端粒端粒酶和肿瘤课件
- 格式:ppt
- 大小:51.00 KB
- 文档页数:20
端粒、端粒酶与肿瘤端粒(即染色体末端)的发现已有很长的历史,但对其结构、功能、合成及其重要意义的认识,近年来有了很大进展。
本文就端粒、端粒酶的研究进展以及他们与肿瘤的关系综述如下。
一、端粒(一)端粒的结构端粒是位于染色体3′末端的一段富含G的DNA重复序列,端粒和端粒结合蛋白组成核蛋白复合物,广泛存在于真核生物细胞中,具有特殊的功能。
不同种类细胞的端粒重复单位不同,大多数长5~8bp,由这些重复单位组成的端粒,突出于其互补链12~16个核苷酸内[1]。
人类端粒由5′TTAGGG3′的重复单位构成,长度在5~15kb范围[1,2]。
与端粒特异性结合的是端粒结合蛋白,迄今为止,只在少数生物中确定了端粒结合蛋白的结构及表达基因,然而端粒结构与功能的保守性说明,这些端粒结合蛋白的特性可能普遍适用于其他真核生物。
hng等[3]在人类细胞中发现了一种端粒结合蛋白,但人类染色体末端的DNA-蛋白复合体的结构还不清楚。
(二)端粒的功能端粒高度的保守性说明,端粒具有非常重要的作用。
其主要功能包括:1.保护染色体末端:真核生物的端粒DNA-蛋白复合物,如帽子一般,保护染色体末端免于被化学修饰或被核酶降解,同时可能还有防止端粒酶对端粒进行进一步延伸的作用[1]。
改变端粒酶的模板序列将导致端粒的改变,从而诱导细胞衰老和死亡[4]。
2.防止染色体复制时末端丧失:细胞分裂、染色体进行半保存复制时,存在染色体末端丧失的问题[5]。
随着细胞的不断分裂,DNA丧失过多,将导致染色体断端彼此发生融合,形成双中心染色体、环状染色体或其他不稳定形式。
端粒的存在可以起到缓冲保护的作用,从而防止染色体在复制过程中发生丧失或形成不稳定结构[1]。
3.决定细胞的寿命:染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟〞[6]。
4.固定染色体位置:染色体的末端位于细胞核边缘,人类端粒DNA和核基质中的蛋白相互作用,以′TTAGGG′结构附着于细胞核基质(包括nulearenvelpe和internalprtEin)[3]。
2011.4[收稿日期]2011-03-11[通讯作者]汉丽梅(1968-),女,汉族,副教授,博士,从事生物化学与分子生物学及生物信息学教学与研究。
正常细胞恶性扩增过程中需要有先天的遗传因素和后天修饰的介入。
这些恶性细胞通过抢占信号通道获得生长所需的生物活性,扩散并最终杀死宿主。
与正常细胞不同,肿瘤细胞有很高的基因重排率,并可对致癌基因产生局部的修饰和置换。
端粒学说的形成,对解答肿瘤中致癌基因不稳定性起到了重要作用。
端粒本质是一种核蛋白结构,在每一次DNA 复制时都通过自身磨损从而保护了真核生物染色体的末端。
无论是在老化的组织中,是在与癌症相关的组织增生性疾病中,端粒的磨损现象都是存在的。
如果端粒发生功能性障碍,其结果就会导致组织的不衰老或是恶性肿瘤的发生。
端粒酶的主要作用就是维持端粒的长度,并且在多例癌症晚期患者的检测中发现了活化的端粒酶。
通过近期的研究发现,端粒酶的活化与癌症的发生是有一定关联的。
本文将概括阐述正常细胞和癌细胞中端粒和端粒酶的作用。
1端粒对染色体末端的保护端粒本身是一种核蛋白结构,其序列中含有大量富含G 核苷酸的串联重复序列。
在脊椎动物中端粒序列是由TTAGGG 重复序列及其互补序列构成的双链结构,并且其中一条单链的3'悬突于外,构成了一种由数百个碱基组成的悬突结构。
这个悬突结构再通过折叠作用与双链形成一个环状结构(T 环,t-loop ),对染色体末端起到保护。
其双链通过POT1、TPP1、TIN2、RAP1、TRF1和TRF2等端粒蛋白进行调控。
2人成纤维细胞的复制性衰竭和危机期最先发现端粒和肿瘤之间联系来源于对培养基中原代人成纤维的研究。
正常成纤维细胞在传60~80代后就会出现复制衰竭,而肿瘤细胞可任意传代下去。
如果细胞过度分裂就会出现端粒的帽式结构破坏,导致染色体的紊乱和细胞凋亡。
在细胞学上,对此时期称之为危机期。
TERT (端粒酶反转入酶)通过催化端粒复制,干扰了细胞正常的复制衰竭和危机期。