碳纳米纤维
- 格式:ppt
- 大小:1.35 MB
- 文档页数:13
碳纳米材料的应用前景随着科技的不断进步和需求的不断增长,人们对材料的性能和功能的要求也越来越高。
碳纳米材料作为一种颇具前景的新型材料,其应用前景十分广阔。
本文将从碳纳米管、碳纳米纤维和石墨烯三个方面来探讨碳纳米材料的应用前景。
1.碳纳米管碳纳米管是由碳原子构成的空心圆柱结构,其直径只有纳米级别,长度则可以达到数十微米,因此具有很强的机械性能和电学特性。
在纳米科技领域中,碳纳米管可以作为通道来传输电子和分子,具有电子学和扫描探针显微镜等制备方法的独特性质。
在能源、储存、导电等领域,碳纳米管也有着广泛的应用前景。
比如,在能量储存领域,碳纳米管被广泛应用于锂离子电池等电能存储系统中。
由于其高比表面积和良好的电导率,碳纳米管可以大大提高电池的能量密度和功率密度,从而提高电池的性能。
同时,碳纳米管也可以作为质子交换膜燃料电池的催化剂支撑体,以提高其效率和稳定性。
2.碳纳米纤维碳纳米纤维是碳纳米管的一种,但它是通过纤维化方法制备而成,具有更高的力学强度和更低的密度。
碳纳米纤维不仅可以用于增强复合材料中,还可以应用于电磁干扰屏蔽和导电材料等领域。
在增强复合材料领域中,碳纳米纤维一方面可以增强基体的力学性能,提高其强度和刚度,另一方面也可以渗透到基体内部形成导电路径,提高材料的导电性能。
此外,碳纳米纤维还可以用于高强度电缆的制备,以提高电缆的拉伸强度和断裂韧度。
3.石墨烯石墨烯是一种由碳原子组成的单层平面晶体结构,厚度只有一个碳原子层的纳米材料。
其在电学、光学、力学等领域的性能表现出色,是目前最为热门的碳纳米材料之一。
在电子学领域,石墨烯可以作为新型光电传感器、晶体管和基于量子点的荧光材料等器件的材料,具有重要的应用前景。
同时,石墨烯还可以作为新型薄膜太阳电池的电极材料,以提高光电转换效率和稳定性。
此外,在医学和环境领域,石墨烯也有着广泛的应用前景。
其中,在生物医学领域,石墨烯可以作为药物输送和光学成像等方面的材料;在环境领域,石墨烯可以作为新型吸附材料,用于水和大气污染的处理。
碳纤维化学接枝碳纳米管碳纤维是一种具有高强度、高模量和低密度的纳米材料,被广泛应用于航空航天、汽车制造、建筑和体育用品等领域。
然而,碳纤维的表面活性羟基较少,对一些化学途径不敏感,使得其与其他材料的复合效果不佳。
为了改善碳纤维的表面活性,一种常用的方法是在碳纤维表面接枝碳纳米管。
碳纳米管是一种具有特殊结构和优异性能的纳米材料,其具有优异的导电、导热和力学性能,因此被广泛应用于能源存储、传感器、催化剂载体等领域。
将碳纳米管与碳纤维复合可以使碳纤维具有更好的导电性和导热性能,同时能够通过碳纳米管的功能化处理,使碳纤维与其他材料的界面粘附性增强,从而提高复合材料的力学性能。
碳纳米管的化学接枝是一种常用的方法,可以通过化学反应将碳纳米管与碳纤维表面的官能团结合,从而实现碳纤维和碳纳米管之间的共价结合。
化学接枝的方法有多种,常用的包括酸碱处理、表面改性剂处理和化学修饰等。
在酸碱处理方法中,可以利用碳纤维表面上的羟基和羧基等官能团与碳纳米管表面上的羟基和羧基发生酯化反应,从而实现碳纤维和碳纳米管的连接。
例如,可以将碳纤维表面浸泡在硫酸和硝酸混合液中,使其表面形成羧基,并将其与碳纳米管表面上的羟基反应,生成酯键连接。
表面改性剂处理方法是通过在碳纤维和碳纳米管表面引入相互吸附的表面改性剂,在改性剂的作用下,碳纤维和碳纳米管之间形成物理吸附力,从而实现二者的连接。
例如,可以在碳纤维和碳纳米管表面引入季铵盐类表面改性剂,通过静电作用使碳纤维和碳纳米管之间相互吸附。
化学修饰方法是通过在碳纤维和碳纳米管表面引入活性官能团,使其与碳纤维和碳纳米管表面上的官能团发生化学反应,从而实现碳纤维和碳纳米管的共价连接。
例如,可以在碳纤维表面引入双极性功能化剂,使其与碳纳米管表面上的官能团发生亲和反应,并形成共价键连接。
综上所述,碳纤维化学接枝碳纳米管是一种有效的方法,可以改善碳纤维的表面活性,使其与其他材料的复合效果更佳。
通过酸碱处理、表面改性剂处理和化学修饰等多种方法,可以实现碳纤维和碳纳米管的连接,从而得到具有优异性能的复合材料。
气相生长纳米炭纤维1气相生长纳米炭纤维概述炭纤维是一种主要以sp2杂化形成的一维结构炭材料。
根据其合成方式和直径不同可分为:有机前躯体炭纤维、气相生长炭纤维、气相生长纳米炭纤维、炭纳米管,如图1所示。
自从1991年Iijima[1]发现纳米炭管以来,由于其特殊的物理性能和力学性能而引起科学家们的广泛兴趣,同时也促进了气相生长炭纤维在纳米尺度上即气相生长纳米炭纤维的研究。
气相生长纳米炭纤维一般以过渡族金属Fe、Co、Ni及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873K~1473K下生成的一种纳米尺度炭纤维。
它与一般气相生长炭纤维所不同的是,纳米炭纤维除了具有普通VGCF的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。
Tibbetts[2]在研究了VGCF 的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。
Endo[3]用透射电镜观察到气相生长法热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。
所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。
另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。
2气相生长纳米炭纤维的制备方法与影响因素刘华的实验结果表明VGCF的强度随着直径的减小而急剧增大[4]。
Tibbetts[2]在研究VGCF的物理特性时,也预测小直径的VGCF要比大直径的VGCF强度要大得多。
由于VGCF的直径主要是由催化剂颗粒的大小来决定的[5],因此大批量生产VGCNF的关键问题是催化剂颗粒的细化。
目前,VGCNF的制备主要有三种方法:基体法[6,7]、喷淋法或者流动催化剂法[8]和改进的流动催化剂法[9]。
《碳纳米管在碳纤维表面的组装方法》一、引言碳纳米管(Carbon Nanotubes,简称CNTs)是一种由碳原子构成的纳米级管状材料,具有极强的韧性和导电性,因此在材料科学领域备受瞩目。
而碳纤维作为一种轻质高强度的材料,在航空航天、汽车制造和体育器材等领域有着广泛的应用。
将碳纳米管组装在碳纤维表面,不仅可以提升碳纤维的导电性能和力学性能,还可以拓展碳纳米管在材料领域的应用。
二、常见的碳纳米管组装方法1. 化学气相沉积(Chemical Vapor Deposition,CVD)CVD是一种常见的碳纳米管合成方法,其原理是在高温下将碳源气体分解生成碳原子,再沉积在基底表面形成碳纳米管。
在碳纤维表面组装碳纳米管时,可以先在碳纤维表面沉积金属催化剂,然后通过CVD方法在催化剂上生长碳纳米管。
这种方法不仅可以实现碳纳米管在碳纤维表面的组装,还可以控制碳纳米管的长度和密度。
2. 碳纳米管涂覆法碳纳米管涂覆法是将碳纳米管分散在溶剂中,然后通过喷涂、浸渍或涂覆的方式将碳纳米管均匀覆盖在碳纤维表面。
这种方法简单易行,且可以实现大面积的碳纳米管组装,但由于碳纳米管之间的相互作用,往往难以实现均匀的覆盖和优异的性能。
三、新型碳纳米管组装方法1. 电化学组装法电化学组装法是将碳纳米管分散在电解质溶液中,利用外加电场将碳纳米管定向沉积在碳纤维表面。
这种方法可以实现碳纳米管的定向组装,且不受碳纳米管之间相互作用的影响,因此可以获得均匀且高性能的碳纤维复合材料。
2. 等离子体处理法等离子体处理法是利用等离子体对碳纤维表面进行改性,同时将碳纳米管引入等离子体中,通过化学反应或物理吸附使碳纳米管与碳纤维表面结合。
这种方法不仅可以实现碳纳米管的高效组装,还可以改善碳纤维表面的性能,提升复合材料的综合性能。
四、碳纳米管在碳纤维表面的应用前景将碳纳米管组装在碳纤维表面,可以使普通碳纤维具备导电性和热传导性,进而拓展碳纤维在电子设备、热管理材料等领域的应用。
碳纤维和碳纳米管下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!标题:碳纤维与碳纳米管:新材料科技的革命一、引言在现代科技领域,碳材料因其独特的物理和化学性质,已经成为研究和应用的热点。
C V D工艺参数总结(内部交流资料,整理:周建伟,2005年4月1日-5月7日)化学气相催化法与其它方法相比具有很多优点:反应设备简单,成本低且易于设计;可实现大规模生产;反应在中等温度进行,并且副产物比其他方法少;通过调控反应条件(温度,压力,时间,原料)可以很容易控制反应过程,并可实现控制碳管的尺寸,产率,形貌等,可以制备长甚至超长的碳纳米管;原料成本低等。
在过去的几年中有大量文献报导化学气相催化法制备碳纳米管,以及影响其结构参数的工艺因素[6]。
化学气相催化法制备碳纳米管按照催化剂存在或加入方式可以分为三种:固定催化法,喷淋法,浮动催化法。
催化剂一般使用过渡金属元素Fe,Co,Ni或其组合,有时也添加稀土等其他元素及化合物。
详见参考文献[6]。
CVD法产物的特点:CVD制备的多碧碳纳米管为缠结在一起的针状弯曲型多层同轴套即多碧管。
此外,CVD法制备的多壁碳纳米管结晶度不高,存在许多的缺陷可以通过石墨化处理(真空或惰性气体保护下,理论上2300o C可以完成石墨化处理,实际处理温度2800o C-3000o C)大幅提高结晶度改善性能[18]。
CVD法制备CNT的参数:最优参数的确定非常的不易,建议用正交实验来减少实验时间和次数。
CNTs产率(Yield):M CNTs为产物纯化后纳米碳管的质量,Mcat为所用催化剂的质量。
注:有些文献上的产率公式复杂一些。
In this paper we summarize the effect of the process parameters on CNT features, amount and growth rate are described. The growth time, the substrate temperature, the total pressure, the hydrocarbon concentration and the nickel to alumina ratio were varied in order to study the effect on the growth rate and quality and to find relationships between the total product amount and the process parameters.The experimental results also indicated that, in the growing process of carbon nanotubes, the rate-determining step was dependent upon the conditions of preparation (i.e. feedgas used, reaction temperature, flow-rate of the feedgas, etc.).[56]1.反应室的形状和直径小管单位面积产率远大于大管产率[1]。
28玻璃钢2009年第1期纳米碳纤维用于低成本工程聚合物王强华编译(上海玻璃钢研究院有限公司,上海201404)摘要具有高导热导电等性能的轻质非金属复合材料已有许多应用,包括从高产产品的工业应用到高新技术应用。
纳米碳纤维是几种新兴的纳米材料之一,可提高复合材料的物理性能,拓展其应用和用量。
纳米材料目前有单壁纳米碳管(SWNTs )、多壁纳米碳管(MWNTs )、纳米碳纤维(CNF )和纳米石墨薄片,在新一代的碳纤维增强聚合物中,它们可赋予超高的力学性能和石墨键的运动性,这在技术上很重要。
纳米碳纤维(CNF )(见图1),是一种气相生成的碳纤维,在结构上和纳米碳管相似,具有可比的力学和运动性,但直径约100纳米,长度是几十至几百微米。
全球有多家供应商可提供大量的高纯度CNF,价格适中。
图1纳米碳纤维(1:5EM )这些产品尺寸,加上较低的生产成本和满意的供货渠道,使CNF 填补了连续碳纤维和单壁或多壁纳米碳管在材料加工和终端应用上的空隙。
前者已商业化,广泛用于结构复合材料,后者用于精密应用之中,如分子级电子领域和微米级生物医用领域。
在复合材料行业内,对纳米碳纤维的兴趣是因为它能提供多功能。
CNF 已成功地作为一种添加剂用于聚合物复合材料,进行几种物理性能的改性,包括导热、热膨胀系数(CTE )、电磁辐射的吸收和散射、导电、阻燃、电子发射和震动阻尼。
Tibbetts 最近的一个评论对于CNF 复合材料制备和29性能上所取得的成绩作了一个有用的概述。
虽然已进步了许多,但在这些复合材料获得工业应用上仍存在一个瓶颈,即CNF 在聚合物基体中的均相分散。
最终,聚合物复合材料获得超运动性在于适当选择纤维类型、尺寸和掌握复合材料加工步骤—更明确的是纳米填料在聚合物连续相中有效分散—或者寻找新的产品设计,克服加工和分散难题。
举一个例子是新的CNF 预成型物(图2),它们易操作,能克服分散中的许多困难。
应用科学公司最近已推出一个新的纤维品种PR-25-XT ,它在许多溶剂和聚合物基体中易分散,有更高的表面积,由于具有高的石墨结构,可展示独特的运动性,并且有许多位置可进行化学作用(图3)。
碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展目录1. 内容描述 (2)1.1 水泥基材料的电磁性能劣势及改性思路 (2)1.2 碳纤维及碳纳米材料在电磁波屏蔽与吸波领域的应用潜力..41.3 工作重点及研究价值 (5)2. 碳纤维及碳纳米材料 (7)2.1 碳纤维的结构、性能与制备方法 (8)2.2 碳纳米材料的类型、性能与制备方法 (9)2.2.1 碳纳米管 (10)2.2.2 石墨烯 (12)2.2.3 其他碳基纳米材料 (13)3. 碳纤维及碳纳米材料改性水泥基材料 (15)3.1 改性策略与机制 (16)3.2 改性材料的电磁性能 (19)3.2.1 电导率影响机制 (20)3.2.2 介电常数与损耗角正切的变化规律 (21)3.3 改性材料的力学性能影响 (23)4. 电磁屏蔽性能研究进展 (24)4.1 屏蔽效果测试方法 (25)4.2 屏蔽机理探讨 (26)4.3 影响屏蔽性能的因素 (28)4.4 高频屏蔽材料研究进展 (29)5. 电磁吸波性能研究进展 (30)5.1 吸波机理探讨 (31)5.2 吸波性能实验方法及评价指标 (32)5.3 吸波性能与结构、尺寸、频率的关系 (33)5.4 宽带吸波材料研究进展 (35)6. 展望与总结 (36)6.1 未来的研究方向 (37)6.2 应用前景与挑战 (38)1. 内容描述本论文综述了碳纤维及碳纳米材料改性水泥基材料在电磁屏蔽及吸波性能方面的研究进展。
随着现代电子设备的快速发展,电磁辐射对人体的影响日益严重,因此开发具有电磁屏蔽和吸波性能的新型材料成为当前研究的热点。
碳纤维和碳纳米材料因其独特的物理和化学性质,在水泥基材料中得到了广泛应用。
本文首先介绍了碳纤维和碳纳米材料的基本原理及其在水泥基材料中的应用方式。
接着,重点分析了碳纤维和碳纳米材料改性水泥基材料后,在电磁屏蔽和吸波性能方面的提升效果。
研究发现,通过引入碳纤维和碳纳米材料,可以显著提高水泥基材料的电磁屏蔽效能和吸波性能。