达信息的一种量化符号,正在成为人们处理信息时重要的操作对象。所谓数据处理就是对数据的收集、整理、存储、分类、排序、检索、维护、加工、统计和传输等一系列工作全部过程的概述。数据处理的目的就是使我们能够从浩瀚的信息数据海洋中,提取出有用的数据信息,作为我们工作、生活等各方面的决策依据。数据管理则是指对数据的组织、编码、分类、存储、检索和维护,它是数据处理的一个重要容中心。数据处理工作由来以久,早在1880年美国进行人口普查统计时,就已采用穿孔卡片来存储人口普查数据,并采用机械设备来完成对这些普查数据所进行的处理工作。电子计算机的出现以及其后其硬件、软件的迅速发展,加之数据库理论和技术的发展,为数据管理进入一个革命性阶段提供有力的支持。根据数据和应用程序相互依赖关系、数据共享以及数据的操作方式,数据管理的发展可以分为三个具有代表性的阶段,即人工管理阶段、文件管理阶段和数据库管理阶段。 【1】人工管理阶段 这一阶段发生于六十年代以前,由于当时计算机硬件和软件发展才刚刚起步,数据管理中全部工作,都必须要由应用程序员自己设计程序完成去完成。由于需要与计算机硬件以及各外部存储设备和输入输出设备直接打交道,程序员们常常需要编制大量重复的数据管理基本程序。数据的逻辑组织与它的物理组织基本上是相同的,因此当数据的逻辑组织、物理组织或存储设备发生变化时,进行数据管理工作的许多应用程序就必须要进行重新编制。这样就给数据管理的维护工作带来许多困难。并且由于一组数据常常只对应于一种应用程序,因此很难实现多个不同应用程序间的数据资源共享。存在着大量重复数据,信息资源浪费严重。 【2】文件管理阶段 这一阶段发生于六十年代,由于当时计算机硬件的发展,以及系统软件尤其是文件系统的出现和发展,人们开始利用文件系统来帮助完成数据管理工作,具体讲就是:数据以多种组织结构(如顺序文件组织、索引文件文件组织和直接存取文件组织等)的文件形式保存在外部存储设备上,用户通过文件系统而无需直接与外部设备打交道,以此来完成数据的修改、插入、删除、检索等管理操作;使用这种管理方式,不仅减轻进行数据管理的应用程序工作量,更重要地是,当数据的物理组织或存储设备发生变化时,数据的逻辑组

《系统工程》第三章系统模型与模型化知识点

第三章系统模型与模型化 1、模型是实现系统的理想化抽象或简洁表示,描绘了现实系统的某些 主要特点,是为了客观地研究系统而发展起来的。 模型的三个特点:(1)它是现实世界部分的抽象或模仿 (2)它是由那些与分析的问题有关的因素构成的 (3)它表明了有关因素间的互相关系 2、模型的作用与地位 P36 作用:(1)模型本身是人们对客体系统一定程度研究结果的表达。这种表达是简洁的、形式化的。 (2)模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、理论、原理的发现。 (3)利用模型可以进行“思想”试验。 3、模型的分类P36 4、构造模型的一般原则 书P37:(1)建立方框图(2)考虑信息相关性(3)考虑准确性(4)考虑集结性 课件:1.现实性 2.简洁性 3.适应性 4.强壮性 5、建模的基本步骤P38 (1)明确建模的目的和要求,以便使模型满足实际要求,不致产生太大偏差。 (2)对系统进行一般语言描述。 (3)弄清系统中的主要因素(变量)及其相互关系(结构关系和函数关系),以便使模型准确地表示现实系统。 (4)确定模型的结构 (5)估计模型的参数 (6)实验研究 (7)必要修改 课件:1.形成问题 2.选定变量 3.变量关系的确定 4.确定模型的数学结构及参数辨识 5.模型真实性检验 6、模型的简化方法 P40

(1)减少变量,减去次要变量 (2)改变变量性质 (3)合并变量(集结) (4)改变函数关系 (5)改变约束条件 7、系统结构模型化------计算题P41-54 结构模型是定性表示系统构成要素以及它们之间存在着的本质上相互依 赖,相互制约和关联情况的模型。 邻接矩阵(A)是表示系统要素间基本二元关系或直接联系情况 的方阵。 邻接矩阵A的元素a ij可以定义如下: a ij= 1 S i R S j R表示S i与S j有关系 0 S i R S j R表示S i与S j没关系 可达矩阵R是指用矩阵形式来描述有向连接图各节点之间,经过 一定长度的通路后可以到达的程度。 :它主要用于变量不多(2-3个)而欣喜也不充分的条件下分析变量之间 的定性关系。 具体作用有两方面:1.平衡点分析 2.稳定性分析 拟合法:数据建模两种方法------拟合法和经验法。 拟合法:偏重“理论”导向。经验法:以“数据”为导向。最小二乘法:根据偏差的平方和为最小的条件来选择常数的方法,叫做最小二乘法。 机理法:机理法是在研究系统运行机理的基础上提出建设,然后建构模型。 书后题:P81-23 第五章系统评价方法计算题 1、系统评价原理P112 系统评价问题是由评价对象(What)、评价主体(Who)、评价目的 (Why)、评价时期(When)、评价地点(Where)及评价方法 (How)等要素(5W1H)构成的问题复合体。

汽车约束系统零部件模型的建立与验证

摘要:在汽车约束系统开发中,模拟仿真可以预测不同方案对乘员的保护效果,显著减少物理试验次数,提高约束系统在不同工况下的稳健性。零部件试验是模型数据获取的重要来源,文章详细介绍了安全带拉伸试验、座椅静刚度试验、转向管柱动态压溃试验及气嚢动态冲击试验的试验方法,在MADYMO软件中建立了该车型相应的零部件模型并进行了仿真分析,结果表明,仿真曲线与试验曲线的拟合度符合要求,各子系统仿真模型可以进行下一步的整车约束系统标定分析及匹配优化工作。 关键词:汽车;约束系统;MADYMO;零部件试验 Model Building and Validation of Vehicle Occupant Restraint System Abstract:In the development of occupant restraint system, the simulation can predict the protection effect of different schemes to the crew, reduce the number of physical tests significantly and improve the robustness of occupant restraint system under different working conditions. Parts and components test is an important source of acquisition model data. In this paper, the tensile test method of the seat belt, the static stiffness test of the seat, the dynamic crushing of the steering column and the dynamic impact test of the air bag are introduced in detail. And the simulation analysis of the model is established by MADYMO, the curve of simulation result is in line with the test requirements. Sub-system simulation model can be used for calibration analysis and matching optimization of the restraint system. Key words:Vehicle; Occupant restraint system; MADYMO; Parts and components test 汽车乘员约束系统是汽车被动安全领域内的主要 研究内容之一,乘员约束系统主要由安全带、安全气 囊、仪表板、座椅及转向系等子系统组成。近年来,许多 研究学者发现,单纯优化安全带或安全气囊系统的特 性只能在一定程度上提高乘员约束系统的性能,而如 果从系统概念出发,协调安全带、安全气囊及座椅的机 械特性则可以大大提高乘员约束系统的性能。国外也 在积极地研究智能型约束系统,可以自动识别乘客体 型,更好地保护妇女儿童[1]。我国汽车被动安全研究经 过了数年的发展历程,已经有了一个良好的开端。文章 在一系列零部件试验的基础上,将MADYMO仿真结果 与试验结果进行了对比验证。 1安全带模型的建立与验证 1.1试验方法 试验系统应保证整个试验过程中所提供载荷的准 确性,在整个试验过程中应连续记录所施载荷。拉力机 采用缠绕式夹具,试件与试验夹具的连接方式应牢固可 靠,防止失效。织带在拉力机夹具上的连接方式采用缠 绕式,这种方式更接近于安全带的实际使用状态,效果 最佳。每进行1次试验都应使用新试件。试验前处理每条安全带织带都应在温度为(20 ±5 °C、相对湿度为 (65 ± 5!的环境中保存至少2h,如果处理后不能立即 进行试验,试件应存放在密封容器内直至试验开始,试 验应在织带从处理环境中或从容器中取出后5 m i内测 量。把处理后的织带,固定于拉伸机上,夹具间织带的自 由长度应为20?240 mm,取有效长度200 mm做标记,使拉伸机的引伸器夹于标记处,保证有效长度200 mm,加载速度约为100mm/min;加载12 000N后卸载,输出 力与位移的曲线。图1示出安全带拉伸试验图,图2示 出MADYMO中搭建的安全带拉伸仿真模型。 图1安全带拉伸试验图 图2 M A D Y M O中安全带 拉伸仿真模型 -39 -

相关主题
文本预览
相关文档 最新文档