当前位置:文档之家› 基于CAN总线的汽车电动车窗控制系统设计

基于CAN总线的汽车电动车窗控制系统设计

基于CAN总线的汽车电动车窗控制系统设计
基于CAN总线的汽车电动车窗控制系统设计

本科毕业设计说明书

基于CAN总线的汽车电动车窗控制系统设计

THE DESIGN OF CONTROL SYSTEM ABOUT AUTOMOBILE POWER WINDOWS BASED ON THE CAN

BUS

学院(部):机械工程学院

专业班级:

学生姓名:

指导教师:

2013 年06 月06 日

基于CAN总线的汽车电动车窗控制系统设计

摘要

随着2009年汽车产销量突破1300万。我国已经一跃成为全球最大的汽车市场。据统计,电子元器件的价值平均占到整车价值的三成左右。概而观之,我国汽车电子的需求是巨大的。在这种巨大的需求求的拉动下,我国汽车电子市场也迎来了飞速发展的时代。

当前,汽车电子的一个发展趋势就是网络化。由于电子装置和电子元件在汽车上的应用越来越多,使汽车的布线空间越来越小。在有线的空间内完成各个电子装置的有效连接,对于传统的点对点式的连接方式来说,是不可能完成的任务。因此,传统的连接方式成为制约汽车电子发展的一个瓶颈。这种情况下,汽车控制网络应时而生。汽车控制网络是把应用于互联网上很成熟的局域网技术应用到汽车上,这样,汽车上各个电子器件只要挂接在同一条总线上,就可以实现器件或装置之间的相互通信了。这样就解决了由于原件连接过多造成的线束臃肿问题,开创了汽车电子器件热插拔的先河,而且方便了汽车的升级和维护。本论文对应用于车身网络中的CAN协议进行了研究,基于CAN总线设计了一种电动车窗控制系统。

关键词: CAN总线,汽车电子,电动车窗

THE DESIGN OF CONTROL SYSTEM ABOUT AUTOMOBILE POWER WINDOWS BASED ON THE CAN

BUS

ABSTRACT

With China’s automobile production and sales in 2009 breaking 13 million, China has become the world’s largest automobile market. According to statistics, the average value of electronic components can account for the value of the vehicle about three percent. Overview, China’s demand for automotive electronics is huge. With the huge demand, China’s automotive electronics market ushered in the era of rapid development.

Currently, a trend of automotive electronics is networking. As more and more electronic devices and electronic components are used in automotive, the inside space of automotive is becoming smaller and smaller. In such a limited space to complete the connection of various electronic devices, it is impossible for the traditional point to point connection type. Therefore, the traditional connection of electronic devices has become a bottleneck in the development of automotive electronics. In this case, the vehicle control network has emerged to solve this problem. Vehicle control network is to apply a very sophisticated Internet technology to the car, as long as the various electronic devices of the car are articulated in the same bus, the devices can communicate with each other through the bus. This will resolve the problem of connecting too many electronic components as a result of the cumbersome wiring harness, but also created a vehicle electronic devices hot swap of the ground, to facilitate the upgrading and maintenance of the vehicle easily. This thesis will introduce applied CAN protocol and design a control system of power windows based on CAN bus.

KEYWORDS: CAN bus,automotive electronic,power windows

目录

摘要................................................................ I ABSTRACT........................................................... II 1绪论.. (1)

1.1 研究背景 (1)

1.2 汽车车载网络技术概述 (2)

1.3 电动车窗控制技术的发展概况 (2)

1.4 课题的主要内容和意义 (3)

1.4.1 课题的主要内容 (3)

1.4.2 课题的意义 (3)

1.5 本章小结 (3)

2 CAN总线 (5)

2.1 CAN简介 (5)

2.2 按照ISO/OSI参考模型CAN的分层结构 (6)

2.3 CAN总线数值的特性 (6)

2.4 CAN协议的报文帧结构形式 (7)

2.4.1 数据帧 (7)

2.4.2 遥控帧 (9)

2.4.3 错误帧 (9)

2.4.4 过载帧 (9)

2.4.5 帧间隔 (9)

2.5 报文接收和仲裁 (10)

2.6 CAN的数据错误检测 (10)

2.6.1 错误处理 (10)

2.6.2 错误状态种类 (12)

2.6.3 错误检测规则 (12)

2.7 位时序 (13)

2.8 本章小结 (14)

3电动车窗的硬件设计 (15)

3.1 主控节点的硬件设计 (15)

3.1.1 微控制器介绍 (15)

3.1.2 CAN模块 (17)

3.2 车窗节点的的设计 (23)

3.3 本章小结 (27)

4基于CAN的车窗控制系统软件设计 (28)

4.1 软件开发的环境 (28)

4.2 CAN模块 (29)

4.2.1 系统主程序 (29)

4.2.2 系统的初始化 (29)

4.2.3 CAN报文的发送 (30)

4.2.4 CAN报文接收 (31)

4.3 驱动模块 (32)

4.4 本章小结 (33)

5车窗防夹功能模拟测试与分析 (34)

6总结与展望 (36)

6.1 总结 (36)

6.2 展望 (36)

参考文献 (37)

致谢............................................... 错误!未定义书签。

1绪论

1.1 研究背景

随着计算机技术、网络通讯技术、集成电路技术的飞速发展,以全数字式现场总线为代表的现场控制仪表、设备大量应用在汽车电子上。汽车电子的广泛应用,极大地提高了汽车的安全性、提高了汽车的节能性、改善了汽车的舒适性。在一些机械连接的物理特性达到极限的情况下,汽车性能的提升以及新车型的研发,越来越依赖于汽车电子,汽车领域70%的技术革新来自汽车电子产品。进入2000年以后我国汽车电子市场规模相当可观。2009年我国汽车电子市场总产值已经高达1800亿元,并仍处于快速上升阶段,今年可能会达到5000亿元。可见,我国汽车电子市场经济规模相当可观,而电动车窗控制系统是汽车电子范围内车身控制系统中非常重要的组成部分。因此,对电动车窗的深入研究不仅具有现实的经济意义,对于增强我国汽车电子企业的竞争力有很大的意义。

汽车电子技术的发展大体分为三个阶段,第一阶段是20世纪60年代至70年代末,其重点是以改善汽车单个零部件的性能为主要目的,代表性的技术创新如利用硅整流代替电刷整流的发电机,利用晶体管无触点点火式代替机械式有触电点火技术,汽车装备电子钟收录机,开始采用电子控制燃油喷射,这些电子系统多由分立电子器件构成,体积大,可靠性不太高。

汽车电子技术发展第二阶段是70年代末至90年代中期,开始引入了自动控制理论,已解决单个机械零部件的各自控制而产生的协调配合上出现的问题。集成电路的发展在汽车上开始应用,这一时期产生如发动机电子管理系统、动力传动总成控制系统、防抱死制动系统、电子控制悬架、电子控制转向系统等,具有一定综合性的电子控制系统。

从90年代中期以来,汽车综合控制技术逐步形成了一个多科学相互交互的综合性新型技术,它以大规模集成电路和总显示控制器局域网为特征,其主要电子产品包括灵巧电源、智能传感器、总线控制器、总线收发器。这些设计一方面将原来的综合性电子控制系统扩大成汽车整体综合控制系统;另一方面与汽车外部道路、交通、通信条件联系起来,使汽车更自动化、智能化。

未来汽车电子化呈现六大趋势:一是功能集成化,如车身控制模块,将取代诸如中控门锁、防盗、雨刮、空调、座椅调节等单项控制系统;二是数字控制取代模拟控制;三是多微处理器协同工作,以实现既有独自运行、又有协同功能的数据共享和灵活组成的优势;四是无线与有线技术相结合,实现车内外信息传输智能化、高速化;五是硬件通用化、高速化,软件专业化,以软件功能提升硬件功能;六是在开发流程上,有“底层向上”模式演变为“由上向下”模式。

1.2 汽车车载网络技术概述

现在人们对汽车的安全性、舒适性、环保节能型等这些性能的要求也越来越高。目前,轿车上装备的各种传感器、执行器和电灯加起来一共多达数百个,其中仅驱动各种物理转动的电机就占一半左右。汽车上电子装置的增加,使连接用的电线束迅速膨胀,导致车体内线束愈来愈复杂,电子设备间的工作协调也越来越困难,为了摆脱这种困境,基于串行通信传输网络结构成为一种必然选择。因此,汽车控制系统网络化已经成为汽车电子今后发展的一个趋势。如图 1.1所示,汽车控制网络可以分为动力总承、底盘控制、车身控制和信息娱乐等子网络。每个子网络包含必要的电子设备,这些电子设备之间通过局域网总线实现通信。对多个次级网络之间的通信来说,就要用到网关,因为这些次级网络对运行速度要求的不同,各个次级网络可以采用各自的协议。在这种体系中,没有全局总线。这种特殊的结构完全消除了全局总线失效的瓶颈,并且为TV,视屏,DVD,声控功能等增强可靠性,扩展了宽带。对信息娱乐网络来说,就是采用MOST技术;动力总承网络来说就采用Flexray总线,对底盘网络来说,就采用CAN总线。本课题研究的电动车窗系统就是图1-1中车身子网中的一个控制系统。

图1-1 汽车网络系统

1.3 电动车窗控制技术的发展概况

汽车自十八世纪末诞生以来,已经走过了一百多年的时间,在这段时间内,汽车车窗控制技术也有了巨大的变化。十九世纪八十年代,电动车窗逐渐兴起,电动车窗用伺服电机驱动玻璃的升降,取代了传统的转动摇柄升降玻璃,这种控制系统更安全、更便捷、更舒适,更符合人们的需求。

电动车窗的发展经历了两个阶段。第一阶段:这一阶段的电动车窗是一个独立的控制系统,它和驾驶员主控模板之间的连接是靠传统的点对点式连接,和其它控制系统之间没有信息交互。这时的车窗系统灵活性和安全性不高,更增加了

维修和维护的难度。第二阶段:这时的电动车窗是搭载于车身控制网络之上的一个智能节点。它和其它控制系统一样,都以一个智能节点的形式搭载于串行总线上。这样整个系统便具备了和其它控制系统的通行能力,既能给其它模块提供信息,也可以从其它模块接受信息,使各个模块共同配合并及时对车窗做出正确控制。

目前,电动车窗是车身控制系统的一个研究热点。车窗控制系统主要是基于LIN总线和CAN总线。LIN总线以其低廉的价格在低端市场占据主导地位,但不能够完全胜任可靠、及时地传递信息,因此更多的是应用CAN总线。基于CAN 总线的车窗控制系统的主要特点是信息的传输速率快、安全性可靠性高。尤其在中、高档汽车的车身控制系统中,由于需要在车身网络传输的信息比较多,且要求车窗控制系统与其它模块通信的实时性较强,LIN总线已经不能满足要求,在这种情况下基于CAN的车窗系统便得到了更广泛的应用。本课题研究的对象就是基于CAN总线的车窗控制系统。

1.4 课题的主要内容和意义

1.4.1 课题的主要内容

本课题研究的电动车窗控制系统是搭载于轿车车身控制网络的一个应用子系统。我根据电动车窗的功能要求和发展趋势,对基于CAN总线的电动车窗系统的设计,完成了对车窗的上升和下降的控制和防夹功能控制。对电动车窗控制系统完成了硬件设计和软件设计。

1.4.2 课题的意义

CAN总线对车窗系统进行控制有以下几方面的意义:

1、节省材料,系统扩展方便。传统的汽车供电系统线束多,改用多路总线传输系统以后,仅用一根动力线即可,动力线长度节省50%以上,当控制系统需要改变电路时,只要把线束延长即可,方便经济。

2、降低了设计制造成本,延长了使用寿命。

3、提高了系统的可靠性。用两根导线就可以实现车窗所有数据的传输,可靠性得到极大提高。

国内外汽车总线技术的自主开发正在高速发展中。本文所研究的车窗控制、车窗防夹控制对人们对车窗控制舒适性、安全性和操作方便的要求有一定的价值和意义。

1.5 本章小结

本章首先结合我国汽车产业市场规模叙述了汽车电子的产值概况,进而研究了电动车窗控制系统的研究价值,它是汽车电子的重要组成部分。之后,研究了

汽车电子发展的一个趋势——网络化,概述了汽车控制网络中的各个子网络的功能和所使用的技术,并且着重说明了总线技术的应用对于汽车电子的重要性和其良好的发展前景。最后,结合电动车窗的发展现状,提出了本课题的主要内容。

2 CAN总线

本章将对CAN总线协议进行详细的阐述。1993年11月ISO正式颁布了CAN 的国际标准ISO11898,之后又追加了颁布了国际标准ISO11519。ISO11898是通过速率为125kbps~1Mbps的高速CAN总线协议标准,而ISO11519是通信速率为0kbps~125kbps的低速CAN总线协议标准。本课题研究的是CAN2.0B协议。

2.1 CAN简介

CAN (Controller Area Network)即控制器局域网,是一种先进的串行通信协议,属于现场总线范围。CAN总线是最初由德国Bosch公司在80年代初期,为了解决现代汽车中众多的控制与测试一起之间的数据交换而开发的一种串行数据通信协议,目的是通过较少的信号线将汽车上的各种电子设备通过网络连接起来,并提高数据在网络中传输的可靠性,CAN总线具有较强纠错能力,支持差分收发,因而适合高噪声环境,并具有较远的传输距离,特别适合于中小型分布式测控系统,目前己在工业自动化、建筑物环境控制、机床、医疗设备等领域得到广泛应用。CAN总线具有以下几个重要特点:

1、结构简单,只有两根线与外部相连,且内部含有错误探测和管理模块。

2、通信方式灵活。可以多种方式工作,网络上任意一个节点均可在任意时刻主动的向网络上的其他节点发送信息,而不分主从。

3、可以点对点、点对多点及全局广播方式发送和接受数据。

4、网络上的节点信息可分成不同的优先级,可以满足不同的实时要求。

5、CAN通讯格式采用短帧格式,每帧字节数最多为8个,可满足通常工业领域中控制命令、工作状态和测试数据的一般要求。同时,8个字节也不会占用总线时间过长,从而保证了通讯的实时性。

6、采用非破坏性总线仲裁技术。当两个节点同时向总线上发送数据时,优先级低的节点主动停止数据发送,而优先级高的节点可以不受影响继续传输数据,这大大地节省了总线仲裁冲突时间,在网络负载很重的情况下也不会出现网络瘫痪。

7、直接通讯距离最大可达1k0率在5kb/S以下),最高通讯速率可达1Mbps(距离最长为40m)。节点数可达110个,通信介质可以是双绞线、同轴电缆或光导纤维。

8、CAN总线通讯接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。

9、CAN总线采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。

2.2按照ISO/OSI参考模型CAN的分层结构

CAN协议对应ISO/OSI参考模型的数据链路层和物理层,其按ISO/OSI模型的分层结构如图2-1所示。

图2-1 CAN的分层结构

2.3 CAN总线数值的特性

在物理层能使用很多物理介质,例如双绞线、光纤等,最常用的是双绞线。信号使用差分电压传送,两条信号线被成为CAN-H和CAN-L,静态时均是2.5V 左右。CAN-H和CAN-L高表示的逻辑“0”被称作“显性位”; CAN-L比CAN-H 高表示的逻辑“1”被称作“隐性位”。通常电压值为:VCAN-H=3.5V和VCAN-L=1.5V。

CAN总线发送的数据是由隐性位和显性位组成的。“显性”(Dominant)数值表示逻辑0,而“隐性”(Recessive)表示逻辑1。“显性”或“隐性”位同时发送时,最后总线数值将为“显性”。总线位的数值表示如图2-1所示。在“隐

性”状态下,VCAN-H和VCAN-L被固定于平均电压点平,Vdiff近似为0。当一个节点发送的是隐性位,而检测到的是显性位,优先级不够高,数据会自动退出;当发送的是显性位而接受到的是隐性位,此节点会认为出错。因而,这种处理的机制就保证了网络中的各个节点在同时发送数据时,优先级低的节点会退出,节省了大量的仲裁时间,提高了可靠性。

图2-2 CAN总线位的数据值表示

2.4 CAN协议的报文帧结构形式

CAN总线上传输信息的单位是报文,CAN总线的报文有五种不同类型的格式,它们分别是数据帧、遥控帧、错误帧、过载帧和帧间隔。表2-1描述了帧的种类和作用。

表2-1 帧的种类和用途

帧帧用途

数据帧用于发送单元接收单元传送数据的帧。

遥控帧用于接收单元向具有相同ID的发送单元请求数据的帧。

错误帧用于当检测出错误是向其它单元通知错误的帧。

过载帧用于接收单元通知其尚未做好接受准备的帧。

帧间隔用于将数据帧及遥控帧与前面的帧分离开来的帧。

2.4.1数据帧

数据帧由七种不同的位域(Bit Field)组成:帧起始(Start of )、仲裁域(Arbitration Field)、控制域(Control Field)、数据域(Data Field)、CRC域(CRC Field)、应答域(ACK Field)和帧结尾(End of )。数据域的长度可以为0~

8个字节。

(1)帧起始(SOF):帧起始(SOF)标志着数据帧和远程帧的起始,仅由一个“显性”位组成。在CAN的同步规则中,当总线空闲时(处于隐性状态),才允许站点开始发送(信号)。所有的站点必须同步于首先开始发送报文的站点的帧起始前沿(该方式称为“硬同步”)。

(2)仲裁域:仲裁域由标识符和RTR位组成,标准帧格式与扩展帧格式的仲裁域式不同。标准格式里,仲裁域由1l位标识符和RTR位组成。标识符位有ID28~IDl8。扩展帧格式里,仲裁域包括29位标识符、SRR位、IDE(Identifier Extension,标志符扩展)位、RTR位。其标识符有ID28~IDO。为了区别标准帧格式和扩展帧格式,CAN l.0~1.2版本协议的保留位r1现表示为IDE位。IDE 位为显性,表示数据帧为标准格式;IDE位为隐性,表示数据帧为扩展帧格式。在扩展帧中,替代远程请求(Substitute Remote Request,SRR)位为隐性。仲裁域传输顺序为从最高位到最低位,其中最高7位不能全为零。RTR的全称为“远程发送请求(Remote Transmission Request)”。RTR位在数据帧里必须为“显性”,而在远程帧里必须为“隐性”。

它是区别数据帧和远程帧的标志。

(3)控制域:控制域由6位组成,包括2个保留位(r0、r1同于CAN总线协议扩展)及4位数据长度码,允许的数据长度值为0~8字节。

(4)数据域:发送缓冲区中的数据按照长度代码指示长度发送。对于接收的数据,同样如此。它可为0~8字节,每个字节包含8位,首先发送的是MSB(最高位)。

(5)CC校验码域:它由CRC域(15位)及CRC边界符(一个隐性位)组成。CRC 计算中,被除的多项式包括帧的起始域、仲裁域、控制域、数据域及15位为0的解除填充的位流给定。此多项式被下列多项式X15+X14+X10+X8+X7+X4+X3+1除(系数按模2计算),相除的余数即为发至总线的CRC序列。发送时,CRC序列的最高有效位被首先发送/接收。之所以选用这种校验方式,是由于这种CRC 校验码对于少于127位的帧是最佳的。

(6)应答域:应答域由发送方发出的两个(应答间隙及应答界定)隐性位组成,所有接收到确的CRC序列的节点将在发送节点的应答间隙上将发送的这一隐性位改写为显性位。因此,发送节点将一直监视总线信号已确认网络中至少一个节点正确地接收到所发信息。应答界定符是应答域中第二个隐性位,由此可见,应答间隙两边有两个隐性位:CRC域和应答界定位。

(7)帧结束域:每一个数据帧或远程帧均由一串七个隐性位的帧结束域结尾。这样,接收节点可以正确检测到一个帧的传输结束。

2.4.2 遥控帧

和数据帧一样有两种格式,一种是标准遥控帧,另一种是扩展遥控帧。它们都是由帧起始、仲裁场、控制场、CRC场、ACK场和帧结束域这六个场组成。遥控帧的RTR位是隐性位,而且遥控帧没有数据域,所以DLC代码没有意义。

2.4.3 错误帧

如图2-3所示,错误帧由错误标志和错误界定组成,错误标志有6位,错误界定符是8个隐性位。错误标志有两种形式:一种是主动错误标志,由6个显性位组成;另一种是被动错误标志,由6个隐性位组成。每一个CAN节点的状态只能是以下3中之一:主动错误状态、被动错误状态、总线关闭状态。当节点处于主动错误状态,检测到错误就向总线发送主动错误标志;当节点处被动错误状态,检测到错误就向总线发送被动错误标志;当节点处于总线关闭状态,不参与总线活动。

图2-3 错误帧

2.4.4 过载帧

过载帧和主动错误帧在形式上式相同的,也是由6个显性位的过载标志和8个隐性位的过载界定符组成。

2.4.5 帧间隔

对于非错误被动的节点帧间隔由间隔和总线空闲组成,对于错误被动的节

帧间隔由间歇、挂起传送和总线空闲组成。

(1)间歇

间歇由3个隐性位组成。在间歇期间,所有的节都不允许传送数据帧和遥控帧,唯一可做的就时标识一个过载条件

(2)总线空间

总线空间的时间是不确定的。只要总线被认为空闲,任何等待发送报文的节点就会访问总线。

(3)挂起传送

挂起传送时错误被动的节点发送报文后,在下一个报文开始传送之前或确认总线空间之前发出8个隐性位在间歇和总线空闲之间。

2.5 报文接收和仲裁

接受节点通过报文滤波来判断是否接受当前报文。设置屏蔽寄存器中的任何的标识符位为“不考虑”或“无关”,通过这种方式来实现报文滤波。当报文滤波后,节点接收当前报文,通过报文校检来判断报文是否有效。校检报文有效时间点,对于发送节点和接收节点是不同的。发送节点:当知道帧的末位仍没有出错,此报文对于发送节点来说被判为有效。此过程中,一旦报文出错,报文会根据优先权自动重发,前提是必须总线回复空闲。接收节点:当直到ACK场最后1位仍没有出错,报文对于接收节点有效。

在总线空闲时,最先开始发送信息的节点获得发送权。当多个节点同时开始发送时,各给节点从仲裁场的第一位开始进行仲裁。连续输出显性电平越多的节点优先级越高,也即是仲裁场的标识符值越小的节点优先级越高。具有相同的ID的数据帧在总线竞争时,由于数据帧的RTR位为显性,遥控帧的RTR位为显性,故数据帧具有优先权,可继续发送数据。同里具有相同ID的标准帧和扩展帧之间竞争总线优先权时,标准帧具有更高的优先权。

2.6 CAN的数据错误检测

2.6.1 错误处理

CAN协议中的错误种类共有五种,分别是位错误、填充错误、CRC错误、格式错误和应答错误,多种错误可以单独发生也可以同时发生,当这些错误发生相应的状态会有所变化。错误的种类、错误的内容、错误的检测帧和检测单元如表2-2所示。

表2-2 错误概况

对于表中所示的错误有以下几种例外情况:

(a)位错误

发送节点在仲裁场输出隐性电平,但检测到显性电平时,将被视为仲裁失利而不是错误。

在仲裁场作为填充为输出隐性电平,却检测到显性电平时,将不视为位错误而视为填充错误。

发送节点在ACK场输出隐性电平,但检测到显性电平时,将判断为其它节点的ACK应答,不视为位错误。

节点输出被动错误标志,却检测到显性电平时,将视为错误结束条件,将等待建的连续的6个位条件,不视为位错误。

(b)格式错误

接收节点即使检测到报文的帧结束的最后1位是显性电平,也不视为格式错

误。接收节点即使检测到报文的帧结束的最后1位是显性电平,也不视为格式错误。接收节点即使检测到控制场中的DLC中的码值大于8,也不视为格式错误。

2.6.2 错误状态种类

任何节点始终处于三种状态之一,它们分别是主动错误状态、被动错误状态和总线关状态。表2-3所示的是节点的错误状态和计数值之间的关系。以下对这三种错误状态的功能做详细的研究。

表2-3 错误状态和计数值

主动错误状态:处于主动错误状态下的节点可以正常地参加总线活动。当节点检测到错误时,向总线输出带有主动错误标志的错误帧。

被动错误状态:处于被动错误状态下的节点,虽能曹家总线活动,但不能积极及时地发出错误通知。处于被动错误状态下的节点即使检测到错误,而其它处于主动错误状态下的节点没有检测到错误,整个总线也被认为是没有错误的。处于被动错误状态下的节点检测到错误时,向总线输出带有主动错误标志的错误帧。另外,当节点发送完一条报文后,不能马上发下一条报文,必须在两条报文之间插入“延迟传送”。

总线关闭状态:节点不能参见任何总线活动,既不能接收报文也不能发送报文,在总线关闭状态下信息的接收和发送均被禁止。

2.6.3 错误检测规则

发送错误计数器的计数值和接收错误计数器的计数值在一定条件下会变动,通过发送错误计数器的计数值和接收错误计数器的技术值的变化来影响节点的错误状态,表2-4是错误计数器的变动规则。

表2-4 错误计数器的变动规则

2.7 位时序

由发送单元在非同步的情况下发送的每秒钟的位数称为位速率。1位可分为同步段、传播段、相位缓冲段1和相位缓冲段2,共四个段。它们用于每一位的定时、同步和采样。

2.8 本章小结

本章对CAN2.0B协议进行了全面的描述,有CAN的报文的发送,详细介绍了保温的一些基本概念。还有CAN报文的接收原理,还通过图形分析了报文的仲裁过程。最后还分析了报文出错处理与CAN节点的错误状态分类。最后简单说了CAN的位时序。通过本章,我对CAN协议进行了详细的学习,了解了它的基本原理,对下面几章基于CAN总线的系统设计做了必要的准备。

3电动车窗的硬件设计

本章主要阐述电动车窗控制系统的硬件部分的设计,电动车窗控制系统是应用在轿车身控制系统中的一个智能子系统,系统中的各个节点通过CAN总线进行实时通信,图3-1简洁地表示了此系统结构。该系统包括主控制节点和四个车门控制节点。对于四个车窗控制节点来说,其硬件结构和软件代码完全一致,本课题只对左前车窗节点和主控制节点进行研究。

图3-1 车窗控制系统框图

3.1 主控节点的硬件设计

主控节点主要由下面两个模块组成,包括对节点进行智能控制的微处理器模块和完成车窗节点和CAN总线连接的CAN模块,其框图如图3-2所示。

图3-2 主控节点框图

3.1.1 微控制器介绍

微控制器也被称为微处理器,是车窗节点中最重要的部分。他对各个模块中的数据进行处理来完成对模块的控制。本课题中所使用的微控制器型号是STC89C58RD。STC89C58RD是宏晶科技公司推出的新一代超强抗干扰、高速、低

汽车车灯控制系统讲解

信息科学与技术学院微机原理与接口技术 课程设计报告 题目名称:汽车车灯控制系统 学生姓名:吴权权 学号: 2009082190 专业年级:计科09-1班 指导教师:裘祖旗 时间: 2012-1-12

目录 1.题目及要求 (1) 1.1 题目 (1) 1.2 要求 (1) 2.功能设计 (1) 2.1 汽车图形 (1) 2.2 汽车左转 (1) 2.3 汽车右转 (1) 2.4 汽车前进 (1) 2.5 汽车倒退 (1) 2.6 汽车停止 (1) 2.7 响铃模块 (1) 3.主流程图 (2) 4.详细设计 (3) 4.1 汽车图形显示 (3) 3.2 汽车停止、转向、倒车的指示 (3) 5.结果显示 (4) 5.总结 (7) 6、程序代码 (8)

1.题目及要求 1.1 题目 汽车车灯控制系统 1.2 要求 1)实现停止时的指示灯; 2)实现汽车转向时指示 3)实现倒车指示 4)扩展功能:实现倒车的声音提示 2.功能设计 2.1 汽车图形 功能:用汇编语言在dos下实现一个汽车的图形,和四盏灯。 2.2 汽车左转 功能:按’A’键,实现汽车的左转,左前、左后指示灯亮,右前、右后指示灯灭。 2.3 汽车右转 功能:按’D’键,实现汽车的右转,左前、左后指示灯灭,右前、右后指示灯亮。 2.4 汽车前进 功能:按’W’键,实现汽车的向前行驶,并且四盏指示灯全灭。 2.5 汽车倒退 功能:按’S’键,实现汽车的倒退行驶,并且后面2盏指示灯全亮,前面2盏指示灯全灭。 2.6 汽车停止 功能:按’B’键,实现汽车的停止,并且四盏指示灯全亮和倒车提示音。 2.7 响铃模块 功能:汽车停止时,提供倒车提示音。

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

汽车尾灯控制系统说明书

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 绪论 (2) 第1章设计系统的介绍 (3) 1.1 设计软件Multisim的介绍 (3) 1.2设计语言 C语言的介绍 (3) 第2章方案设计及规划 (4) 2.1 设计内容及要求 (4) 2.2设计方案分析及比较 (4) 2.4设计方案规划及设计(具体设计) (5) 第3章软件设计及仿真 (9) 第 4章电路的制作 (19) 第5章心得体会 (21) 主要元器件清单 (22) 参考文献 (23)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 绪论 汽车作为现代交通工具已大量进入人们的生活,随着电子技术的发展,对于汽车的控制电路,也已从过去的全人工开关控制发展到了智能化控制。在夜晚或因天气原因能见度不高的时候,人们对汽车安全行驶要求很高.汽车尾灯控制系统给大家带来了方便。汽车尾灯控制器是随汽车智能化技术的发展而迅速发展起来的,汽车尾灯一般是用基于微处器的硬件电路结构构成,正因为硬件电路的局限性,不能随意的更改电路的功能和性能,且可靠性得不到保证,因此对汽车尾灯控制系统的发展带来一定的局限性。难以满足现代汽车的智能化发展[8]。 随着(EDA)仿真技术的发展,数字系统的设计技术和设计工具发生了深刻的变化。利用硬件描述语言对数字系统的硬件电路进行描述是EDA的关键技术之一。C语言是目前主流的硬件描述语言,它具有很强的电路描述和建模能力,且有与具体硬件电路无关和与设计平台无关的特性.在语言易读性和层次化结构设计方面表现出强大的生命力和应用潜力。 本文采用先进的EDA技术,设计了一种基于FPGA的汽车尾灯控制系统.并对系统进行了仿真及验证。用一片FPGA芯片实现从而大大简化了系统结构,降低了成本。提高了系统的先进性和可靠性,能实现控制器的在系统编程。采用这种器件开发的数字系统其升级与改进极为方便。LED(1ight emitting diode,发光二极管)由于其具备体积小、寿命长、低能耗、耐震动、无频闪及反应速度快等优点已成为备受瞩目的新一代车灯光源技术。目前通用的汽车尾灯光源仍然是白炽灯和节能灯占主导地位,加上红、黄等配光透镜实现配光要求,缺点是易损坏、耗电量大、寿命短、激励响应时间长,给道路交通带来安全隐患等。现有的LED汽车尾灯主要有两种:一种是用多个LED密布于灯壳内直接经配光透镜配光,其缺点是用了多颗LED或者用大功率LED,成本高;另外一种是将LED排布成平面或者柱状置于灯壳内,经自由曲面反射腔配光或自由曲面反射腔和配光透镜联台配光,其缺点是自由曲面反射腔制作工艺复杂。现针对目前LED汽车尾灯配光困难、体积大等缺陷,有效利用LED光源体积小、亮度高等特点,设计出一种节能、高效的新型组合式LED汽车尾灯。

(完整版)汽车的传动系统原理及分类

汽车传动是汽车行驶的基础,汽车传动系统的作用将发动机输出的动力传递给驱动轮,使汽车产生运动。汽车传动系统由离合器、变速器、传动轴、减速器、差速器、半轴等组成,全轮驱动汽车还包括分动器。根据动力来源、传动方式汽车传动系统分为四种,为了更好的了解汽车传动系统,成都汽修学校编写本文为你介绍汽车传动原理及传动系统分类。 汽车传动原理 汽车传动原理:汽车动力系统提供动力,经传动系统把动力传给后面的驱动轮,传动系统配合动力系统实现汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 汽车传动系统分类 1、机械式传动系 机械式传动系结构简单、工作可靠,在各类汽车上得到广泛的应用。其基本组成情况和工作原理:发动机的动力经离合器、变速器、万向节、传动轴、主减速器、差速器、半轴传给后面的驱动轮。并与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 2、液力传动系 液力传动系组合运用液力和机械来传递动力。在汽车上,液力传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。动液传动装置有液力偶合器和液力变矩器两种。液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。液力变矩器则除了具有液力偶合器的全部功能外,还能实现无

级变速,故目前应用得比液力偶合器广泛得多。但是,液力变矩器的输出扭矩与输入扭矩的比值范围还不足以满足使用要求,故一般在其后再串联一个有级式机械变速器而组成液力机械变速器以取代机械式传动系中的离合器和变速器。液力机械式传动系能根据道路阻力的变化自动地在若干个车速范围内分别实现无级变速,而且其中的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员的操作大为简化。但是由于其结构较复杂,造价较高,机械效率较低等缺点,目前除了高级轿车和部分重型汽车以外,一般轿车和货车很少采用。 3、静液式传动系 静液式传动系又称容积式液压传动系。主要由油泵、液压马达和控制装置等组成。发动机的机械能通过油泵转换成液压能,然后由液压马达再又转换为机械能。在图示方案中,只用一个水磨石马达将动力传给驱动桥主减速器,再经差速器、半轴传给驱动轮。另一方案是每一个驱动轮上都装一个水磨石马达。采用后一方案时,主减速器、差速器、和半轴等机械传动件都可取消静压式传动系由于机械效率低、造价高、使用寿命和可靠性不够理想,故目前只在某些军用车辆上开始采用。 4、电力式传动系 电力式传动系主要由发动机驱动的发电机、整流器、逆变装置(将直流电再转变为频率可变的交流电的装置)、和电动轮(内部装有牵引电动机和轮达减速器的驱动轮)等组成。电力式传动系的性能与静液式传动系相近,但电机质量比油泵和液压马达大得多,故目前只限于在超重型汽车上应用。 汽车传动系统的选择是否合理对汽车的动力性经济性的影响较大,汽车传动系统的研究和设计是实现汽车自动化控制、节能减排的核心,本文介绍了汽车传动原理以及传动系统分类,详细了解这些对于汽车性能的改进有很大的帮助。

汽车智能照明控制系统设计

毕业设计(论文) 汽车智能照明控制系统 学生姓名: 学号: 所在系部: 专业班级: 指导教师: 日期:二〇一七年五月

学位论文原创性声明 本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日 学位论文版权使用授权书 本学位论文作者完全了解学院有关保管、使用学位论文的规定,同意学院保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。 本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 作者签名:年月日 导师签名:年月日

摘要 在当今社会,人们生活得到了极大的提高,汽车拥有量也在不断增加。汽车作为快捷方便的交通工具,给我们的生活带来了诸多方便,同时也带来不少的交通安全问题。汽车照明系统作为现代汽车的必备安全系统之一,在安全性方面有很多值得改进的地方。大部分的汽车的照明系统目前还是以传统手动操作为主,因此,实现汽车照明的智能控制是非常有必要的。 本文首先对汽车智能照明控制系统的研究背景和国内外概况作了简要介绍,给出了设计任务要求和总体设计方案,并根据实际情况做了硬件设计。硬件设计部分包括主控部分、电源设计部分、数据采集部分和模拟车灯控制部分。本设计是通过STM32单片机对传感器采集到的数据进行分析后对模拟车灯进行控制,控制的具体步骤通过软件编程实现。本文还对实物模型的制作流程作了简单介绍,并给出了实物图。最后对现阶段的研究进行总结并得出了结论,最终结论表明该系统在实际应用中是可行的。 关键词:汽车车灯;STM32F103C8T6;传感器

汽车ABS工作原理

汽车ABS工作原理 王登伟原创 | 2009-11-9 22:54 | 投票 关键字: wdw 汽车ABS是由控制装置,电磁阀,传感器;总成线束;齿圈;BS警示灯等组成,在不同的ABS 系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能ABS通常都由车轮转速传感器、制动压力调节装置、电子不尽相同。 在常见的ABS系统中,每个车轮上各安装一个转速传感器,将有关各车轮转速的信号输入电子控制装置。电子控制装置根据各车轮转速传感器输入的信号对各个车轮的运动状态进行监测和判定,并形成相应的控制指令。制动压力调节装置主要由调压电磁阀组成,电动泵组成和储液器等组成一个独立的整体,通过制动管路与制动主缸和各制动轮缸相连。制动压力调节装置受电子控制装置的控制,对各制动轮缸的制动压力进行调节。 ABS的工作过程可以分为常规制动,制动压力保持制动压力减小和制动压力增大等阶段。在常规制动阶段,ABS并不介入制动压力控制,调压电磁阀总成中的各进液电磁阀均不通电而处于开启状态,各出液电磁阀均不通电而处于关闭状态,电动泵也不通电运转,制动主缸至各制动轮缸的制动管路均处于沟通状态,而各制动轮缸至储液器的制动管路均处于封闭状态,各制动轮缸的制动压力将随制动主缸的输出压力而变化,此时的制动过程与常规制动系统的制动过程完全相同。

在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS就进入防抱制动压力调节过程。例如,电子控制装置判定右前轮趋于抱死时,电子控制装置就使控制右前轮刮动压力的进液电磁阀通电,使右前进液电磁阀转入关闭状态,制动主缸输出的制动液不再进入右前制动轮缸,此时,右前出液电磁阀仍末通电而处于关闭状态,右前制动轮缸中的制动液也不会流出,右前制动轮缸的刮动压力就保持一定,而其它末趋于抱死车轮的制动压力仍会随制动主缸输出压力的增大而增大;如果在右前制动轮缸的制动压力保持一定时,电子控制装置判定右前轮仍然趋于抱死,电子控制装置又使右前出液电磁阀也通电而转入开启状态,右前制动轮缸中的部分制动波就会经过处于开启状态的出液电磁阀流回储液器,使右前制动轮缸的制动压力迅速减小右前轮的抱死趋势将开始消除,随着右前制动轮缸制动压力的减小,右前轮会在汽车惯性力的作用下逐渐加速;当电子控制装置根据车轮转速传感器输入的信号判定右前轮的抱死趋势已经完全消除时,电子控制装置就使右前进液电磁阀和出液电磁阀都断电,使进液电磁阀转入开启状态,使出液电磁阀转入关闭状态,同时也使电动泵通电运转,向制动轮缸泵输送制动液,由制动主缸输出的制动液经电磁阀进入右前制动轮缸, 使右前制动轮缸的制动压力迅速增大,右前轮又开抬减速转动。

大众汽车车载CAN总线系统设计

大众汽车车载CAN总线系统设计 摘要:随着汽车电子技术的持续发展,汽车上越来越多的应用电子设备,电子控制设备的联系更加复杂,而汽车的传统电气系统一般都是采用点对点的单一通信,联系较少,因此,庞大的布线系统之间的联系已经无法满足逐渐复杂的汽车控制系统的要求。 本文以大众汽车车载CAN总线车身控制系统为研究对象,介绍了国际汽车电子技术的现状和发展趋势,与目前主流的汽车网络技术相比,本文分析了目前流行的现场总线的性能及特点,研究了CAN总线的汽车车身控制系统。介绍了系统的硬件设计和开发过程。说明了每个节点的作用,说明了每个模块硬件电路结构。介绍了系统的软件设计和开发过程。该论文讲述了CAN通信模块的通信流程。通过本设计,大众汽车车载CAN 总线车身控制系统可以满足现代车身控制的需要。 关键词:车载网络;大众汽车车载CAN总线;车身控制系统

Volkswagen car CAN bus system design Abstract: with the continuous development of automobile electronic technology, more and more electronic equipment used in automobile, electronic control equipment is more and more complex, the relation between the traditional auto electrical system is mostly single point to point communication, connect with each other very few, so lead to the connection between the huge wiring system has far cannot satisfy the requirement of increasingly complex auto control system. Automobile LAN CAN bus, which are widely used in automotive electronic control system, in order to realize intelligent and networked control part provides effective ways and methods. This topic with CAN bus body control system as the research object, mainly to do the summary of a few aspects: introduce the current status and development trend of international automotive electronics technology, more mainstream in today's automotive network technology, a comprehensive analysis of the current popular features and performance of a variety of field bus, the further study of the CAN bus car body control system. Describes the hardware design and development of the system. According to the actual needs of the system, the design of each module of the system is determined. Detailed introduces the system function of each control node, describes the main control chip peripheral circuit, light control circuit, CAN communication module circuit, wiper control circuit, control circuit, window lock motor control circuit, the switch quantity detection circuit, electric rearview mirror control circuit hardware circuit for each module of the structure. Describes the software design and development process of the system. This article introduces the communication process for the CAN communication module. Key words: car network; vw vehicle CAN bus; Body control system;

汽车控制系统的CAN总线应用

汽车控制系统的CAN总线应用 摘要 现代汽车上安装和使用了越来越多的电子控制单元(ECU),大大提高了汽车的动力性、经济性、舒适性和操作的方便性,但随之增加的复杂电路使车线束增多、空间紧、布线复杂,导致车身重量明显增加,降低了车辆的可靠性,增加了维修难度。另外,各电控单元之间也需要传递大量的信息,有些信息是多个电控单元共享的,传统的点对点的接线和布线方式不能实现信息共享。由于现代汽车的电子控制器及仪表的数量越来越多,因此现代汽车一般采用CAN总线系统,将整个汽车控制系统联系起来统一管理,实现数据共享和相互之间协同工作。 把CAN总线技术应用于汽车的电气控制就可以解决这些问题,也是目前国外汽车制造商大力开发和正在使用的新技术。CAN已被广泛应用到各个自动化控制系统中,从高速的网络到低价位的多路接线都可以使用CAN.例如,在汽车电子、自动控制、智能大厦、电力系统和安防监控等领域,CAN都具有不可比拟的优越性。现代汽车的结构复杂,传感器遍布全车,其类型多种多样,这使得数据变得复杂,大小不尽相同,因此速率也不相同,另外车身系统也需要获得驱动系统的信息,以供维修人员或者驾驶者参考。因此有必要设计一个高效、可靠的网关与数据处理系统。 1.汽车CAN总线系统. CAN的全称是:Controller Area Network,即区域网络控制器。CAN总线中数据在串联总线上可以一个接一个地传送,所有参加CAN总线的分系统都可以通过其控制单元上的CAN总线接口进行数据的发送和接收。CAN总线是一个多路传输系统,当某一单元出现故障时不会影响其他单元的工作,汽车CAN总线

对不同数据的传输速率是不一样的,对发动机电控系统和ABS等实时控制用数据实施的是高速传输,速率为0.125M波特率~1M波特率;对车身调节系统(如空调)的数据实施的是低速传输,传输速率在10~125K波特率;其他如多媒体系统和诊断系统则为中速传输,速率在前两者之间,这样的区分提高了总线的传输效率。图1为某种客车的CAN总线系统结构图。 图1 一种客车的CAN总线系统结构 车身系统CAN总线的主要连接对象为:中控、门控制器及其他一些组件。车身系统的控制对象主要是4个门上的集控锁、车窗、行箱锁、后视镜及车顶灯。在具备遥控功能的情况下,还包括对遥控信号的接收处理和其他防盗系统的控制等等。现代汽车中所使用的电子通讯系统越来越多,如汽车自动诊断系统、自动巡航系统(ACC)和车载多媒体系统等。系统和汽车故障诊断系统之间均需要进行数据交换。 2.汽车车身整体控制系统设计. 整个系统主要由车仪表、照明及信号灯组、自动车窗电控节点组成。本系统网络中包含1个车仪表板、4组照明、信号灯组和4个车门,共9个节点。其中,

电子设计毕业设计-汽车尾灯控制电路设计论文资料-正文

1 引言 在日新月异的21世纪里,电子产品得到了迅速发展。许多电器设备都趋于人性化、智能化,这些电器设备大部分都含有CPU 控制器或者是单片机。单片机以其高可靠性、高性价比、低电压、低功耗等一系列优点,近几年得到迅猛发展和大范围推广,广泛应用于工业控制系统、通讯设备、日常消费类产品和玩具等。并且已经深入到工业生产的各个环节以及人民生活的各个方面,如车间流水线控制、自动化系统等、智能型家用电器(冰箱、空调、彩电)等。用单片机来控制的小型电器产品具有便携实用,操作简单的特点。 本文设计的汽车尾灯控制电路属于小型智能电子产品。利用单片机进行控制,实时时钟芯片进行记时,外加掉电存储电路和显示电路。此设计具有相当重要的现实意义和实用价值。 2 系统概述 本设计以AT89S52单片机为核心,构成单片机控制电路,完成对它们的自动调整和掉电保护。人机接口由四个按键来实现,用这四个按键对汽车左转,右转,停车和检测进行控制。。软件控制程序实现所有的功能。整机电路使用+5V 稳压电源,可稳定工作。系统框图如图2-1所示,其软硬件设计简单,可广泛应用于长时间工作的系统中。 图2-1 系统框图 3 方案选择 由于汽车尾灯控制电路的种类比较多,因此方案选择在设计中是至关重要的。正确地选择方案可以减小开发难度,缩短开发周期,降低成本,更快地将产品推向市场。 ** 方案1——基于AT89S52单片机的汽车尾灯控制电路设计 直接用AT89S52单片机来实现汽车尾灯控制电路设计。AT89S52是一种带8K 字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦写1000余次。由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,A TMEL 的A T89S52是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 用单片机来实现汽车尾灯控制电路设计,无须外接其他芯片,充分利用了单片机的资源。 ** 方案2——基于电子元件的汽车尾灯控制电路设计 人机接口 显示电路 软件控制程序 电源电路 单片机控制电路

CAN总线在汽车车身控制中的应用

编号:11 《汽车总线与嵌入式系统》课程论文 CAN总线在汽车车身控制中的作用 班级:车辆工程1132 (及手机):一青() 学号:1131504328 任课教师:建祥()

2016-11-2 CAN总线在汽车车身控制中的应用 摘要:阐述了CAN(Controller Area Network)总线协议及其技术特点。结合应用实例分析了CAN总线技术在汽车中的应用优势,并对系统的总体结构、数据传输方式以及控制过程进行了详细的描述,给出了节点电路的设计、协议的定义及软件实现方法,并用试验验证了其可行性。 一、引言 随着计算机技术、网络通信技术、集成电路技术的飞速发展,以全数字式现场总线为代表的现场控制仪表、设备大量应用,使得繁琐的现场连线被单一简洁的现场总线网络所代替,为工业现场控制用户带来了巨大好处。特别是上个世纪80年代以来,随着集成电路和单片机在汽车上的广泛应用,汽车上的电子控制单元越来越多,例如电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电控门窗装置和主动悬架等等。在这种情况下,如果仍采用常规的布线方式,即电线一端与开关相接,另一端与用电设备相通,将导致车上电线数目的急剧增加,使得电线的质量占整车质量的4%左右,已远远不能满足汽车愈加复杂的控制系统要求。另外,电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。为此,改革汽车电气技术的呼声日益高涨。因此,一种新的概念——车用控制器局域网络CAN应运而生。 二、CAN总线技术介绍及发展现状

CAN是控制器局域网络(Controller Area Network)的简称,它是由德国Bosch公司及几个半导体生产商开发出来的,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达 1Mb/s.CAN 总线通信接口中集成了CAN 协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。它具有很高的网络安全性、通讯可靠性和实时性,而且简单实用,网络成本低。特别适用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。CAN 总线技术在汽车总线邻域已经占有了一定的市场地位,国内外众多汽车制造商大多选择can总线技术作为它们汽车网络技术。 我国在CAN总线研究应用方面起步较晚,工程应用几乎是空白。特别是在汽车上的应用,可以说是从2002年国家863电动汽车重大专项立项以后,才有几个大的汽车研究和生产单位正式启动的,目前都处于研究的初级阶段,还没有拿出产品化的成果。由于这些研究刚刚还处于起步阶段,故目前的研究重点都集中在动力系统的CAN通讯上,还没有精力针对汽车车身的电子控制部件进行CAN总线的应用研究 一些专家认为,就像汽车电子技术在20世纪70年代引入集成电路、80年代引入微处理器一样,近10年现场总线CAN技术的引入也将是汽车电子技术发展的一个里程碑。 三、CAN总线的技术特点 CAN总线可有效支持分布式控制或实时控制。该总线的通信介质可以是双绞线、同轴电缆或光纤,其主要特点如下: ?CAN总线为多主站总线,各节点可在任意时刻向网络上的其他节点发送信息,且不分主从; ?CAN总线采用独特的非破坏性总线仲裁技术,高优先级节点优先传送数据,故实时性好;

数电课程设计《汽车尾灯控制系统》

课程设计报告 设计题目:汽车尾灯控制系统班级:计算机1206班 学号: 2012XXX 姓名: XXX 指导教师:马学文 设计时间: 2014年8月

摘要 在现代飞速发展的现代化社会背景下,汽车这一高科技产物越来越多地被人们使用,但也由此造成了一系列的问题,比如,由于汽车的突然转向所引发的车祸常出现。如果汽车转弯时能够通过尾灯状态的变化来提示司机,行人汽车转弯,就可减少车祸发生。因此,汽车尾灯就起到了一种信号、警示、标志的作用,也是司机在行车途中必须注意的。本次实验报告是关于取车尾灯控制系统的设计,根据汽车尾灯显示状态与汽车运行状态的关系,分析并设计电路。整个电路有三进制计数器、译码与显示驱动电路、尾灯状态显示电路、开关控制电路4个部分组成。分析使能控制信号与公模控制变量与时钟脉冲的关系,555定时器、3线—8线译码器实现了根据汽车运行状态指示显示4种不同的状态模式。本次报告详细讲解了该系统的设计思路及其具体的实现过程。 关键词: 计数器、译码器、定时器、时钟脉冲

目录 摘要 2 第1章概述4第2章课程设计任务及要求4 2.1 设计任务 4 2.2 设计要求 4 第3章系统设计4 3.1方案论证 4 3.2 系统设计 5 3.2.1 结构框图及说明 5 3.2.2 系统原理图及工作原理 5 3.3 单元电路设计 6 3.3.1单元电路工作原理 6 3.3.2元件参数选择10 第4章软件仿真11 4.1 仿真电路图11 4.2 仿真过程13 4.2 仿真结果15 第5章安装调试17 5.2 安装调试过程17 5.3 故障分析17 第6章结论18第7章使用仪器设备清单19参考文献19 收获、体会和建议20

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

汽车两大机构和五大系统及工作原理汇总

1、对照实物总体介绍讲解发动机两大机构和发动机的工作原理; 总的来说,目前发动机由两大机构、五大系统组成 一、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 二、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 三、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 四、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 五、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 六、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火

系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 七、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转,发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。 发动机的基本工作原理 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL 表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混

汽车CAN总线系统智能节点的设计

汽车ECU电路分析 ECU电路解析 正如在本章开始时我们讲到的,不同厂商的汽车电脑在功能上不是完全相同的,但结构组成和要紧功能是差不多一样的,因此我们以有代表性的BOSCH MOTRONIC系统为例进行ECU的电路分析。 1、BOSCH MOTRONIC系统结构图 BOSCH MOTRONIC系统在电子燃油喷射系统中极具代表性,国内生产的大部分车型采纳的差不多上BOSCH电子喷射系统。图5.11为MOTRONIC系统框图,在此图中介绍了曲型电子燃油喷射系统的组成,各部分的联系情况,关于更好的了解电脑的工作过程,以至于分析故障与维修差不多上大有关心的。 图11 Motronic系统框图 1-燃油箱;2-燃油泵;3-燃油滤清器;4-燃油压力调节器;5-燃油脉动衰减器;6-电子操纵单元;7-分电器;8-喷油嘴;9-冷起动喷油嘴;10-节气门;11-节气门开关门;12-空气流量计;13-氧传感器;14-热敏开关;15-水温传感器;16-辅助空气阀;17-曲轴位置传感器;18-主继电器;19-燃油泵继电器

在图11中,电子操纵单元作为电控发动机的核心部分,由一8位/16位单片微机、集成电路和相关电子元件组成,英文表示为Electric control unit简称ECU。其作用是接收各种传感器送来的信息,以它们进行运算、处理、推断后再发出指令信号,经输出电路进行功率放大后驱动想应的执行单元,从而实现对发动机的各种工况的操纵。那个地点提级的ECU是各种操纵单元的统称,ECM/PCM则是发机操纵模组或动力操纵模组的缩写,是包含于ECU范围之内的。 2、BOSCH MOTRONIC1.3电路分析 汽车电子操纵单元(ECU),不论是BOSCH的MOTRONIC,福特的EEC IV、V,通用的P4、P6等,其最终的目的只有一个,让发动机工作的更出色,表现为动力更强劲,噪声小,污染低。这是针对发动机系统而言,其他系统也是一样,每个系统都有自己的目标,这就看起来是电视机一样,世界各国生产的电视机,不管是哪个厂家的,差不多上要以接收电视节目为目的。基于如此一种认识,我们能够把ECU抽样化的分成几个部分,见图12所示。

汽车CAN总线车身控制系统介绍

汽车CAN总线车身控制系统介绍 一、 CAN总线CAN总线简介 CAN总线是德国Bosch公司为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议。它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1Mbps,距离可达10km。CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,使网络内的节点个数在理论上不受限制。由于CAN 总线具有较强的纠错能力,支持差分收发,因而适合高干扰环境,并具有较远的传输距离。因此,CAN协议对于许多领域的分布式测控很有吸引力。 随着集成电路和单片机在汽车上的广泛应用,汽车上电子控制单元越来越多,汽车总线已经成为汽车电气的一个必然的趋势。使用汽车总线不但可以简化线束,更主要的是可以增加各种智能化的功能。如故障检测和语音报警等。 二、汽车上的CAN总线应用 目前汽车上的网络连接方式主要采用2条CAN,一条用于驱动系统的高速CAN,速率达到500kb/s;另一条用于车身系统的低速CAN,速率是100kb/s。 驱动系统CAN主要连接对象是发动机控制器(ECU)、ABS控制器、安全气囊控制器、组合仪表等等,它们的基本特征相同,都是控制与汽车行驶直接相关的系统。 车身系统CAN主要连接和控制的汽车内外部照明、灯光信号、雨刮电机等电器。 目前,驱动系统CAN和车身系统CAN这两条独立的总线之间设计有"网关",以实现在各个CAN之间的资源共享,并将各个数据总线的信息反馈到仪表板上。驾车者只要看看仪表板,就可以知道各个电控装置是否正常工作了。 三、上海同济同捷科技股份有限公司汽车CAN总线车身控制系统 同捷公司的汽车CAN总线车身控制系统通过CAN总线来控制车身电器,如汽车外部照明、灯光信号、雨刮电机、洗涤电机、喇叭、启动电机、后除霜加热器、后备箱锁执行器,油箱盖锁执行器、车窗、后视镜等器件。 整套控制系统可以采用集中与分散相结合的控制方式。由一个主控模块、几个从控制模块以及语音中控模块组成。从控制模块的具体数量由控制量的多少决定。一般来说可以分成前控制模块、后控制模块、玻璃升降器控制模块、电动后视镜控制模块、电动天窗控制模块和电动座椅控制模块。 除前后盒主控模块外,其它几个模块自成系统并通过LIN总线与主控模块通讯以实现各种控制功能,例如语音中控模块可以通过LIN总线从主控模块读取各种故障信息以语音的方式向驾驶员报告,并将锁车设防信息送到主控模块供玻璃升降器和电动天窗读取,在锁车时实现玻璃的自动升降和天窗的自动关闭,还可以将电动后视镜和车窗的集控开关的信号通过LIN总线传递给各控制器以实现相应的控制。 各个模块的具体功率执行器件可以采用继电器或智能功率器件,采用智能功率器件可以减小控制盒体积,且具有过流,短路保护和断线反馈等功能。系统中融入故障检测和语音报警功能以及遥控、防盗功能,并提升了整车控制的智能化、人性化,简化整车线束、提高电气系统的可靠性。 基础框架:整个系统的基础框架由主控模块、车前模块、车后模块共3个部分组成。其控制了大部分车身电器,参见基础框架功能示意图。 四、上海同济同捷科技股份有限公司车身CAN总线系统的优势 (一)简化整车的供电系统,方便电气布线 由于改变了控制方式并使用了电子开关,取消了大部分继电器和熔断丝。整车线束减少20%~40%(发动机线基本保持不变,前围线减少20%~30%,底板线减少30%~40%)。

汽车车灯控制系统DOC

信息科学与技术学院微机原理与接口技术课程设计报告 题目名称:汽车车灯控制系统

目录 1.题目及要求 (1) 1.1 题目 (1) 1.2 要求 (1) 2.功能设计 (1) 2.1 汽车图形 (1) 2.2 汽车左转 (1) 2.3 汽车右转 (1) 2.4 汽车前进 (1) 2.5 汽车倒退 (1) 2.6 汽车停止 (1) 2.7 响铃模块 (1) 3.主流程图 (2) 4.详细设计 (3) 4.1 汽车图形显示 (3) 3.2 汽车停止、转向、倒车的指示 (3) 5.结果显示 (4) 5.总结 (7) 6、程序代码 (8)

1.题目及要求 1.1 题目 汽车车灯控制系统 1.2 要求 1)实现停止时的指示灯; 2)实现汽车转向时指示 3)实现倒车指示 4)扩展功能:实现倒车的声音提示 2.功能设计 2.1 汽车图形 功能:用汇编语言在dos下实现一个汽车的图形,和四盏灯。 2.2 汽车左转 功能:按’A’键,实现汽车的左转,左前、左后指示灯亮,右前、右后指示灯灭。 2.3 汽车右转 功能:按’D’键,实现汽车的右转,左前、左后指示灯灭,右前、右后指示灯亮。 2.4 汽车前进 功能:按’W’键,实现汽车的向前行驶,并且四盏指示灯全灭。 2.5 汽车倒退 功能:按’S’键,实现汽车的倒退行驶,并且后面2盏指示灯全亮,前面2盏指示灯全灭。 2.6 汽车停止 功能:按’B’键,实现汽车的停止,并且四盏指示灯全亮和倒车提示音。 2.7 响铃模块 功能:汽车停止时,提供倒车提示音。

3.主流程图 No Yes Yes RET No Yes RET No Yes RET No Yes RET No Yes RET No 非定义字符 RET Yes 开始 与W 比较 有无按健 退出 等待 与A 比较 与D 比较 调用DRAW_W 调用DRAW_A 调用DRAW_D 与S 比较 调用DRAW_S 和响铃函数 与B 比较 调用STOP 与空格比较

汽车传动系组成及工作原理

汽车传动系组成及工作 原理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

传动系 传动系一般由、、、、和等组成。 功用 汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。 种类组成 传动系可按能量传递方式的不同,划分为、、、等。 下面分别介绍小传动系各个分总成的工作原理以及作用:[2] 离合器:离合器位于发动机和变速箱之间的壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。离合器接合状态离合器切断状态离合器的功用主要有: 1、保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。 2、便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。 3、防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。

相关主题
文本预览
相关文档 最新文档