当前位置:文档之家› 跳频通信系统抗干扰性能分析

跳频通信系统抗干扰性能分析

跳频通信系统抗干扰性能分析
跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析

姓名:

学院:信息科学与技术学院

系:通信工程系

专业:

年级:

学号:

教师:

2012年7月10日

跳频通信系统抗干扰性能分析

摘要

扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。

关键字:跳频、Simulink 仿真、多径、抗干扰

一.引言

跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。

二.跳频通信的基本原理

扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。

跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

f,与FSK调制器的输出进行混频,再将混频合一个由频率合成器合成的频率

c

成器合成的信号由信道发送。在接收端,有一个相同的PN码序列生成器,与接收信号同步,并用来控制频率合成器输出。因此发射机中引入的伪随机频率平移,在接收器端通过合成器的输出与接收的信号混频,而将其去除。随后,得到的信号再经过FSK解调器就能恢复出原始信号。其基本的结构框图如下:

图1.1扩频基本结构框图

对于干扰信号和噪声而言,由于与伪随机序列不相关,在相关解扩器的作用下,相当于进行一次解扩,干扰信号和噪声频谱被扩展后,其谱密度降低,这样就大大减小了进入信号带通内的干扰功率,使解扩器的输入信噪比和输入信干比提高,从而提高了系统的抗干扰能力。

跳频通信与其他方式的通信方式相比有着独特的优势。

1.抗干扰性强

跳频通信抗干扰的机理是“打一枪换一个地方"的游击策略,敌方很难搞清楚我方的跳频规律,因而具有较强的抗干扰能力。一方面,跳频指令是伪随机码,其周期可长达几年甚至更长的时间;另一方面,跳变的频率个数可以达到成千上万。因此,敌方即使在某一频率上或某几个频率上施放长时间的干扰也是无济于事的。另外,跳频频率受伪随机码控制而不断跳变,在每一个频率的驻留时间内,所占信道的带宽是很窄的。

2.频谱利用率高

跳频通信可以利用不同的跳频图案或时钟,在一定带宽内容纳多个跳频通信系统同时工作,达到频谱资源共享的目的,从而大大提高频谱利用率。

3.易于实现码分多址

多址通信是指许多用户组成一个通信网,网内任何两个用户都可建立通信,并且多对用户同时通信时又互不干扰。应用跳频通信可以很容易地组成这样一个多址通信网,网内各用户都被赋予一个互不相同的地址码,这个地址码恰似电话号码,每个用户只能收到其他用户按其地址码发来的信号才可判别出是有用信号,对其他用户发来的信号,则不会被解调出来。

4.兼容性

对于跳频通信而言,兼容的含义是指一个跳频通信系统可以与一个不跳频的窄带通信系统在定频上建立通信。显而易见,兼容的好处在于先进的跳频电台可与常规的定频电台瓦通

三.跳频通信抗干扰性能分析

3.1抗干扰性能仿真方案

本文使用MATLAB中的Simulink工具包构建仿真平台,。Simulink 是Matlab

中的一种可视化仿真工具,是实现动态系统建模、仿真和分析的一个集成环境,

广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中[5 ] 。它包括一个复杂的由接受器、信号源、线性和非线性组件以及连接件组成的模块库,用户也可以根据需要定制或者创建自己的模块。Simulink 的主要特点在于使用户可以通过简单的鼠标操作和拷贝等命令建立起直观的系统框图模型,用户可以很随意地改变模型中的参数,并可以马上看到改变参数后的结果,从而达到方便、快捷地建模和仿真的目的

本文仿真方案如下:随机数字信号先经过2FSK调制,然后经过跳频调制,接着进入高斯信道,同时考虑多径干扰,再进行解跳和解调处理,恢复出数字信号,最后与输入信号进行比较计算出误码率。

3.1.1 多径瑞利衰落信道模型

信道时变多径特性造成接收信号电平的起伏现象被称为多径衰落.通常在移动信道中信号电平的起伏呈瑞利分布时这种信道称为瑞利衰落信道。在无线通信

信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化,故称为瑞利衰落。瑞利分布是一个均值为0,方差为σ2的平稳窄带高斯过程,其包络的一维分布是瑞利分布。瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。瑞利衰落能有效描述存在能够大量散射无线电信号的障碍物的无线传播环境。

多径效应移动体(如汽车)往来于建筑群与障碍物之间,其接收信号的强度,将由各直射波和反射波叠加合成。多径效应会引起信号衰落。各条路径的电长度会随时间而变化,故到达接收点的各分量场之间的相位关系也是随时间而变化的。这些分量场的随机干涉,形成总的接收场的衰落。因此,多径效应是衰落的重要成因。多径效应对于数字通信、雷达最佳检测等都有着十分严重的影响。

3.2仿真过程

1.常规M-FSK调制通信系统模型图:工程文件名为Commonsystem.

图3.1常规M-FSK调制通信系统模型图

仿真模型中的主要参数设置如表3.1所示:

表3.1 常规M-FSK调制通信系统仿真模型主要参数设置表

2.多径瑞利衰落信道下的M-FSK调制通信系统模型图:工程文件名为Commonsystem_rayleigh.

图3.2多径瑞利衰落信道下的M-FSK调制通信系统模型图仿真模型中的主要参数设置如表3.2所示:

表3.2 多径瑞利衰落信道下的系统仿真模型主要参数设置表

3.多径瑞利衰落信道下的慢跳频通信系统模型图:工程文件名为Frequencyhopping_rayleigh.

图3.3多径瑞利衰落信道下慢跳频通信系统模型图

仿真模型中的主要参数设置如表3.3所示:

表3.3 慢跳频通信系统仿真模型主要参数设置表

该跳频通信系统的跳频频点数为32,跳频速率为50。以上三个仿真系统中的数据产生速率均为100bps,采用2FSK调制及解调,频率间隔为100HZ。模块的使用及参数设置可查阅参考文献[6]、[7]。将上面这三个工程中的各个模块设置好参数,保存好工程之后进行仿真。

主要程序代码如下:(只给出最后运行三个工程时的主程序)

x=-10:0; %x表示信噪比

y=x; %y表示信号的误比特率,它的长度与x相同SimulationTime=10; %仿真时间设置为10秒

hold off; %准备一个空白图

Commonsystem; %执行Commonsystem的仿真程序

hold on; %保持Commonsystem得到的曲线图

Commonsystem_rayleigh; %执行Commonsystem_rayleigh的仿真程序hold on; %保持Commonsystem_rayleigh得到的曲线图for i=1:length(x) %循环执行仿真程序

SNR=x(i); %信道的信噪比依次取x中的元素

sim('Freflop_Reigh_AWGN'); %执行Frequencyhopping_rayleigh仿真程序,得到

BitErrorRate的值

y(i)=mean(BitErrorRate); %计算BitErrorRate的均值作为本次仿真的误

比特率

end

semilogy(x,y); %绘制x和y的关系曲线图,纵坐标采用对数坐标

运行程序,得到三个系统的信噪比—误码率仿真结果图:

从图中可以看出:经过瑞利衰落信道后的M-FSK调制通信系统的误码率比常规系统要高,而慢跳频通信系统的误码率比常规系统要低。跳频通信系统比常规的定频系统抗干扰能力有了较大的提高,即相同信噪比下,跳频通信系统测得的误码率比普通定频系统要低。也就是说,在无线通信系统中,瑞利衰落是不可避免的,如果要在多径瑞利衰落信道下使得通信系统的误码率降低,就必须采取其他措施来提高通信系统的性能,例如采用跳频通信。

四.结论

扩频通信以其较强的抗干扰、抗衰落、抗多径性能而成为第三代通信的核心技术,本文阐述了跳频扩频通信的基本原理和实现方法,并利用Matlab的Simulink仿真工具,建立了跳频通信系统的抗干扰仿真平台,通过软件仿真实现跳频系统的抗干扰性能分析。从仿真图形可以看出,仿真结果与理论分析基本一致,比较真实的反映了系统的性能。在给定仿真条件下,对该跳频通信系统在多径干扰环境下进行了仿真,得到了在多径干扰下的误码率-信噪比曲线,对仿真结果进行了分析总结.

参考文献

[1]朱近康,扩展频谱通信及应用. 合肥,中国科技大学出版社,1993

[2]沈振元,聂志泉,赵雪荷. 通信系统原理.西安电子科技大学出版社,2002

[3]梅文华,跳频通信.北京国防工业出版社,2005

[4]曾兴雯,刘乃安,孙献璞,扩展频谱通信及其多址技术. 西安电子科技大学出版社,2004

[5]王勇,跳频、扩频电子系统抗干扰性能分析. 现代电子技术,2003

[6]邓华,MATLAB通信仿真及应用实例详解.北京:人民邮电出版社,2003:116-127,132-137

[7] 邵玉斌,Matlab/Simulink通信系统建模与仿真实例分析.北京:清华大学出版社,2008.6:323-325

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

跳频扩频通信技术资料整理

3.1.3 自适应跳频adaptive frequency hopping 在WIA-PA超帧簇通信阶段的每个时隙,根据实际的信道状况更换通信信道。 3.1.20 跳频frequency hopping 收发信道切换方法,目的为抗干扰和减少信号衰落。 3.1.40 时隙跳频timeslot hopping 为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。 AFH Adaptive Frequency Hopping 自适应跳频 AFS Adaptive Frequency Switch 自适应频率切换 FH Frequency Hopping 跳频 TH Timeslot Hopping 时隙跳频 WIA-PA 数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。 --------------------------------------- 8.4.3 时隙通信

8.4.5 信道跳频 WIA-PA 支持跳频通信方式,跳频序列由网络管理者指定。 WIA-PA 支持以下3 种跳频机制:——自适应频率切换(AFS):在WIA-PA 超帧中,信标Beacon、CAP 和CFP 段在同一个超帧周期使用相同的信道,在不同的超帧周期根据信道状况切换信道。信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。参数“PLRThreshold”的容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA 超帧的每个时隙,根据信道状况更换通信信道。信道状况通过重传次数进行评价。信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[ ]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[ ] ”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。如果接收端接收到信道切换通知,则更换通信信道,且返回确认信息ACK。如果发送端没有收到确认信息ACK,则不更换信道,仍然采用主信道重传数据。如果发送端达到重传上限值“macMaxFrameRetries”,则丢弃当前包,且利用主信道发送下一个包。如果接收端在切换信道后仍然没有接收到发送端的包,则认为切换信道失败,返回主信道进行通信。如果发送端在达到重传上限值“macMaxFrameRetries”前与接收端在备选信道上通信成功,则发送端选用备选信道发送下一个包。非活动期的簇通信段采用AFH 跳频机制。

谈谈PLC的抗干扰能力

PLC为何如此可靠? 这不是一个简单问题,要回答清楚不是一两篇文章就行的。这里,仅作为STIPLC总工程师多年 的经验与朋友们交流一些: 1,搞清可靠性包括那些内容? 可靠性是指产品能在规定的条件下,能准确完成所设计的全部功能。电子产品一般包括:(1)机械性能 (2)电气性能 (3)热力性能 (4)化学性能 (5)生物性能 (6)使用性能 等方面的可靠性,只要从这几个方面全方位的仔细的科学的落实,产品一定可靠。 机械性能:主要考虑在各种工况下连接的可靠性,如震动,冲击,摔落,冷热涨缩, 腐蚀,霉烂,粉尘。还有机械接口的电气强度,通流能力,插拔寿命等。 重要的应该冗余(一个电信号连几个针)。 按试验标准规定的振动频率范围内,最好无共振点,如有,应确保连接 可靠。 热力性能:主要考虑功率部件的热设计,考虑最坏情况下,功率元器件的结温在允许 值之下。这主要应熟悉传热学。此外,功率元器件的驱动边沿要抖,减少开关 功耗。 要注意元器件在产品规定的温度范围内的参数变化,要有足够余量。 对精密检测要从设计上消除温漂。 化学性能:要根据可能场合,如酸碱,盐雾(如海轮,港口),进行处理。 生物性能:对潮湿高温场合(如海轮),霉菌侵蚀是常见的,所用一些材料应符合 标准(如船用标准),并进性相关处理。 使用性能:要考虑用户错误使用时(如接错,接反),尽可能不坏。 电气性能:(1)要满足基本性能:电气强度(耐压),绝缘电阻,电压波动(如 +25%----30%),频率波动。 要注意PCB布线,及内部连线的爬电距离(高湿度下),内部线缆,PCB印刷线的通流 能力。 (2)特别注意电源的设计:容量足够(在高温满载下),负载很轻很重及 从小容性到大容性下,要动态静特性好,上断电无过冲(或少量)(软起动), 要能抵抗电网电压瞬时中断(如能不间断维持240毫秒供电), 要能抵抗过滤浪涌电压,电快速脉冲群,等的工模与差模干扰及破坏。 还要有过载短路保护能力。 (3)地线设计是极为重要的,一点共地原则永远记牢。 大电流与小电流,模拟与数字,强电与弱电分开(必须分区域)布线。可不共地也可 一点共地。 (4)驱动感性负载应加缓冲隔离,不要用触发器或锁存器直接驱动。感性负栽在加续流。(5)对大电流负载不要与逻辑电路共电源。要保正大电流负载动作时拉低总电源时,其它电路供电正常。 (6)输出采用:密码刷新,3中取2。 (7)输入采用:滤波,3中取2。

随机信号雷达抗干扰性能分析

第23卷第1期电波科学学报 2008年2月CHINESEJOURNALOFRADIOSCIENCEV01.23。No.1February。2008 文章编号1005—0388(2008)Ol一0189—06 随机信号雷达抗干扰性能分析 张新相1吴铁平2陈天麒1 (1.电子科技大学电子工程学院.四川成都610054; 2.空军装备研究院雷达所,北京100085) 摘要研究了采用带限高斯白噪声波形的随机信号雷达在噪声和欺骗干扰环境下的工作性能。通过研究接收机输入/输出信噪比关系和检测性能,分析了随机信号波形抗噪声干扰的性能;采用仿真方法,分析了抗欺骗干扰性能。仿真和分析结果表明,随机信号波形比线性调频脉冲压缩波形具有更好的抗欺骗干扰能力。 关键词随机信号雷达;抗干扰≯噪声干扰;欺骗干扰 中图分类号TN911文献标识码A ECCMcapabilitiesofrandomsignalradar ZHANGXin-xiangWUTie-pingCHENTian-qi (1.CollegeofE.E.,Univ.ofElectronicScienceandTechno(ogyofChina.Chengdu Sichuan610054,China2.RadarInst.,AirforceEquipment Academy,Beijing100085,China) AbstractThepedormanceofrandomsignalradar(RSR)isanalyzedbyemplo—yingaband-limitedwhitegaussnoisewaveforminactivejammingenvironments.Theinputandoutputsignal-to-noiseratioandprobabilityofdetectionofthereceiv—erarediscussed.SimulationisperformedtOshowtheperformanceindeceptivejam—mingcondition.Analysisandsimulationindicatethatrandomsignalwaveformpos—sessesbetterelectroniccounter-countermeasure(ECCM)capabilitiesthanlinearfrequencymodulated(LFM)waveform. Keywordsrandomsignalradar;ECCM;noisejamming;deceptivejamming 1引言 随机信号雷达(RSR)采用射频噪声或噪声调制 信号作为发射波形[1],其最佳接收一般采用相关接 收机。对随机信号雷达的试验研究始于20世纪中期,Horton[2]首先提出了一种噪声测距雷达,此后 CopperC33等研究了一种实验型随机信号雷达。由于 随机信号波形的低截获(LPI)性和优良的检测性能,近年来出现了一些随机信号雷达的研究和试验 系统[1“石],涵盖了探地、SAR/ISAR成像、雷达截面 积测量等方面的应用。 随机信号雷达采用非周期的噪声或类噪声波 收稿日期:2006-i0-20 189形,其模糊函数接近理想的图钉型,除具有良好的距离、速度分辨力和低截获性能【6]外,随机信号雷达的抗干扰能力也是其受到众多关注的主要原因之一.现有文献中,针对随机信号雷达抗干扰性能分析的较少见,其研究对象主要是连续波随机信号波形,研究方法侧重于定性分析、仿真分析和对比试验。刘国岁教授[7]等以对比试验方式,比较了随机二相码调制和伪随机二相码调制两种连续波随机信号雷达的抗干扰性能,实验数据表明,随机二相码调制波形具有更强的抗各类干扰的能力。Garmatyuk[8]对随机信号SAR在杂波/噪声和欺骗式干扰环境下的成像性能进行了仿真研究,通过与线性调频波形比较,  万方数据

直接序列扩频通信系统抗干扰性能分析教学提纲

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

(完整word版)QPSK通信系统性能分析与MATLAB仿真

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

跳频信号的侦察技术研究

跳频信号的侦察技术研究 跳频通信因其良好的抗干扰性、低截获概率及组网能力,在军事通信中得到了广泛的应用,也向通信侦察提出了严峻的挑战。开展对跳频信号侦察的研究,寻求截获、估计、分选跳频信号的方法,已成为当前通信侦察领域紧迫而艰巨的任务之一。论文研究了复杂电磁环境下跳频信号侦察的关键技术,主要包括跳频信号的检测、参数估计和信号分选三部分内容。首先,将各种时频表示应用于跳频信号的检测,仿真其性能,在时频聚焦性和抑制交叉项两项指标上定性和定量比较了各种时频表示的优劣,寻求综合性能较好的时频表示。建立了跳频信号的数学模型,给出了跳频信号各种参数的定义;重点研究了各种线性时频表示、二次时频分布、重排类时频分布、组合时频分布在跳频信号检测中的应用;利用信息熵,定量评价了各类时频分布的性能,并估算了几种典型时频分布的计算复杂度,给出了各类时频分布的综合评价。其次,针对单天线宽带数字接收系统,研究了复杂电磁环境下基于时频分析的跳频信号参数盲估计算法。针对跳频信号侦察,提出了“复合信息熵”的定量评估指标,该指标综合考虑电磁环境中的信号类型数、跳频信号数目、跳速和信道使用情况,由类型熵、密度熵和分布熵三部分组成;基于信道化门限和时频分析完成了去噪和信号预选;基于谱图对单个跳频信号的跳周期、跳时和载频进行了盲估计;基于组合时频分析(SP&SPWVD),对多个跳频信号的跳周期、跳时、载频和幅度参数进行了盲估计,并给出了各参数估计的仿真性能。再次,基于时频分析、空间谱估计,结合数字信道化、时频聚焦等技术对FH

信号、FH/DS信号进行空时频测向,实现了欠定条件下的高精度测向。根据传统的空时阵列模型,结合信号的时频分析,建立了空时频分布 的数学模型;分析了空时频测向能获得时频增益的原因,研究了增益 大小与哪些因素相关;利用空时频分析实现了多个跳频信号的DOA估计,提出了适合无“频率碰撞”情况下的线性空时频DOA估计算法; 虽然利用空时频技术能够实现欠定条件的多信号测向,但在N /M值较大情况因为信号之间的互扰较大使测向性能欠佳,故再结合数字信道 化技术,解决了N /M值较大情况信号之间互扰很大的问题,实现了多 个跳频信号的高精度测向;将空时频分析和宽带信号测向方法,实现 了欠定条件下多FH/DS信号的DOA高精度估计。最后对跳频信号分选技术进行了深入的研究,针对不同的应用场合提出了相应的分选算法。提出了一种适应于环境中仅存在异步组网电台的实时分选方法,该方 法计算量少,便于实时分选,适合应用于快速、高速跳频信号的侦察; 提出了一种类数目K值的估计和优选初始聚类中心的改进K-Means算法;初始聚类中心优选能使聚类迭代次数大为减少,并能避免聚类过 程中陷入局部最小,增强了聚类的鲁棒性;利用改进K-Means聚类算 法对HDW集合进行了聚类分选;针对高斯核参数σ的优选问题,提出 了粗搜索和精估计相结合的改进方法,在得到精确的σopt同时减少 了总搜索次数;利用密度分布图和领域半径、门限参数实现了KKM算 法中类数目K的估计和初始聚类中心的优选;利用基于高斯核函数的 K-Means对跳速和到达角均时变的跳频信号进行聚类分选,分选效果 良好。

传感器、变送器的抗干扰能力设计

传感器及变送器抗干扰能力的设计 一、前言. 传感器变送器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到最高的问题。 而众多的干扰一直影响着传感器的测量精度,如:现场大耗能设备多,特别是大功率感性负载的启停往往会使电网产生几百伏甚至几千伏的尖脉冲干扰;工业电网欠压或过压(涉县钢铁厂供电电压在160V~310V波动),常常达到额定电压的35%左右,这种恶劣的供电有时长达几分钟、几小时,甚至几天;各种信号线绑扎在一起或走同一根多芯电缆,信号会受到干扰,特别是信号线与交流动力线同走一个长的管道中干扰尤甚; 多路开关或保持器性能不好,也会引起通道信号的窜扰;空间各种电磁、气象条件、雷电甚至地磁场的变化也会干扰传感器的正常工作;此外,现场温度、湿度的变化可能引起电路参数发生变化,腐蚀性气体、酸碱盐的作用,野外的风沙、雨淋,甚至鼠咬虫蛀等都会影响传感器的可靠性。 模拟传感器输出的一般都是小信号,都存在小信号放大、处理、整形以及抗干扰问题,也就是将传感器的微弱信号精确地放大到所需要的统一标准信号(如1VDC~5VDC或4mADC~20mADC),并达到所需要的技术指标。 这就要求设计制作者必须注意到模拟传感器电路图上未表示出来的某些问题,即抗干扰问题。只有搞清楚模拟传感器的干扰源以及干扰作用方式,设计出消除干扰的电路或预防干扰的措施,才能达到应用模拟传感器的最佳状态。 二、干扰源、干扰种类及干扰现象. 传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。 1、主要干扰源 (1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境差,还容易受到机械干扰、热干扰及化学干扰等。

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

跳频通信系统中同步技术研究

跳频通信系统中同步技术研究 作者:李娜 来源:《现代电子技术》2011年第01期 摘要:同步技术是跳频通信系统关键技术之一。针对跳频通信系统中同步的要求,采用同步字头与时间信息相结合的方法实现跳频同步。首先研究了跳频同步方法、同步信息格式和初始同步等问题,最后对同步性能进行了分析。结果表明,该跳频通信系统的同步时间短、捕获概率高、虚警概率低。 关键词:跳频通信;同步字头; 时间信息TOD; 同步方案;同步性能 中图分类号:TN914.41-34文献标识码:A 文章编号:1004-373X(2011)01-0095-02 Technology of Synchronization in Frequency-hopping Communication System LI Na (Beijing HAIGE SHENZHOU Communications Technology Co. Ltd., Guangzhou HAIGE Communications Group,Beijng 100070, China) Abstract: Synchronization is one of the key technologies of FH communication. The synchronization of frequency hopping is achieved by adopting synchronization head and time of day to meet the requirement of practical development of FH communication system. The method of frequency-hopping synchronization, the format of synchronization information and the capture of synchronization are studied, and the performance of synchronization is analyzed. The results show that the FH communication system has characteristics of short synchronization time, high capture probability and low false probability. Keywords: frequency-hopping communication; synchronization head; TOD; synchronization scheme; synchronization performance 0 引言 跳频通信是现代通信领域中一种有效的抗干扰通信手段,其独特的抗干扰性能使其在军事和民用领域都得到了越来越广泛的应用。由于定时时钟相对误差、传输信道的多普勒频移等因素,跳频通信系统存在时间和频率的不确定性,为保证正常工作,建立和实现准确的跳频同步是关键[1]。 1 跳频同步方法的研究

雷达抗干扰性能评估方法研究_王瑞革

总第191期2010年第5期 舰船电子工程 Ship Electr onic Engineering V o l.30No.5 115雷达抗干扰性能评估方法研究* 王瑞革王瑞恒刘大成 (92785部队秦皇岛066200) 摘要雷达抗干扰效果评估是雷达作战效能评估的一个重要环节。文章通过对现有雷达抗干扰技术和战术性能指标的深入分析,以及雷达抗干扰效能评估方法研究,建立了评定雷达抗有源压制性干扰的模型,并给出了雷达抗干扰效果评估的方法和步骤。 关键词雷达;评估指标;抗干扰评估 中图分类号T N9 Radar Ant-i interference Function Analysis and the Valuation Method Research W ang R uige Wa ng R uihe ng L iu D acheng (N o.92785T r oops of P LA,Qinhuang dao066200) A bstract T he strength o f radar ant-i jamming play s a decisive ro le in the w ar.In this pa per,t he exist ing t echnolog y and tactical perfo rmance,as well as perfo rmance assessment method o f r adar ant-i jamming,ar e analy zed deeply,the co mpo s-ite assessment indicator of ant-i active blanket jamm ing r adar is est ablished,and bot h the method and pr ocedures o f assess-ment of r adar ant-i jamming effect are proposed. Key Words r adar,assessment indicato rs,sant-i jamming assessment Class Nu mber T N9 1引言 随着各种新技术、新体制雷达不断涌现,现代的雷达对抗技术已经发展到了相当高的水平。现代雷达为了抑制干扰,往往采用多种抗干扰手段;相应地,一些新型干扰装备和干扰技术也随之出现。雷达干扰和雷达抗干扰作为一对对立统一体,正是在这种相互制约相互促进的过程中共同发展的[1]。对于干扰方来说,主要关心干扰对雷达是否有效,效果如何,而雷达方则关心其在干扰条件下的工作能力。同时作战双方电子对抗手段的高低已经成为影响双方战争进程的重要因素。因此,对作为雷达对抗效能评估重要一环的雷达抗干扰效果评估进行研究是很有意义的。2雷达抗干扰性能分析 针对不同的干扰情况,雷达有着不同的抗干扰措施。具体的抗干扰技术可以从以下几个方面说明: 2.1功率对抗 常用的技术手段是增加发射功率、提高天线增益、提高接收机灵敏度和提高发射信号的占空比(即增加发射脉冲宽度和提高发射脉冲重复频率)[2]。 2.2空间对抗 空间对抗是利用干扰源和目标空间位置的差异,来选择目标回波信号的抗干扰方法,它要求雷达窄波束、窄脉冲工作,减小雷达的空间分辨单元 *收稿日期:2010年1月3日,修回日期:2010年2月5日作者简介:王瑞革,男,助理工程师,研究方向:雷达技术。

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

--BPSK通信系统的计算机性能分析与MATLAB仿真.

淮海工学院 课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:BPSK通信系统性能分析与MATLAB仿真 系(院): 学期: 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

BPSK通信系统性能分析与MATLAB仿真 1绪论 随着通信技术的发展,信号处理方面硬件设计与专业软件设计结合日趋紧密,已经有一些公司开付出专业数字信号处理软件。比较优秀的而且得到广大技术人员认可的有MATLAB。 MATLAB等优秀软件使仿真技术得到很好的应用。通过对通信过程的仿真,我们就可以在低成本的条件下检测某一个方案是否能够实现,是否有更好的方案可以代替原来的方案,这样对通信的研究就站在了一个更高的起点,使通信技术的发展日新月异,近几年手机的普及率的迅速提高就从侧面反映移动通信技术的发展。 现代移动通信系统的发展是以多种先进的通信技术为基础发展起来的。移动通信的主要基本技术包括调制技术、移动信道中颠簸的传播特性、多址方式、抗干扰技术以及组网技术。在移动通信中,数字调制解调技术是关键技术,其中数字调相信号具有数字通信的诸多优点,在数字移动通信中广泛使用它来传送各种控制信息。 1.1 研究背景与研究意义 随着通信系统复杂性不断增加,传统设计已不能适应发展的需要,通信系统的模拟仿真技术越来越受到重视,因此在设计新系统时,要对原有的系统做出修改或者进行相关研究,通常要进行建模和仿真,通过仿真结果来衡量方案的可行性,从中选择合理的系统配置和参数设置,然后进行实际应用。MATLAB 作为一种功能强大的数据分析和工程计算高级语言,已被广泛应用于现代科学技术研究和工程设计的各个领域。调制解调技术在通信系统中不可或缺,因此,基于MATLAB的调制解调模块仿真设计对通信系统的教学和科研都具有积极的意义。 1.2 课程设计的目的和任务 本次课程设计是根据“通信工程专业培养计划”要求而制定的。通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算机仿真专业课后进行的综合性课程设计。其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是:(1)掌握一般通信系统设计的过程、步骤、要求、工作内容和设计方法;掌握用计算机仿真通信系统的方法。(2)建立系统模型:根据数字调制与解调原理及通信系统组成情况建立所选题目的系统模型。(3)设置参数:包括信源、抽样量化编码/译码、信道编码/译码、基带调制/解调器、各噪声产生器、信道、误码率计算器、星座图仪等参数的选择。(4)运行参数,进行系统仿真,得到误码率与信

相关主题
文本预览
相关文档 最新文档