人工智能导论:状态空间搜索实验—八数码问题求解
- 格式:doc
- 大小:246.50 KB
- 文档页数:13
昆明理工大学信息工程与自动化学院学生实验报告(201 —201 学年第一学期)课程名称:开课实验室:年月日一、实验内容八数码难题,问题描述:在3×3方格棋盘上,分别放置了标有数字1,2,3,4,5,6,7,8的八张牌,初始状态S0,目标状态S1如图所示,可以使用的操作有:空格上移,空格左移,空格右移,空格下移。
只允许位于空格左,上,右,下方的牌移入空格。
用广度优先搜索策略寻找从初始状态到目标状态的解路径。
二、实验原理算法思想:这是一种盲目搜索算法。
算法主要思想是从初始结点开始依次沿其上下左右四个方向扩展结点,并逐一检查这些后继结点是否为目标结点,若不等于目标结点则把该后继结点插入到数组末尾。
然后取数组中未扩展的第一个结点重复以上操作,直到得到目标结点为止或在限定步数以内未得到解。
广度优先搜索策略数据结构:void Bfs(){queue<Map> Queue;Queue.push(org);HashTable[ org.myindex ] = -1;while( NOT Queue.empty() ){Map node = Queue.front();Queue.pop( );for(int k =0 ; k < 4; k ++ ){Map tmp = node;tmp.position = node.position + derection[k];if(tmp.position < 0 || tmp.position > 8 || ( k > 1 && tmp.position / 3 != node.position /3 ) ) continue;tmp.myindex = HashValue( node , k );if(0 != HashTable[tmp.myindex] ) continue;tmp.detail[ node.position ] = tmp.detail[ tmp.position ] ;tmp.detail[ tmp.position ] = 0 ;HashTable[tmp.myindex] = node.myindex; // 状态记录到hashtable中if( node.myindex == EndIndex ) return ;Queue.push( tmp );}}return ;}三、所用仪器、材料1台PC及VISUAL C++6.0软件四、实验方法、步骤源代码见同一文件夹中bashuma.cpp部分程序代码:typedef struct Node {int num[9];int deepth;int diffnum;int value;struct Node * pre;struct Node * next;struct Node * parent;}numNode;int main ( int argc, char *argv[] ){open=create_numNode();close=create_numNode();open->pre=open->next=close->pre=close->next=NULL;init(); //由用户输入初始和目标状态numNode *p1;p1=create_numNode();p1->parent=NULL;p1->deepth=0;int i=0;for ( i=0; i<9; i++){p1->num[i]=origin[i];}open_insert(open,p1);numNode_num=1;p1=open_getfirst(open);while (p1!=NULL){close_append(close,p1);if(expand(p1))return EXIT_SUCCESS;p1=open_getfirst(open);}printf("No solution!\n");return EXIT_SUCCESS;}void init ( ){while(1){printf("输入初始状态S0(请从左到右依次输入每行数字,0代表空格):\n");char temp[10];scanf("%s",&temp);int i=0;for ( i=0;i<9 && temp[i]-'0'>=0 && temp[i]-'0'<=8; i++){origin[i]=temp[i]-'0';}printf("请输入目标状态S1:\n");scanf("%s",&temp);int j=0;for ( j=0; j<9 && temp[j]-'0'>=0 && temp[j]-'0'<=8; j++){target[j]=temp[j]-'0';}system("cls");if ( i==9&&j==9){break;}}}int operate(int m[], int op){int blank;blank=0;while (m[blank]!=0 && blank<9 )++blank;if (blank==9)return 1;switch (op) {case 1: /* up */if (blank>2)swap(m+blank,m+blank-3);break;case 2: /* down */if (blank<6)swap(m+blank,m+blank+3);break;case 3: /* left */if (blank!=0 && blank!=3 && blank!=6)swap(m+blank,m+blank-1);break;case 4: /* right */if (blank!=2 && blank!=5 && blank!=8)swap(m+blank,m+blank+1);break;default : return 1;}return 0;}五、实验过程原始记录六、实验总结:人工智能这门课程综合了许多学科的知识,这些知识面十分广,以及它的应用也是十分广泛的,才刚开始学习的时候就会感觉有点复杂,因为它毕竟综合了一些我们还没有学过的知识。
一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或A* 算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN 表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。
A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。
由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n)。
八数码问题实验报告八数码问题实验报告引言:八数码问题是一种经典的数学难题,在计算机科学领域有着广泛的研究和应用。
本实验旨在通过探索八数码问题的解法,深入理解该问题的本质,并通过实验结果评估不同算法的效率和准确性。
一、问题描述:八数码问题是一个在3×3的棋盘上,由1至8的数字和一个空格组成的拼图问题。
目标是通过移动棋盘上的数字,使得棋盘上的数字排列按照从小到大的顺序排列,最终形成如下的目标状态:1 2 34 5 67 8二、解法探索:1. 深度优先搜索算法:深度优先搜索算法是一种经典的解决拼图问题的方法。
该算法通过不断尝试所有可能的移动方式,直到找到目标状态或者无法再继续移动为止。
实验结果显示,该算法在八数码问题中能够找到解,但由于搜索空间庞大,算法的时间复杂度较高。
2. 广度优先搜索算法:广度优先搜索算法是另一种常用的解决八数码问题的方法。
该算法通过逐层扩展搜索树,从初始状态开始,逐步扩展所有可能的状态,直到找到目标状态。
实验结果显示,该算法能够找到最短路径的解,但同样面临搜索空间庞大的问题。
3. A*算法:A*算法是一种启发式搜索算法,结合了深度优先搜索和广度优先搜索的优点。
该算法通过使用一个估价函数来评估每个搜索状态的优劣,并选择最有希望的状态进行扩展。
实验结果显示,A*算法在八数码问题中表现出色,能够高效地找到最优解。
三、实验结果与分析:通过对深度优先搜索、广度优先搜索和A*算法的实验,得出以下结论:1. 深度优先搜索算法虽然能够找到解,但由于搜索空间庞大,时间复杂度较高,不适用于大规模的八数码问题。
2. 广度优先搜索算法能够找到最短路径的解,但同样面临搜索空间庞大的问题,对于大规模问题效率较低。
3. A*算法在八数码问题中表现出色,通过合理的估价函数能够高效地找到最优解,对于大规模问题具有较好的效果。
四、结论与展望:本实验通过对八数码问题的解法探索,深入理解了该问题的本质,并评估了不同算法的效率和准确性。
西安电子科技大学课程论文数据结构八数码问题的求解班级:作者:学号:时间:摘要八数码问题也称为九宫问题,在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。
棋盘上还有一个空格(以0标记),与空格相邻的棋子可以移到空格中。
给定初始位置和目标位置,要求通过一系列的数码移动,将初始状态转化为目标状态。
状态转换的规则:空格四周的数移向空格,我们可以看作是空格移动,它最多可以有4个方向的移动,即上、下、左、右。
九宫重排问题的求解方法,就是从给定的初始状态出发,不断地空格上下左右的数码移至空格,将一个状态转化成其它状态,直到产生目标状态。
一般用搜索法来解决:广度优先搜索法、深度优先搜索法、A*算法等,本文用全局择优来解决该问题。
引言八数码问题是人工智能中一个很典型的智力问题。
一般用搜索法来解决:广度优先搜索法、深度优先搜索法、A*算法等。
搜索就是按照一定规则扩展已知结点,直到找到目标结点或所有结点都不能扩展为止,广度优先是从初始状态一层一层向下找,直到找到目标为止。
深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。
广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。
由于八数码问题状态空间共有9!个状态,对于八数码问题如果选定了初始状态和目标状态,有9!/2个状态要搜索,考虑到时间和空间的限制,在这里采用A*算法作为搜索策略。
A*是一种静态路网中求解最短路径最有效的方法,公式表示为:f(n)=g(n)+h(n),其中f(n) 是从初始点经由节点n到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n) 是从n到目标节点最佳路径的估计代价,保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取。
一、需求分析①八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。
一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或A*算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN 表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法.在A*算法中,一个结点位置的好坏用估价函数来对它进行评估.A*算法的估价函数可表示为:f'(n)= g’(n)+ h’(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h’(n)是n到目标的最短路经的启发值。
由于这个f’(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f’(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)〉=g’(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n).第二点特别的重要。
可以证明应用这样的估价函数是可以找到最短路径的。
学生实验报告实验课名称:人工智能实验名称: 八数码专业名称:计算机科学与技术班级:学号:学生姓名:教师姓名:2010 年10 月20日一.实验内容用OPEN表和CLOSED表解决搜索问题。
二.实验题目采用启发式算法(如A*算法)求解八数码问题。
三.实验要求1.必须使用OPEN表和CLOSED表。
2.明确给出问题描述。
系统初始状态。
目标状态和启发式函数。
3.除了初始状态以外,至少搜索四层。
4.给出解路径(解图)。
四.实验过程①问题:初始状态到目标状态是否可解如何判断?答:实验过程自己给出的初始状态使用A*算法求解,并不是所有的初始状态都可解到达目标状态。
因为八数码问题其实是0~9的一个排列,而排列有奇排列和偶排列,从奇排列不能转化为偶排列或者相反。
例如:函数f(s)表示s前比s 小的数字的数目(s则当f(a8)+f(a7)+……+f(a1)为偶数时才能重排成,所以嘛,上面那个有解的.②问题描述:在3X3的九宫格棋盘上,摆有8个将牌,每一个将牌都刻有1~8数码中的某一个数码。
棋盘中留有一个空格,允许周围的某一个将牌向空格移动,这样通过移动将牌就可以不断地改变将牌的布局。
这种游戏的求解的问题是:给定一种处世的将牌布局或结构和一个目标的布局,问如何移动将牌,实现从从初始状态到目标状态的转变。
下面给出初始状态和目标状态:初始状态:目标状态:评价函数f(n)形式为:f(n)=g(n)+h(n),其中g(n)是节点所处的深度,h(n)是启发式函数,这里启发式函数h(n)表示“不在位”的将牌个数,这时f(n)可估计出通向目标结点的希望的程度。
注意:移动规则为左-→上→右→下。
③搜索过程:如下图-1为八数码问题的搜索树:因此可得解路径:S(4)→B(4)→D(5)→E(5)→I(5)→K(5)→L(5).④得到OPEN表和CLOSED表结论:由以上分析,可以从CLOSED表中可知从初始状态到结束状态的搜索路径为:S0→S2→S5→S9→S11→S12.五、实验体会通过本次实验又将课本内容熟悉了一遍,而且通过互联网了解了更多的关于八数码问题,如读过网上用VC++编写八数码问题的源代码,虽然理解不是很深,但基本思想也是有所体会;同时也对广度优先搜索算法,深度优先算法,双向广度优先算法及A*算法有更深的掌握。
《人工智能》实验一题目实验一 启发式搜索算法1. 实验内容:使用启发式搜索算法求解8数码问题。
⑴ 编制程序实现求解8数码问题A *算法,采用估价函数()()()()w n f n d n p n ⎧⎪=+⎨⎪⎩, 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。
⑵ 分析上述⑴中两种估价函数求解8数码问题的效率差别,给出一个是()p n 的上界的()h n 的定义,并测试使用该估价函数是否使算法失去可采纳性。
2. 实验目的熟练掌握启发式搜索A *算法及其可采纳性。
3.数据结构与算法设计 该搜索为一个搜索树。
为了简化问题,搜索树节点设计如下:typedef struct Node//棋盘{//节点结构体int data[9];double f,g;struct Node * parent; //父节点}Node,*Lnode;int data[9]; 数码数组:记录棋局数码摆放状态。
struct Chess * Parent; 父节点:指向父亲节点。
下一步可以通过启发搜索算法构造搜索树。
1、局部搜索树样例:2、搜索过程搜索采用广度搜索方式,利用待处理队列辅助,逐层搜索(跳过劣质节点)。
搜索过程如下:(1)、把原棋盘压入队列;(2)、从棋盘取出一个节点;(3)、判断棋盘估价值,为零则表示搜索完成,退出搜索;(4)、扩展子节点,即从上下左右四个方向移动棋盘,生成相应子棋盘;(5)、对子节点作评估,是否为优越节点(子节点估价值小于或等于父节点则为优越节点),是则把子棋盘压入队列,否则抛弃;(5)、跳到步骤(2);3、算法的评价完全能解决简单的八数码问题,但对于复杂的八数码问题还是无能为力。
现存在的一些优缺点。
1、可以改变数码规模(N),来扩展成N*N的棋盘,即扩展为N数码问题的求解过程。
<!--[if !supportLists]-->2、<!--[endif]-->内存泄漏。
高级人工智能程序设计报告题目:8数码问题学院:计算机学院专业:软件工程学号:2111505127姓名:马隆杰高级人工智能程序设计说明报告1.问题八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。
棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。
这种游戏求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标的布局(称目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。
初始状态:8个数字将牌和空格在九宫格棋盘上的所有格局组成了问题的状态空间。
其中,状态空间中的任一种状态都可以作为初始状态。
后继函数:通过移动空格(上、下、左、右)和周围的任一棋子一次,到达新的合法状态。
目标测试:比较当前状态和目标状态的格局是否一致。
路径消耗:每一步的耗散值为1,因此整个路径的耗散值是从起始状态到目标状态的棋子移动的总步数。
2.采用技术方法对于八数码问题的解决,首先判断是否有解。
每一个状态看作是一个3×3或1×9的矩阵,问题即通过矩阵的变换,是否可以变换为目标状态对应的矩阵?由数学知识可知,可计算这两个有序数列的逆序值,如果两者都是偶数或奇数,则可通过变换到达,否则,这两个状态不可达。
这样,就可以在具体解决问题之前判断出问题是否可解,从而可以避免不必要的搜索。
如果初始状态可以到达目标状态,那么采取什么样的方法呢?常用的状态空间搜索有深度优先和广度优先。
广度优先是从初始状态一层一层向下找,直到找到目标为止。
深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。
广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。
这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。
他的效率实在太低,甚至不可完成。
《八数码问题》实验报告一、实验目的:熟练掌握启发式搜索A *算法。
二、实验内容:使用启发式搜索算法求解8数码问题。
编制程序实现求解8数码问题A *算法,采用估价函数()()()()w n f n d n p n ⎧⎪=+⎨⎪⎩, 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。
三、实验原理:1. 问题描述:八数码问题也称为九宫问题。
在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。
棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。
要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。
所谓问题的一个状态就是棋子在棋盘上的一种摆法。
解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。
2. 原理描述:启发式搜索(1)原理启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。
这样可以省略大量无谓的搜索路径,提高了效率。
在启发式搜索中,对位置的估价是十分重要的。
采用了不同的估价可以有不同的效果。
(2)估价函数计算一个节点的估价函数,可以分成两个部分:1、 已经付出的代价(起始节点到当前节点);2、 将要付出的代价(当前节点到目标节点)。
节点n 的估价函数)(n f 定义为从初始节点、经过n 、到达目标节点的路径的最小代价的估计值,即)(*n f = )(*n g + )(*n h 。
)(*n g 是从初始节点到达当前节点n 的实际代价;)(*n h 是从节点n 到目标节点的最佳路径的估计代价。
)(*n g 所占的比重越大,越趋向于宽度优先或等代价搜索;反之,)(*n h 的比重越大,表示启发性能就越强。
八数码问题实验报告八数码问题实验报告引言:八数码问题,也被称为九宫格问题,是一种经典的数学谜题。
在一个3x3的方格中,摆放有1至8的数字,其中一个位置为空。
目标是通过交换数字的位置,将数字按照从小到大的顺序排列,最终使得空格位于最后一个位置。
本实验旨在通过编程实现八数码问题的求解,并探讨不同算法在解决该问题上的效果和优劣。
实验步骤:1. 算法选择在本次实验中,我们选择了广度优先搜索算法和A*算法作为求解八数码问题的两种不同方法。
广度优先搜索算法是一种盲目搜索算法,它通过逐层扩展搜索树,直到找到目标状态。
而A*算法则是一种启发式搜索算法,它结合了广度优先搜索和启发式函数,通过评估每个状态的代价来指导搜索过程,以找到最优解。
2. 算法实现我们使用Python语言实现了以上两种算法。
首先,我们定义了一个表示状态的类,并实现了状态的初始化、移动、判断是否达到目标状态等基本操作。
然后,我们分别编写了广度优先搜索算法和A*算法的求解函数。
在广度优先搜索算法中,我们使用队列数据结构来保存待扩展的状态,以实现逐层扩展的效果;在A*算法中,我们使用优先队列来保存待扩展的状态,并根据启发式函数的值进行优先级排序。
3. 实验结果我们使用了多个测试样例来验证两种算法的求解效果。
实验结果表明,广度优先搜索算法能够找到解,但是在面对状态空间较大的情况下,搜索时间会呈指数级增长。
而A*算法则能够更快地找到最优解,其效率相对较高。
然而,A*算法需要选择合适的启发式函数,并且对于某些特殊情况,可能会陷入局部最优解而无法找到最优解。
4. 结果分析通过对比两种算法的求解结果,我们可以发现广度优先搜索算法和A*算法在时间效率和解的质量上存在一定的差异。
广度优先搜索算法适用于状态空间较小的情况,但是在状态空间较大时效率较低;而A*算法则能够在较短的时间内找到最优解,但需要对问题进行合理的建模和启发式函数的选择。
因此,在实际应用中,我们需要根据问题的规模和特点来选择合适的算法。