材料力学性能第二章

  • 格式:doc
  • 大小:2.25 MB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 材料在其他静载荷下的力学性能

研究材料在常温静载荷下的力学性能时,除采用单向静拉伸试验方法外,有时还选用压缩、弯曲、扭转等试验方法,目的是:

①很多机件在服役过程中常承受弯矩、扭矩或轴向压力的作用,有必要测定试样在相应承载条件下的力学性能指标,做为设计和选材的依据;(实际中存在)

②不同的加载方式产生不同的应力状态,材料在不同应力状态中表现的力学性能不完全相同,因此,应选用不同应力状态的试验方法。(和单向拉伸应力状态不同)

本章介绍压缩、弯曲、扭转和剪切等试验方法及测定的力学性能指标

§2.1 应力状态柔度因数(软性系数) 一、柔度因数

塑性变形和断裂是金属材料在静载荷下失效的两种主要形式,它们是金属所能承受的应力达到其相应的强度极限而产生的。当金属所受的最大切应力τmax 达到屈服强度τs 时,产生屈服;当τmax 达到切断强度τk 时,产生剪切型断裂;当最大正应力σmax 达到正断强度S k 时,产生正断型断裂。但同一种金属材料,在一定承载条件下产生何种失效方式,除与自身的强度大小有关以外,还与承载条件下的应力状态有关。不同的应力状态,其最大正应力与最大切应力的相对大小是不一样的。

考虑到三向应力状态下另外两向应力的贡献,因此材料的最大正应力的计算采用第二强度理论给出:

即:不再采用σmax =σ1 而采用(第二强度理论):

()max 123S σνσσ=-+

称为最大当量正应力

最大切应力由第三强度理论给出:

13max 2

σστ-=

观塑性变形,属正断型脆性断裂;

②单向拉伸(α=0.5)时,先与τs线相交,发生塑性变形(屈服),然后与S k线相交,发生正断,属正断型的韧性断裂;

③扭转(α=0.8)时,先与τs线相交,发生塑性变形(屈服),然后与τk线相交,发生切断,属于切断型的韧性断裂。

即:相同的材料在不同应力状态下表现出不同的断裂模式,也可称为在不同应力状态条件下的韧脆转变。(材料在其他外界因素下也会发生韧脆转变,因涉及到具体的试验测试手段,因此后面讲。)

§2.2 材料在轴向压缩载荷下的力学行为(单向压缩试验)一、试样型式

常用的压缩试样为圆柱体(也可采用立方体或棱柱体),

为防止压缩时试件失稳,试件的高度与直径之比h0/d0=1.5~2.0,同时h0/d0越大,抗压强度越低,因此对于几何形状的试件,需要保证h0/d0为定值。(GB7314-87)二、试验过程

①为保证两端面的自由变形,试件的两端面必须光滑平整(涂润滑油、石墨);或者将试样的端面加工成圆锥凹面,使锥面的倾角等于摩擦角,即tanα=f,f为摩擦因数,也要将压头改成相应的锥体;

②压缩可以看作是反向拉伸,因此,拉伸试验中所定义的各个力学性能指标和相应的计算公式,在压缩试验中基本可以应用;

1-高塑性材料;2-低塑性材料1-拉伸;2-压缩

抗压强度:0

bc

bc P A σ=

相对压缩率:00

100%k

ck h h e h -=

⨯ 相对断面扩张率:0

100%k ck A A A ψ-=

⨯ (如果在试验时材料发生明显的屈服现象,还可测定压缩屈服点σsc )

(上图中的曲线2是低塑性材料的压缩曲线,在轴向压缩时,低塑性材料发生由剪应力引起的剪切时的断裂,断口表面与压力轴线呈45º角,如灰铸铁;而脆性材料断口表面和压力轴线平行,如陶瓷材料)

③但两者存在差别,

横截面不是缩小而是涨大,另外,塑性材料压缩时不发生变形而不断裂,压缩曲线一直上升,因此,塑性材料很少做压缩试验。 三、特点及应用

单向压缩试验的应力状态柔性系数α=2.0(ν=0.25时),比其他应力状态都软,因此主要用于拉伸时呈脆性的材料的力学性能测试(例如铸铁、陶瓷、轴承合金、水泥和砖石),且能显示出一定的塑性变形行为。 §2.3 材料在扭矩作用下的力学行为 一、应力应变分析

在横截面上无正应力只有切应力作用;弹性变形阶段,横截面上各点的切应力与径向垂直,其大小与该点距中心的距离成正比;

p

M I ρρ

τ=

(ρ:距中心距离;p I :极惯矩) 对于圆杆表面,有:

M W

τ=

W 为抗扭截面模量(系数),有:

3

16

d

W π=

(实心)或 340

140

116d d W d π⎛

⎫=

- ⎪⎝⎭

(空心) 因切应力作用而在圆杆中产生切应变为:

l ρϕ

γρ

=

圆杆表面:

2d l ϕγ=

当表层发生塑性变形后,各点的切应变仍同该点距中心的距离成正比,但切应力则由于塑性变形而降低。 二、扭转试验及测定的力学性能(GB10128-88) 1. 扭转试样

扭转试验主要采用直径d 0=10mm ,标距长度分别为100mm 和50mm 的圆柱形试样,在扭转试验机上进行。

d 0为外径 d 1为内径

2. 试验过程

随着扭矩M 的增大,试件标距两端截面不断发生相对转动,使扭转角υ增大,可得M -υ关系曲线,称为扭转图。直至试件断裂。

(像单向拉伸的真应力-真应变曲线,均匀变形,即使是在塑性变形阶段,无缩颈)

3. 性能指标 切变模量

40

32Ml G d τγπϕ=

= 扭转比例极限

P

P M W

τ=

扭转屈服强度

0.3

0.3M W

τ=

(确定扭转屈服强度的残余切应变取0.3%,是为了和确定屈服强度时取残余正应变的0.2%相当

单向拉伸:

()11231E E

σεσνσσε=-+==⎡⎤⎣⎦ ()331210.5E E

νσεσνσσε-=-+==-⎡⎤⎣⎦

max 13 1.5γεεε=-= 0.2%

1.50.3%εγε===)