2018北京高考试卷讲评
- 格式:pptx
- 大小:364.57 KB
- 文档页数:58
2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40 分)8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
在复平面内,复数丄的共轭复数对应的点位于1 —i5 (B )-67(D )—12(4) “十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展绝密★启用前(1) 已知集合 A={x|| x|<2} , B={E , 0, 1 , 2},则 A B= (A ) {0, 1} (B ) { - , 0, 1}(C )1, 2}(D ) { - , 0, 1, 2}、选择题共 (2) (A ) 第一象限 (B )第二象限 (C ) 第三象限(D )第四象限(3) 执行如图所示的程序框图,输出的s 值为(A ) (C )2 做出了重要贡献•十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每第二部分(非选择题共110 分)一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为 f ,则第八个单音的频率(A )32f(B ) 3 22 f(5)(C )(6) 设a , b 均为单位向量,则“a -3b 二3a b ”是“ a 丄b ”的 充分而不必要条件(B )必要而不(C ) 充分必要条件(D )既不充分也不必要条件(7) 在平面直角坐标系中,记 d 为点P (cos B, si n B)到直线x-my-2=0的距离,当0, m 变化时,d 的 最大值为 (A )(B ) 2 (D ) 4(8) 设集合 A ={( x, y) |x —y 丄1, ax y 4,x —ay 込2},则(A ) 对任意实数 a , (2,1) • A(B )对任意实数a , ( 2, 1)-' A当且仅当a<0时,(2, 1 A3(D )当且仅当^1-时,(2, 1 A(D ) 12 27 f某四棱锥的三视图如图所示,(D ) 4、填空题共6小题,每小题5分,共30分。
(精校版)2018年北京文数高考试题文档版(含答案)绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(|||<2)},B={?2,0,1,2},则A B=(A){0,1} (B){?1,0,1}(C){?2,0,1,2}(D){?1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为(A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ?(C )当且仅当a <0时,(2,1)A ? (D )当且仅当32a ≤时,(2,1)A ? 第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(??||??|<2)},B={?2,0,1,2},则A B=I(A){0,1} (B){?1,0,1}(C){?2,0,1,2}(D){?1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122若第一个单音的频率为f,则第八个单音的频率为学科#网(A32(B322(C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,»»»¼,,,AB CDEF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O ??为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD (C )»EF(D )¼GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京市高考数学试卷(理科)、选择题共8小题,每小题 5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. (5.00分)已知集合A={x|| x| V 2} , B={ - 2, 0, 1, 2},则 A H B=( )A . {0, 1}B . { - 1, 0, 1}C { - 2, 0, 1, 2} D. { - 1, 0, 1, 2}2. (5.00分)在复平面内,复数的共轭复数对应的点位于(A •第一象限B •第二象限 C.第三象限 D .第四象限D. r频率为( )A . "fB ・f C.-'f D.3. (5.00分)执行如图所示的程序框图,输出的s值为()4. (5.00分)十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于「—.若第一个单音的频率为f,则第八个单音的5. (5.00分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的A . 1 B. 2 C. 3 D . 46. (5.00分)设….均为单位向量,贝U “;- 3"=|3.;+:】|”是“丄[•”的( ) A .充分而不必要条件B.必要而不充分条件C.充分必要条件 D .既不充分也不必要条件 7. (5.00分)在平面直角坐标系中,记 d 为点P (cos Q sin 》到直线x -my - 2=0的距离.当(、m 变化时,d 的最大值为( )A . 1 B. 2 C. 3D . 48. (5.00分)设集合 A={ (x ,y ) | x - y > 1,ax+y >4,x - ay <2},贝U ( )A .对任意实数a ,(2,1 )€ AB •对任意实数a, (2,1) ?AC •当且仅当a v 0时,(2, 1) ?AD .当且仅当aw£■时,(2, 1) ?A二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一 项。
已知集合 A={x||x|<2}, B={ -, 0, 1 , 2},则 A B={乞,0, 1, 2}1在复平面内,复数——的共轭复数对应的点位于1 —i(D )第四象限(A)绝密★启用前(3) 执行如图所示的程序框图,输出的s 值为(C )(D)7 12(A) {0 , 1} (B) { -, 0, 1}(1) (2)(D) { - , 0, 1, 2} (A) 第一象限(B )第二象限第三象限(B)(4) “十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论 的发展做出了重要贡献•十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二 个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为 f ,则第八个单音的频率为(B) 3 22 f(14)已知椭圆M :冷 爲 -1(a b 0),双曲线N:二-笃=1 .若双曲线N 的两条渐近线与椭圆(A) 32f(A)(5)(D) 12 27 f左〉视圏2(C ) 3(6)设a , b 均为单位向量,则“ a -3b = 3a b ”是“ a 丄b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记 d 为点P (cos B, si n B)到直线x —my —2=0的距离,当9, m 变化时,(B) 2(D)4设集合 A 二{( x, y) |x-y 亠1,ax y 4,x-ay 二2},则a b m nM 的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,则椭圆 M 的离心率为 ___________________ 双曲线N 的离心率为 _____________ .三、解答题共6小题,共80分。
高考真题如何讲评试卷语文对于每一位参加高考的考生来说,语文试卷无疑是备受关注的一项科目。
而对于许多学生而言,高考语文真题的讲评更是一个备受瞩目的环节。
下面就对高考真题如何讲评试卷语文进行详细探讨。
首先,讲评语文试卷时,重点应放在阅读理解、写作和文言文这几个方面。
对于阅读理解,考生需要具备良好的阅读能力,理解文章的主旨和细节。
在讲评时,应该分析文章的难点和考点,指导学生如何提升阅读理解能力。
在写作部分,我们可以对考生的作文结构、观点表达和语言运用等进行分析,指出优点和不足之处,为他们提供写作技巧和方法。
对于文言文部分,考生需要通过大量的阅读和练习,熟悉古代文言的语法和词汇,掌握正确的阅读和翻译方法。
在讲评时,我们可以对古代文言的特点和难点进行深入剖析,引导学生掌握解题技巧。
其次,在讲评语文试卷时,应注重对高考评分标准的解读。
语文试卷评分一般分为主观题和客观题两部分,对于主观题,评分标准更为灵活,要求考生表达清晰,逻辑严谨,观点独到。
在讲评时,我们可以结合高考评分标准,对学生的作文进行点评,引导他们根据评分标准提高写作水平。
对于客观题,评分更为客观公正,要求考生准确把握答题要点,避免主观臆断和猜测。
在讲评时,我们可以向学生解释客观题的答案解析,帮助他们正确理解题意,避免答题偏差,提高得分率。
再次,在讲评高考语文试卷时,要注重引导学生进行自主思考和答疑。
考生在解答试卷时难免会遇到一些疑惑和困惑,需要老师进行及时解答和指导。
在讲评时,老师应鼓励学生提问和发表自己的见解,帮助他们克服困难,主动探究知识。
同时,老师也可以通过布置训练题和模拟考试等方式,培养学生的自主思考和独立解题能力,提高应对高考语文试卷的能力。
最后,在讲评语文试卷时,要关注学生的学习兴趣和动机。
语文试卷作为一项重要的高考科目,对学生的语言表达和思维能力有着重要的检测作用。
在讲评时,老师应该根据学生的兴趣和特长,设计个性化的学习计划,引导他们主动参与学习和思考。
2018年北京市高考文科数学试题及答案绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(??||??|<2)},B={?2,0,1,2},则(A){0,1}(B){?1,0,1}(C){?2,0,1,2}(D){?1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为(A)(B)(C)(D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1(B)2(C)3(D)4(7)在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O??为始边,OP为终边,若,则P所在的圆弧是(A)(B)(C)(D)(8)设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a<0时,(2,1)(D)当且仅当时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9)设向量a=(1,0),b=(?1,m),若,则m=_________.(10)已知直线l过点(1,0)且垂直于??轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.(11)能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.(12)若双曲线的离心率为,则a=_________.(13)若??,y满足,则2y的最小值是_________.(14)若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。
(精校版)2018年北京理数高考试题文档版(含答案)绝密★启用前2019年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B= (A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9)设{}na 是等差数列,且a 1=3,a 2+a 5=36,则{}na 的通项公式为__________.(10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.(11)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.(12)若x ,y 满足x +1≤y ≤2x ,则2y −x 的最小值是__________.(13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
注重基础知识提高综合能力——2018年北京高考理综化学试
题特点分析
田玉凤
【期刊名称】《高中数理化》
【年(卷),期】2018(000)013
【摘要】2018年北京理综化学试题有如下特点:1)突出对化学核心内容必备知识的考查,强调基础性;2)注重理论联系实际,重视化学学科关键能力的考查,强调应用性;3)创设接受、吸收、整合信息的能力考查,发展学生化学学科核心素养,强调创新性.试题坚持立德树人、服务选拔和导向教学的宗旨,凸显化学学科特点,在注重对学科思想和学科方法考查的同时又体现了对学习方式、探究及创新能力等方面的考查.
【总页数】3页(P90-92)
【作者】田玉凤
【作者单位】北京市第十二中学
【正文语种】中文
【相关文献】
1.稳中求新注重素养考查能力兼顾基础——2018年全国高考Ⅰ卷理综化学试题的特点评析及2019年备考策略 [J], 黄立生;张立云
2.基于核心素养视角的高考化学试题浅析——以2018年全国高考新课标Ⅲ卷理综化学试题为例 [J], 黄剑锋
3.2018年全国高考理综Ⅰ卷化学试题特点分析 [J], 汤伟; 杨宁
4.稳中有变变中有新重视能力——2020年高考全国Ⅱ卷理综化学试题特点分析[J], 吴来庆;佘学智;陈再来
5.注重实验教学实效,提高学生综合能力——2011年高考福建理综卷第26题的赏析与启示 [J], 韩善明
因版权原因,仅展示原文概要,查看原文内容请购买。
2018年普通高等学校招生全国统一考试(北京卷)文 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分.1.已知集合{}2A x x =<,{}–2,0,1,2B =,则A B =I ( )A .{}0,1B .{}–1,0,1C .{}–2,0,1,2D .{}–1,0,1,21.【答案】A【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .2.在复平面内,复数11i-的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.【答案】D【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .3.执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7123.【答案】B【解析】初始化数值1k =,1s =循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立; 第二次:()21151236s =+-⋅=,3k =,33k =≥成立,循环结束,输出56s =,故选B .4.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.【答案】B【解析】当4a =,1b =,1c =,14d =时,a ,b ,c ,d 不成等比数列,所以不是充分条件;当a ,b ,c ,d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“a ,b ,c ,d 成等比数列”的必要不充分条件.故选B .5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D . 5.【答案】D()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4 6.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .7.在平面坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )A .»AB B .»CDC .»EFD .¼GH 7.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.8.设集合(){},1,4,2A x y x y ax y x ay =-≥+>-≤,则( ) A .对任意实数a ,()2,1A ∈ B .对任意实数a ,()2,1A ∉ C .当且仅当0a <时,()2,1A ∉ D .当且仅当32a ≤时,()2,1A ∉ 8.【答案】D【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为, 若32a ≤,则有()2,1A ∉,故选D .第II 卷二、填空题:共6小题,每小题5分,共30分.9.设向量()10=,a ,()1,m =-b ,若()m ⊥-a a b ,则m =_________. 9.【答案】1-【解析】()10=Q ,a ,()1m =-,b ,()()()011m m m m m ∴-=--=+-,,,a b , 由()m ⊥-a a b 得,()0m ⋅-=a a b ,()10m m ∴⋅-=+=a a b ,即1m =-.10.已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________. 10.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.11.能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为_________. 11.【答案】1,1-(答案不唯一)【解析】使“若a b >,则11a b <”为假命题,则“若a b >,则11a b≥”为真命题即可,只需取1a =,1b =-即可满足.所以满足条件的一组a ,b 的值为1,1-.(答案不唯一)12.若双曲线()222104x y a a -=>a =_________. 12.【答案】4【解析】在双曲线中,c ==,且c e a ===22454a a +=,216a ∴=,04a a >∴=Q .13.若x ,y 满足12x y x +≤≤,则2y x -的最小值是_________. 13.【答案】3【解析】作可行域,如图,则直线2z y x =-过点()1,2A 时,z 取最小值3.14.若ABC △)222a c b +-,且C ∠为钝角,则B ∠=_________;ca的取值范围是_________.14.【答案】60o ;()2+∞,.【解析】)2221sin2ABCS a c b ac B =+-=V Q ,2222a c b ac +-∴=,即cos B =sin cos B B ∴=3B π∠=,则21sin cos sin sin 1132sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,3B π∠=,06A π∴<∠<,)1tan 0tan A A ⎛∴∈∈+∞ ⎝⎭,, 故()2,ca ∈+∞.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题13分)设{}n a 是等差数列,且1ln 2a =,235ln 2a a +=.(1)求{}n a 的通项公式;(2)求12e e e n a a a +++L .15.【答案】(1)ln2n ;(2)122n +-.【解析】(1)设等差数列{}n a 的公差为d ,235ln 2a a +=Q ,1235ln 2a d ∴+=, 又1ln2a =,ln 2d ∴=,()11ln 2n a a n d n ∴=+-=. (2)由(1)知ln 2n a n =,ln 2ln 2e e e 2nn a n n ===Q ,{}e n a ∴是以2为首项,2为公比的等比数列,212ln 2ln 2ln 221e e e e e e =222=22nn a a a n n +∴+++=++++++-L L L , 121e e e =22n a a a n +∴+++-L .16.(本小题13分)已知函数()2sin cos f x x x x =+.(1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.16.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.17(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加01.,哪类电影的好评率减少01.,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)17.【答案】(1)0025.;(2)0814.;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140503002008005102000+++++=.第四类电影中获得好评的电影部数是20002550⨯=.,故所求概率为5000252000=..(2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有14006500830008520007580008510091628⨯+⨯+⨯+⨯+⨯+⨯=......部.由古典概型概率公式得()162808142000P B ==..(3)增加第五类电影的好评率,减少第二类电影的好评率. 18.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .18.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥, Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD .19.(本小题13分)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围.19.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦Q ,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦', ()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'. 若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:()f x ∴(2)当0a >时,令()0f x '=得11x a =,21x =. ①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当12x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:()f x ∴1x =③当x x <,即1a >时,()f x ',()f x 随x 的变化情况如下表:(f ∴1x =1a >(3)当0a <时,令()0f x '=得11x =,21x =,()f x ',()f x 随x 的变化情况如下表:(f ∴1x =综上所述,a 的取值范围为()1+∞,.20.已知椭圆()2222:10x y M a b a b+=>>,焦距为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设()20P -,,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点7142Q ⎛⎫- ⎪⎝⎭,共线,求k .20.【答案】(1)2213x y +=;(23)1.【解析】(1)由题意得2c =c又c e a ==a =2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y ⎧=++=⎪⎨⎪⎩消去y 可得2246330x mx m ++-=, 则()22236443348120m m m ∆=-⨯-=->,即24m <,设()11A x y ,,()22B x y ,,则1232mx x +=-,212334m x x -=,则12AB x -=, 易得当20m =时,max ||AB =AB . (3)设()11A x y ,,()22B x y ,,()33C x y ,,()44D x y ,,则221133x y += ①,222233x y += ②, 又()20P -,,所以可设1112PA yk k x ==+,直线PA 的方程为()12y k x =+, 由()122213y k x x y =++=⎧⎪⎨⎪⎩消去y 可得()222211113121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以11117124747x y C x x ⎛⎫--⎪++⎝⎭,,同理可得22227124747x yD x x ⎛⎫-- ⎪++⎝⎭,. 故3371,44QC x y ⎛⎫=+- ⎪⎝⎭uuu r ,447144QD x y ⎛⎫=+- ⎪⎝⎭uuu r ,,因为Q ,C ,D 三点共线,所以3443717104444x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+--+-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,将点C ,D 的坐标代入化简可得12121y y x x -=-,即1k =.。
普通高等学校招生全国统一考试模拟试卷1(北京卷)理科数学本试卷共4页,150分。
考试时长120分钟,考生务必将答案填写在答题卡上,在试卷上作答无效。
考试结束后,将本试卷、答题卡和草稿纸一并收回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合2{|20}A x x x =-=,{0,1,2}B =,若A B =A .{0}B .{0,1}C .{0,2}D .{0,1,2} 2.下列函数中,在区间(0,}+∞上为增函数的是 A .1y x =+ B .2=(1)y x - C .2x y -= D .0.5log (1)y x =+3.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的 A .充分且不必要条件 B .必要且不充分条件 C .充分且必要条件 D .既非充分也非必要条件4.设a ,b R ∈,若a b >,则 A .11a b< B .lg lg a b > C . 22a b> D .sin sin a b > 5.若输出的S 的值为64,则判断框内应填入的条件是 A .3?k ≤ B .3?k < C .4?k ≤ D .4?k > 6.某三棱锥的三视图如图所示,则该三棱锥的体积为A .19B .16C .13D .12注:1-4页为试题,5-11页为详细答案及评分标准,12-13页为试题难度说明. 本试卷配套标准答题纸可在百度文库本试卷作者处免费获得. 印发时,请删去本标注.7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=︒; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③B .②③④C .②④⑤D .③④⑤第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试 结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
已知集合 A={x|X|<2} , B={ -, 0, 1, 2},则 A p|B=(2) (3) (A) {0 , 1}(C ) { z 0, 1,在复平面内,复数 (A )第一象限 (C )第三象限2} 丄的共轭复数对应的点位于1 —i执行如图所示s 值为(B ) (D) (B ) (D) { -1, 0, 1}{ - , 0, 1 , 2}第二象限第四象限1(A) 丄2(B )(C) 7(D)7 12(1)(4)“十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为的频率为(A) 32f ( B) 3.2^f最大值为(A) 1 ( B) 2(C) 3 ( D) 4(8)设集合 A ={( x, y) |x—y 亠1,ax y 4,x—ay 込2},则(A)对任意实数a, (2,1),A ( B)对任意实数a, (2, 1) A3(C)当且仅当a<0时,(2, 1)-' A ( D )当且仅当a乞3时,(2, 1) A 2第二部分(非选择题共110分) f,则第八个单(5)(C) 1225 f(A) 1(B)(C) 3 (D)(6)设a, b均为单位向量,则a - 3b = 3a b ”是“ a 丄b” 的(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P (cos 0, si n B)到直线x—my—2=0的距离,当0:m变化时,d的(D) 12 27 f某四棱锥的三视图如图所示,恻(左〉现圏正(主)视團、填空题共6小题,每小题5分,共30分。
2018 年北京市高考数学试卷(理科)一、选择题共8 小题,每题 5 分,共40 分。
在每题列出的四个选项中,选出切合标题要求的一项。
1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()| 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()| 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()x| 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()<2} 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =(),B={ 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()﹣2,0,1,2},则 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()A∩B 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =()=( 1.(5.00 分)已知召集 A={ x| | x| <2} ,B={ ﹣2,0,1,2},则 A∩B =())A.{ 0,1} B.{ ﹣1,0,1} C.{﹣2,0,1,2} D.{ ﹣1,0,1,2}2.(5.00 分)在复平面内,复数的共轭复数对应的点坐落()A.榜首象限 B.第二象限 C.第三象限 D.第四象限3.(5.00 分)执行以下图的程序框图,输出的 s值为()A.B.C.D.4.(5.00 分)“十二均匀律”是通用的音律系统,明朝朱载堉最早用数学方法核算出半音份额,为这个理论的展开做出了重要贡献,十二均匀律将一个纯八度音程分成十二份,按序获取十三个单音,从第二个单音起,每一个单音的频次与它的前一个单音的频次的比都等于.若榜首个单音的频次为 f,则第八个单音的频次为()A.f B.f C.f D.f第1页(共22页)5.(5.00分)某四棱锥的三视图以下图,在此四棱锥的旁边面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5.00 分)设,均为单位向量,则“|﹣3 | =| 3 + | ”是“⊥”的()A.充足而不用要条件 B.必需而不充足条件C.充足必需条件 D.既不充足也不用要条件7.(5.00 分)在平面直角坐标系中,记d为点P(cosθ,sin θ)到直线x﹣my﹣2=0 的间隔.当θ、m变化时, d 的最大值为()A.1 B.2 C.3 D.48.(5.00 分)设召集 A={ (x,y)| x﹣y≥ 1,a x+y>4,x﹣ay≤ 2},则()| x﹣y≥1,a x+y>4,x﹣ay≤2},则()A.对随意实数a,(2,1)∈A B.对随意实数a,(2,1)?AC.当且仅当a<0时,(2,1)?A D.当且仅当a≤时,(2,1)?A二、填空题共6 小题,每题5 分,共30 分。