材料结构与性能答案

  • 格式:doc
  • 大小:820.00 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.材料的结构层次有哪些,分别在什么尺度,用什么仪器进行分析?

现在,人们通过大量的科学研究和工程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。

在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很大的差异,因此需要我们用不同的思路和方法去研究解决这些问题。更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发生及进行的时间尺度也很不相同。一般地讲,空间尺度越大的,则描述事件的时间尺度也应越长。不同的学科关注不同尺度的时空中发生的事件。现代科学则按人眼能否直接观察到,且是否涉及分子、原子、电子等的内部结构或机制,而将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。之后,又有人将可以用光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。随着近年来材料科学的迅速发展,材料科学家中有人将微观世界作了更细致地划分。而研究基本粒子的物理学家可能还会把尺度向更小的方向收缩,并给出另外的命名。对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/工程及人体尺度等。人类的研究尺度已小至基本粒子,大至全宇宙。但到目前为止,关于/世界的认识还在不断深化,因而对其划分也就还处于变动之中。即使是按以上的层次划分,其各界之间的边界也比较模糊,有许多现象会在几个尺度层次中发生。

在材料科学与工程领域中,对于材料结构层次的划分尚不统一,可以列举出许多种划分方法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个

层次:

(1)工程设计层次:尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究。

(2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原子、分子的行为。

(3)微观设计层次:空间尺度在1nm量级,是原子、分子层次的设计。

国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即

(1)宏观

这是人类日常活动的主要范围,即人通过自身的体力,或借助于器械、机械等所能通达的时空。人的衣食住行,生产、生活无不在此尺度范围内进行。其空间尺度大致在0.1mm(目力能辨力最小尺寸)至数万公里人力跋涉之最远距离),时间尺度则大致在0.01秒(短跑时人所能分辨的速度最小差异)至100年(人的寿命差不多都在百年以内)。现今风行的人体工程学就是以人体尺度1m上下为主要参照的。

(2)介观

介观的由来是说它介于/宏观与/微观之间。其尺度主要在毫米量级。用普通光学显微镜就可以观察。在材料学中其代表物是晶粒,也就是说需要注意微结构了,如织构,成分偏析,晶界效应,孔中的吸附、逾渗、催化等问题都已开始显现。现在,介观尺度范围的研究成果在材料工程领域,如耐火材料工业、冶金工业等行业中有许多直接而成功的应用。

(3)微观

其尺度主要在微米量级,也就是前面所说/显微结构(世界)0。多年以来借助于光学显微镜、电子显微镜、X)衍射分析、电子探针等技术对于晶态、非晶态材料在这一尺度范围的行为表现有较多的研究,许多方法已成为材料学的常规手段。在材料学中,这一尺度的代表物有晶须、雏晶、分相时产生的液滴等。

(4)纳观

其尺度范围在纳米至微米量级,即10-6~10-9m,大致相当于几十个至几百个原子集合体的尺寸。在这一尺度范围已经显现出量子性,已经不再能将研究对象作为/连续体0,不能再简单地

以其统计平均量作为表征,微结构中的缺陷、掺杂等所起的作用明显加大。

2.不同凝聚状态在结构上有什么不同?

3.脆性断裂的本质是什么?格里菲斯微裂纹理论是如何解释的?

1.脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形。一般规定光滑拉伸试样的断面收缩率小于5%者为脆性断裂,该材料即称为脆性材料;反之,大于5%者则为韧性材料。

脆性断裂的特点1.断裂前无明显的预兆2.断裂处往往存在一定的断裂源3.由于断裂源的存在,实际断裂强度远远小于理论强度

2.1 (1)为了传递力,力线一定穿过材料组织到达固定端力以音速通过力管(截面积为A),把P/n大小的力传给此端面。远离孔的地方,其应力为:ā=(P/n)/A (2)孔周围力管端面积减小为A1 ,孔周围局部应力为:ā=(P/n)/A1

(3)椭圆裂纹越扁平或者尖端半径越小,其效果越明显。应力集中:材料中存在裂纹时,裂纹尖端处的应力远超过表观应力。

2.2 Griffith提出的关于裂纹扩展的能量判据

断裂能的种类

热力学表面能:固体内部新生单位原子面所吸收的能量。

塑性形变能:发生塑变所需的能量。

相变弹性能:晶粒弹性各向异性、第二弥散质点的可逆相变等特性,在一定的温度下,引起体内应变和相应的内应力。结果在材料内部储存了弹性应变能。

微裂纹形成能:在非立方结构的多晶材料中,由于弹性和热膨胀各向异性,产生失配应变,在晶界处引起内应力。当应变能大于微裂纹形成所需的表面能,在晶粒边界处形成微裂纹。

4.什么是延展性?

延展性(ductility and malleability),是物质的一种机械性质,表示材料在受力而产生(fracture)之前,其的能力。延展性是由延性、展性两个概念相近的机械性质合称。常见及许多均有延展性。

在中,延性(Ductility)是材料受到(tensile stress)变形时,特别被注目的材料能力。延性它主要表现在材料被拉伸成线条状时。展性(Malleability)是另外一个较相似的概念,但它表示为材料受到压缩应力(compressive stress)变形,而不破裂的能力。展性主要表现在材料受到锻造或轧制成薄板时。延性和展性两者间并不总是相关,如具有良好的延性和展性,但仅仅有良好的展性而已。然而,通常上因这两个性质概念相近,常被称为延展性。

5.提高材料强度改善脆性的措施及其原理

影响材料强度的因素是多方面的。而决定材料强度的本质因素是材料内部质点的结合力。提高材料的强度是指提高其抗弹性、塑性及断裂形变的能力,这几项主要决定的指标是 E 或G ,γ 及裂纹长度。弹性模量表示原子间的结合力,它是一种结构不敏感性能常数,γ 则现微观结构有关( 但单相材料的微观结构对其影响不大) 。故关键的因素是是裂纹长度,因为裂纹长度与工艺过程有关,是可以改变的,所起的效果也是不错的。

1 提高无机材料抗弹性形变的能力

主要是提高E( 或G) ,即提高弹性刚度。

方法一:改变材料中的键合力( 原子结构) 。由于对于同类材料来说,熔点越大,模量E 、G 也就越大。因此,可试图变换其中的原子,而使健合力提高,从而达到增大 E 、G 的目标,而提高抗弹性形变的能力。

这种方法是不可取的。这是因为人们使用的材料是大量的,添加少量的异种原子所起的作用较小, E 、G 代表晶格的平均键合力,是结构不敏感性能。

方法二:复合材料

i) 在基体中加入弹性模量高的复合材料( 纤维、晶粒或其它材料) ,可使弹性模迅速增大。

对于连续纤维单向强化复合材料,若纤维与基体的应变相,即ε c = εf =ε m ,则有:

E c = E f V f + E m V m

σ c = σ f V f + σ m V m