无线网络工作原理剖析讲解学习

  • 格式:doc
  • 大小:28.00 KB
  • 文档页数:15

下载文档原格式

  / 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线网络工作原理

概念

科技的飞速发展,信息时代的网络互联已不再是简单地将计算机以物理的方式连接起来,取而代之的是合理地规划及设计整个网络体系、充分利用现有的各种资源,建立遵循标准的高效可靠、同时具备扩充性的网络系统。无线网络的诸多特性,正好符合了这一需求。

一般而言,凡采用无线传输的计算机网络都可称为无线网。从WLAN到蓝牙、从红外线到移动通信,所有的这一切都是无线网络的应用典范。就本文的主角——WLAN 而言,从其定义上可以看到,它是一种能让计算机在无线基站覆盖范围内的任何地点(包括户内户外)发送、接收数据的局域网形式,说得通俗点,就是局域网的无线连接形式。

接着,让我们来认识一下Wi-Fi。就目前的情况来看,Wi-Fi已被公认为WLAN的代名词。但要注意的是,这二者之间有着根本的差异:Wi-Fi是一种无线局域网产品的认证标准;而WLAN则是无线局域网的技术标准,二者都保持着同步更新的状态。

Wi-Fi的英文全称为“Wireless Fidelity”,即“无线相容性认证”。之所以说它是一种认证标准,是因为它并不是只针对某一WLAN规范的技术标准。例如,IEEE 802.11b是较早出台的无线局域网技术标准,因此当时人们就把IEEE 802.11b标准等同于Wi-Fi。但随着无线技术

标准的多样化,Wi-Fi的内涵也就相应地发生了变化,因为它针对的是整个WLAN领域。

由于无线技术标准的多样化出现,所使频段和调频方式的不尽相同,造成了各种标准的无线网络设备互不兼容,这就给无线接入技术的发展带来了相当大的不确定因素。为此。1999年8月组建的WECA(无线以太网兼容性联盟)推出了Wi-Fi标准,以此来统一和规范整个无线网络市场的产品认证。只有通过了WECA认证,厂家生产的无线产品才能使用Wi-Fi认证商标,有了Wi-Fi认证,一切兼容性问题就变得简单起来。用户只需认准Wi-Fi标签,便可保证他们所购买的无线AP、无线网卡等无线周边设备能够很好地协同工作。

原理

尽管各类无线网所遵循的标准和规范有所不同,但就其传输方式来看则不外两种,即无线电波方式和红外线方式。其中红外线传输方式是目前应用最广泛的一种无线网技术,我们所使用的家电遥控器几乎都是采用红外线传输技术。作为一种无线局域网的传输方式,红外线传输的最大优点是不受无线电波的干扰,而且红外线的使用也不会被国家无线电管理委员会加以限制。然而,红外线传输方式的传输质量受距离的影响非常大,并且红外线对非透明物体的穿透性也非常差,这就直接导致了红外线传输技术与计算机无线网的“主角地位”无缘;相比之下,无线电波传输方式的应用则广泛得多。基于本文的定位,在此笔者仅简单介绍无线电波的调制方式。

1.扩展频谱方式

在这种方式下,数据信号的频谱被扩展成几倍甚至几十倍后再被发射出去。这一做法固然牺牲了频带带宽,但却提高了通信系统的抗干扰能力和安全性。

采用扩展频谱方式的无线局域网一般选择的是ISM频段,这里ISM分别取于Industrial、Scientific及Medical 的第一个字母。许多工业、科研和医疗设备的发射频率均集中于该频段。例如美国ISM频段由

902MHz~928MHz,2.4GHz~2.48GHz,

5.725GHz~5.850GHz三个频段组成。如果发射功率及带宽辐射满足美国联邦通信委员会(FCC)的要求,则无须向FCC提出专门的申请即可使用ISM频段。

2.窄带调制方式

顾名思义,在这种调制方式下,数据信号在不做任何扩展的情况下即被直接发射出去。与扩展频谱方式相比,窄带调试方式占用频带少,频带利用率高。但采用窄带调制方式的无线局域网要占用专用频段,因此需经过国家无线电管理部门的批准方可使用。当然,用户也可以直接选用ISM频段来免去频段申请。但所带来的问题是,当临近的仪器设备或通信设备也在使用这一频段时,会严重影响通信质量,通信的可靠性无法得到保障。

目前,基于IEEE 802.11标准的WLAN均使用的是扩展频谱方式。

特点

通常计算机组网的传输媒介主要依赖铜缆或光缆,构成有线局域网。但有线网络在许多场合会受到布线的限制,无论是组建,还是改造的工程均十分大。而且有线局域网还存在着线路容易损坏、网络节点不可移动等缺陷。特别是连接相距较远的节点时,铺设专用通讯线路布线的施工难度大,费用、耗时多。这些问题都对正在迅速扩大的联网需求形成了严重的瓶颈阻塞,限制了互联网的发展。

WLAN的出现,则充分解决了有线网络先天性缺陷所带来的一系列问题。与有线网络相比,WLAN具备了如下特定优势。

●安装便捷:在网络的组建过程中,施工周期最长、对周边环境影响最大的就是网络布线了。而无线局域网的组建则减少甚至免去了这部分繁杂的工作量,一般只需在该区域安放一个或多个无线接入(Access Point)设备即可建立网络覆盖。

●使用灵活:在有线网络中,网络设备的安放位置受网络信息点位置的限制。而WLAN一旦建成后,在信号覆盖区域内的任何位置都可方便地接入网络,进行数据通信。

●经济节约:出于有线网络灵活性的不足,往往设计者要尽可能地考虑到未来扩展的需要,在网络规划时要预设大量利用率较低的接入点,造成资源浪费。而且一旦网络的发展超出了预期的规划,整体的改造也将是一笔不小的开支。WLAN的出现,则彻底解决了这一规划上的难题,

充分保护了用户的投资,而且改造和维护起来也十分简便。

●易于扩展:同有线局域网一样,WLAN具备了多种配置方式,能根据实际需要灵活选择、合理搭配。如此一来,无论是几个用户的小型网还是上千用户的大型网WLAN都能胜任,并能提供像“漫游”(Roaming)等有线网络无法提供的特性。

目前,无线局域网的数据传输速率可达54Mbps,已经非常接近有线局域网的传输速率,而且其远至20km 的传输距离也是有线局域网所望尘莫及的。作为有线局域网的一种补充和扩展,WLAN使计算机具有了可移动性,能快速、方便地解决有线网络不易实现的网络连通问题,成为今后网络发展的主导方向。

标准

伴随着英特尔迅驰“移动计算”技术的深入人心(如图),许多人在认识了无线局域网后将其误认为近几年的科技成果。其实不然,早在50年前的第二次世界大战期间,美国陆军就已开始采用无线电波传输数据资料。由于这项无线电传输技术采用了高强度的加密方式,因此在当时获得了美军和盟军的广泛支持。与此同时,这项技术的运用也让许多研究者得到了灵感。到1971年时,夏威夷大学(University of Hawaii)的几名研究员创造了第一个基于“封包式”技术的无线电网络。这个被称为ALOHNET 的网络已经具备了无线局域网的雏形,它由7台计算机、并采用双向星型拓扑结构组成,横跨了夏威夷整个岛屿,