商用车驾驶室的驾驶室悬置形式及主要功能
- 格式:ppt
- 大小:2.58 MB
- 文档页数:14
汽车悬挂的基本作用及类型汽车悬挂是指安装在汽车底盘上的系统,用于支撑车身、缓冲震动和保持车轮与地面的接触,以提供更安全、舒适的驾驶感受。
悬挂系统的主要作用有:吸收和缓冲来自不平路面的震动,提高车辆的稳定性和操控性,保持车辆车轮与地面的接触,减少磨损并提高轮胎的使用寿命,尽量减少车身的倾斜和抖动,提供舒适的驾驶体验。
下面将介绍几种常见的汽车悬挂类型。
1.弹簧悬挂系统:弹簧悬挂系统是一种常见的悬挂类型,其主要由弹簧和减震器组成,通过弹簧的弹性来缓冲来自路面的震动,再通过减震器将这些震动吸收和消散掉。
弹簧悬挂系统可以分为螺旋弹簧和叶片弹簧两种类型。
螺旋弹簧常用于轿车和跑车等小型车辆,而叶片弹簧则常用于重型卡车和商用车等。
弹簧悬挂系统能够提供较好的舒适性和操控性,但对于大幅度的冲击可能会有较大的反弹。
2.气囊悬挂系统:气囊悬挂系统采用气体压缩和释放的原理来实现对车身高度的调节。
气囊悬挂系统由气囊、空气压缩机和控制阀组成。
通过控制阀进行调节,可以改变气囊内气体的压力,从而调整车身高度。
气囊悬挂系统可以根据路况和驾驶需求来调整车身高度,提供更好的通过性和舒适性。
它常用于SUV和越野车等需要对越野性能和通过性有要求的车辆。
3.液压悬挂系统:液压悬挂系统是一种高级悬挂类型,它通过液压缸来实现对车身高度的调节。
液压悬挂系统由液压缸、液压泵和控制阀组成。
通过控制液压泵和阀门,可以调整液压缸内液体的流动,从而调整车身高度。
液压悬挂系统具有较高的可调节性和舒适性,可以根据需要在不同的驾驶模式下调整悬挂硬度和车身高度。
这种悬挂系统常用于高端豪华车和赛车等需要较高操控性能和舒适性能的车型。
除了上述几种常见的悬挂类型,还有其他一些特殊的悬挂系统,如电子悬挂系统、主动悬挂系统和磁流变悬挂系统等。
这些悬挂系统利用先进的技术和电子控制来实现对悬挂性能的精确调节,并根据驾驶条件和路况实时调整悬挂系统的工作状态,从而提供更好的驾驶体验和性能表现。
汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。
本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。
正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。
汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。
因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。
未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。
消费者在选择新车时,大多数偏重乘坐舒适性,影响舒适性的最关键因素就是车辆的悬架。
汽车悬架作为连接车轮与车身的机构,对车身起着支撑和减震的作用。
我们经常听到什么独立悬架,非独立悬架,很多消费者也不太明白到底是什么?南京超驰——高端定制商务车,为大家分别介绍一下汽车各种悬架知识:非独立悬架:一般为汽车后轮采用的一种悬架形式,指左右两个车轮通过一根车轴硬性链接,不能够独立的上下跳动,会相互影响。
独立悬架:指前后左右四个车轮单独通过独立的悬挂装置与车体链接,也就是说每个车轮可以各自独立地上下跳动,相互没有直接影响。
现在的家用汽车,前轮都为独立悬架,中高端车型的后悬架一般为独立悬架,低端车型或者小车后轮通常用非独立悬架,下面我们来看看常见的悬架系统,它们都有什么特性。
麦弗逊式独立悬架:麦弗逊式悬挂属于独立悬挂,主要是由螺旋弹簧加上减震器构成,当今大部分车型的前悬挂都是麦弗逊式悬架。
虽然麦弗逊式悬挂技术含量并不高,但他是一种经久耐用的独立悬架,具有很强的道路适应能力。
优点:具备良好的舒适性和操控性,体积小,重量轻,成本低,结构简单。
缺点:遇到凹凸不平路面或者横向作用力时方向很容易自动摆动,抗侧倾能力差,制动点头明显。
双叉臂式独立悬架:双叉臂式独立悬架也是轿车前悬架系统的一种,一般用于中高端车。
双叉臂式悬架拥有上下两个摆臂,它们可以精确地定位前轮各种参数,横向作用力被两个摆臂吸收,避震只承受上下作用力。
优点:前轮抓地好,横向刚度大,抗侧倾能力强。
缺点:成本高,参数设定复杂,后期维修及四轮定位比较麻烦。
扭力梁式半独立悬架:扭力梁式半独立悬架一般用于小型车或者低端车型的后悬架系统,左右两个车轮通过一根粗大的扭转梁连接在一起,控制在左右两个车轮上下跳动,保持车辆平衡。
拖曳臂式半独立悬架与之结构相似,只是横梁固定位置有差别,调教有些不同。
优点:结构简单,成本低,占用空间小,整车稳定性高。
缺点:舒适性稍差,抗侧倾能力差,承载性能差。
悬架的分类和作用悬架是指汽车底盘系统中,用于支撑车身重量、减少震动和保证行驶稳定性的重要组成部分。
它在车辆行驶过程中承受着来自路面的各种冲击力,同时也要保证车身平稳地通过不同路面的变化。
因此,悬架对于整个汽车的性能和安全性都有着至关重要的作用。
一、悬架分类1.按照结构分类(1)独立悬挂:每个车轮都有独立的悬挂系统,互不干扰。
这种结构可以使得每个车轮在行驶过程中独立地上下运动,从而提高了行驶舒适性和稳定性。
(2)非独立悬挂:多数用于商用车辆和越野车等。
所有轮子都连接在一个刚性桥上,这样就会出现一个问题:如果其中一个轮子碰到了障碍物或者坑洼,其他轮子也会受到影响。
2.按照弹性元件分类(1)钢板弹簧式悬挂:主要应用于商用车辆和越野车等。
它使用一系列弯曲形态的钢板来实现弹性,结构简单、耐用,但舒适性和稳定性相对较差。
(2)气囊式悬挂:使用气囊作为弹性元件,可以根据不同的路况和负载自动调节悬挂高度和硬度。
这种结构的舒适性和稳定性都很好,但是维护成本较高。
(3)螺旋弹簧式悬挂:使用螺旋弹簧作为弹性元件,常见于轿车等小型汽车中。
结构简单、容易维护,但是舒适性和稳定性相对较差。
(4)液压式悬挂:使用液压缸作为弹性元件,可以根据路况自动调节阻尼力。
这种结构的舒适性和稳定性都很好,但是价格相对较高。
二、悬架作用1.支撑车身重量悬架的主要作用之一就是支撑车身重量。
当汽车行驶时,它会受到来自路面的各种冲击力,并且还要承受乘客、行李等物品的重量。
如果没有一个良好的悬架系统来支撑这些重量,车辆就会出现严重的问题,例如底盘变形、轮胎磨损等。
2.减少震动另一个悬架的主要作用是减少震动。
当汽车行驶时,路面上的不平坦会产生各种震动和冲击力,如果没有一个良好的悬架系统来吸收这些力量,乘客就会感受到非常不舒适的颠簸感。
因此,悬架系统需要具备一定的弹性和阻尼能力,以便吸收路面上的冲击力并减少车身震动。
3.保证行驶稳定性最后一个悬架的作用是保证行驶稳定性。
汽车底盘悬挂系统解析当我们谈论汽车的性能和舒适性时,底盘悬挂系统是一个至关重要的因素。
它不仅影响着车辆的操控稳定性,还对乘坐的舒适性有着直接的影响。
那么,汽车底盘悬挂系统到底是什么?它又是如何工作的呢?接下来,让我们一起深入了解一下这个神秘而又重要的汽车部件。
汽车底盘悬挂系统是连接车轮和车身的一系列部件的组合,其主要作用是支撑车身重量、吸收路面震动、传递驱动力和制动力,并保证车轮在行驶过程中的正确定位和运动轨迹。
简单来说,悬挂系统就像是汽车的“腿”,让车辆能够在各种路况下平稳行驶。
悬挂系统的类型多种多样,常见的有麦弗逊式悬挂、双叉臂式悬挂、多连杆式悬挂、扭力梁式悬挂等。
麦弗逊式悬挂是目前应用最为广泛的一种悬挂形式,它结构简单、成本较低,占用空间小。
其主要由螺旋弹簧、减震器和三角形下摆臂组成。
麦弗逊式悬挂的优点是轻便、响应速度快,能够在一定程度上保证车辆的操控性能。
但由于其结构的限制,对于侧向支撑力的表现相对较弱,不太适合激烈驾驶。
双叉臂式悬挂则是一种较为高级的悬挂形式,它具有更好的侧向支撑力和操控性能。
双叉臂式悬挂由上下两个叉臂以及减震器和弹簧组成,能够有效地控制车轮的运动轨迹,提高车辆在高速行驶和弯道中的稳定性。
不过,这种悬挂结构复杂,成本较高,通常只在一些高端车型或运动型车辆上使用。
多连杆式悬挂是在双叉臂式悬挂的基础上发展而来,它通过多个连杆来控制车轮的运动,可以更加精确地调整车轮的定位参数,从而提供更好的舒适性和操控性能。
多连杆式悬挂的结构较为复杂,但能够适应各种不同的路况和驾驶需求,是目前许多中高端车型所采用的悬挂形式。
扭力梁式悬挂则是一种非独立悬挂形式,它通过一根扭转梁来连接左右车轮。
这种悬挂结构简单、成本低,能够在一定程度上保证车辆的承载能力,但在舒适性和操控性能方面相对较差,一般多用于经济型车型。
除了悬挂的类型,悬挂系统中的弹簧和减震器也起着至关重要的作用。
弹簧的作用是支撑车身重量,并吸收路面的冲击。
商用车驾驶室悬置隔振系统设计作者:曾超翔来源:《汽车世界·车辆工程技术(中)》2020年第05期摘要:随着社会的进步和发展,商用车在人们的生活中发挥着重要的作用,便利了人们的出行,而商用车的舒适度也成为人民关注的重点。
商用车驾驶室悬置装置将驾驶室与商用车的车架固定在一起,对驾驶室起到了支撑性的作用,商用车驾驶室悬置隔振系统的主要起到了保护驾驶室的平稳运行与衰减震动的功能,商用车驾驶室悬置隔振系统还可以改善驾驶室乘坐的舒适性,延长了驾驶室主体结构的使用寿命,也保障了商用车在驾驶时驾驶室中乘客的安全性。
因此,对商用车驾驶室悬置隔振系统设计进行研究具有深远的意义。
关键词:商用车;驾驶室悬置隔振系统;隔振设计时代不断进步,经济社会快速发展提升了人们的生活质量和水平,商用车的轿车化理念不断深入人心,人们对商用车舒适度的要求也更加严格,也使商用车驾驶室悬置隔振系统设计越来越复杂化。
本文从商用车驾驶室悬置隔振系统的国内外研究现状出发,对商用车驾驶室悬置隔振系统的结构进行研究,提出改善与优化商用车驾驶室悬置隔振系统检修方法的措施。
1 商用车驾驶室悬置隔振系统的国内外研究现状近年来,科技不断进步,设备与系统自动化进度不断加快,因此商用车驾驶室悬置隔振系统的精准度也在不断地提高,在外国,应用了高科技的控制方法与信息技术对商用车驾驶室悬置隔振系统进行设计,技术发展非常成熟,系统的重点在自动化、智能化的方向进行发展。
在国内,商用车驾驶室悬置隔振系统也有着不小的进步,在自动化和智能化方向仍有欠缺,但也有着不小的进步,但是在悬置系统刚度与阻尼的最佳匹配设计上还与国外有着一定的差距,为了解决商用车驾驶室悬置隔振系统现存的问题,提高了系统的可靠性、准确性,同时降低了成本,对商用车驾驶室悬置隔振系统进行更加优化的设计[1]。
2 商用车驾驶室悬置隔振系统设计2.1 系统参数分析对商用车驾驶室悬置隔振系统进行设计首先应该进行系统的参数分析,系统参数分析主要依靠各种类型的商用车驾驶室懸置的功能特征,具体特征见下表1。
悬架的基本功用和分类
悬架作为汽车底盘系统的重要组成部分,主要功用是支撑车身和减震,同时还包括抗侧倾、悬挂轮之间的力量分配以及车辆行驶中的转向控制等方面。
根据结构不同和应用场合不同,悬架可分为以下几类:
1.独立悬挂:每个车轮都有自己独立的悬架,能够独立地对车轮的运动进行控制。
常见的有麦弗逊式悬挂、双叉臂悬挂等。
2.非独立悬挂:两个车轮共用一个悬挂系统,常见的有拖棒式悬挂、梁式悬挂等。
3.气垫悬挂:采用气体作为支撑介质的悬挂系统,能够提高行驶舒适性,实现车高调节等功能。
4.可调悬挂:可以根据不同的行驶条件和需求进行弹簧硬度和阻尼调节,以适应不同的路面和驾驶方式。
5.电子悬挂:利用电子控制系统对悬挂进行控制,达到更高的悬挂精度和智能化程度。
悬挂基本功用组成和分类首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。
悬挂基本功用:①对不平整路面所造成的汽车行驶中的各种颤动、摇摆和震动等,与轮胎一起,予以吸收和减缓。
从而保障乘客和货物的安全,并提高驾驶稳定性。
②将路面与车轮之间的磨擦所产生的驱动力和制动力,传输至底盘和车身。
③支承车桥上的车身,并使车身与车轮之间保持适当的几何关系。
典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。
绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。
悬架的组成悬架一般有弹性元件、导向装置、减振器和横向稳定杆组成弹性元件:弹性元件用来承受并传递垂直载荷、缓和不平路面、紧急制动、加速和转弯引起的冲击或车身位置的变化。
常见的弹性元件包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。
减震器:减振器用来衰减由于弹性系统引起的振动。
减振器的类型有筒式减振器、阻力可调式减振器和充气式减振器。
用于限制弹簧的自由振荡,提高乘坐舒适性。
横向稳定器:有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设有横向稳定杆,目的是提高侧倾刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。
用于防止汽车横向摆动。
导向装置:导向装置用来使车轮按一定运动轨迹相对车身运动,同时起传递力作用。
通常导向装置由控制摆臂式杆件组成,有单杆式和连杆式的。
钢板弹簧作为弹性元件时,它本身兼导向作用,可不另设导向装置。
用于使上述部件定位,并控制车轮的横向和纵向运动。
悬架的基本类型1)按照控制形式不同,悬架可分为被动式悬架和主动式悬架两大类。
目录发动机悬置的结构、作用、设计要求 (2)1.1 悬置的作用 (2)1.2 悬置的设计要求 (2)1.3 悬置的设计结构 (2)1.4 悬置的布置 (5)1.5 悬置系统设计程序 (9)1.1 悬置系统安装要求 (10)发动机悬置的结构、作用、设计要求1.1 悬置的作用悬置元件既是弹性元件又是减振装置,其特性直接关系到发动机振动向车体的传递,并影响整车的振动与噪声。
1.2 悬置的设计要求1.2.1 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
1.2.2 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
1.2.3 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
1.2.4 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
1.3 悬置的设计结构1.3.1 发动机悬置软垫的设计-金属板件和橡胶组成1.3.1.1 悬置软垫的负荷通常前悬置位于发功饥机体前端或机体前部两侧,与后悬置相比、远离动力总成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬置主要承受扭转负荷。
对后悬置来说.距离动力总成的主惯性轴较近,承受较小的扭转负荷及振幅。
同时,由于它处于发动机动力输出端,受传动系不平衡力的严重干扰和外部轴向推力的冲击,当发动机输出最大转矩时.支承点出现的最大反作用力也应由后悬挂来承担。
所以后悬置的垂直刚度较大,也起着限制动力总成前后位移的作用。
悬置系统同样还承受了汽车行驶在平平道路上的颠簸、冲击、汽车制动及转向时所产生的动负荷。
1.3.1.2 悬置软垫的机构形式在设计发动机悬置时。
必须充分的考虑悬置的使用日的,例如支承的质量和限制的位移等,选择合理的形状。
悬置的基本形式有三中,即压缩式、剪切式和倾斜式。
给出了这二种悬置的基本特性及用途。
通常采用倾斜式的悬置结构,利用这种悬置的弹性特性,支点设定可以获得较大的自由度。
第二十一章悬架知识点汽车的悬架系统是连接车架(或车身)与车轴(或车轮)之间的传力连接装置,它不仅承载着车身的重量,还影响着车辆的操控性能、舒适性和行驶稳定性。
接下来,让我们详细了解一下悬架的相关知识。
一、悬架的作用悬架主要有以下几个重要作用:1、支撑车身重量悬架系统通过弹簧和减震器等部件,承受着车身以及乘客和货物的重量,并将其均匀地分配到各个车轮上。
2、缓和路面冲击当车辆行驶在不平坦的路面上时,悬架能够吸收和缓冲路面传来的震动和冲击,减少车身的颠簸,提高乘坐舒适性。
3、保持车轮与路面的良好接触悬架的几何结构和弹性元件能够使车轮始终与路面保持适当的接触,从而确保车轮的附着力,提高车辆的操控性能和行驶安全性。
4、传递驱动力和制动力悬架在车辆加速、减速和转向时,能够有效地传递驱动力和制动力,使车辆按照驾驶员的意图行驶。
二、悬架的组成一般来说,悬架系统由弹性元件、导向装置、减震器等部分组成。
1、弹性元件常见的弹性元件包括螺旋弹簧、钢板弹簧、空气弹簧和扭杆弹簧等。
螺旋弹簧结构简单,应用广泛;钢板弹簧通常用于载货车辆;空气弹簧可以根据负载自动调节刚度,提供更好的舒适性;扭杆弹簧则具有体积小、重量轻的优点。
2、导向装置导向装置用于限制车轮的运动轨迹,使车轮在上下跳动时能够按照一定的规律运动。
常见的导向装置有纵臂、横臂、多连杆等。
3、减震器减震器的作用是吸收弹簧的振动能量,将其转化为热能散发出去,从而快速衰减振动,使车身尽快恢复平稳。
液压减震器和充气减震器是常见的类型。
三、悬架的类型根据结构和性能的不同,悬架可以分为多种类型。
1、非独立悬架非独立悬架的特点是两侧车轮通过一根整体式车桥连接,当一侧车轮受到冲击时,会影响到另一侧车轮的运动。
常见的非独立悬架有钢板弹簧式非独立悬架和扭力梁式非独立悬架。
这种悬架结构简单、成本低,但舒适性和操控性能相对较差,一般用于载货车辆和低端乘用车。
2、独立悬架独立悬架的两侧车轮各自独立地与车架或车身相连,互不影响。
汽车悬挂系统解析当我们驾驶汽车在路上飞驰时,很少会去深入思考汽车悬挂系统的重要性。
然而,这个看似不起眼的部分,却在很大程度上决定了我们的驾驶体验和行车安全。
汽车悬挂系统,简单来说,就是连接车身和车轮的一系列部件的组合。
它的主要作用可不仅仅是支撑车身重量那么简单,还包括减少车辆行驶中的震动、保持车轮与地面的良好接触,从而提高车辆的操控性和稳定性。
悬挂系统的组成部分较为复杂。
其中包括弹簧、减震器、连杆、摆臂等等。
弹簧的作用就像是一个缓冲器,能够吸收来自路面的冲击。
当车辆通过颠簸路段时,弹簧会被压缩,从而减轻车身的晃动。
而减震器则与弹簧协同工作,它的主要任务是控制弹簧的回弹速度。
如果没有减震器,弹簧在被压缩后会迅速回弹,导致车身不停地上下跳动,影响驾驶的舒适性和稳定性。
连杆和摆臂则负责传递车轮和车身之间的力,并保证车轮能够按照预定的轨迹运动。
它们的设计和材质对于悬挂系统的性能有着重要的影响。
在悬挂系统中,常见的类型有麦弗逊式悬挂、双叉臂式悬挂、多连杆式悬挂等。
麦弗逊式悬挂是应用非常广泛的一种悬挂形式,结构相对简单,成本也较低。
它由一个减震器和一个下控制臂组成,占用空间小,适用于大多数前置前驱的车辆。
但其缺点是在高速行驶和弯道操控时,稳定性相对较弱。
双叉臂式悬挂则在性能上有了显著的提升。
它有上下两个叉臂,可以更好地控制车轮的运动轨迹,提供更强的侧向支撑力。
这种悬挂形式常见于一些高性能跑车和运动型轿车上,但由于结构复杂,成本较高。
多连杆式悬挂则是在双叉臂式悬挂的基础上进一步发展而来。
通过多个连杆的协同作用,可以实现更加精确的车轮定位和运动控制,从而提供更好的舒适性和操控性。
不过,多连杆式悬挂的结构更为复杂,占用空间也较大,通常在中高端车型中使用。
除了悬挂的类型,悬挂的调校也至关重要。
不同的车型会根据其定位和目标客户群体,对悬挂进行不同的调校。
比如,运动型车辆的悬挂通常会比较硬,以提供更好的操控性能;而舒适型车辆的悬挂则会相对较软,以过滤掉更多的路面震动。