【广东科技报】张景中:与数为“伴” 探寻数学之美3)
- 格式:doc
- 大小:41.50 KB
- 文档页数:6
数学之美探索数学的美妙之处数学是一门精确的科学,它不仅存在于我们的日常生活中,还在各个学科领域有着广泛的应用。
它是解决问题、探索未知和揭示自然界规律的重要工具。
在这篇文章中,我们将一同探索数学的美妙之处,并欣赏其在不同领域中的应用。
1. 数学与自然科学的交融数学是自然科学的基础,它为物理学、化学、生物学等学科提供了坚实的理论基础和数学方法。
数学的美妙之处在于它能够准确地描述自然界中的现象和规律。
例如,微积分在物理学中有着广泛的应用,它能够描述运动、电磁场、流体力学等现象,并为科学家提供了解决实际问题的方法。
2. 数学与工程技术的结合在工程技术领域,数学也发挥着重要的作用。
它通过建立模型、分析数据和优化算法等方式,帮助工程师解决实际问题。
例如,在电子工程中,数学能够帮助设计师优化电路布局,提高电子器件的性能;在土木工程中,数学能够帮助建筑师计算结构的稳定性,并确定最佳设计方案。
3. 数学与经济金融的联系经济学和金融学都离不开数学的支持。
数学通过建立经济模型、分析市场数据和预测价格等手段,帮助经济学家和金融从业者做出更准确的决策。
例如,微观经济学中的供求模型、宏观经济学中的经济增长模型,以及金融学中的期权定价模型等都是基于数学原理的。
4. 数学与计算机科学的融合计算机科学与数学息息相关,它们共同推动了现代社会的进步。
数学为计算机科学提供了算法、数据结构和密码学等基础理论,而计算机技术的发展也为数学研究提供了强大的计算能力。
例如,计算机科学家利用数学的理论和方法解决了许多复杂的问题,包括图像处理、机器学习和人工智能等领域。
5. 数学与艺术的结合数学在艺术领域中也有其独特的美妙之处。
许多艺术家通过数学原理和几何学的概念来创作作品。
例如,黄金分割、对称性和透视法等几何原理在绘画和建筑设计中起着重要的作用,给作品带来了美感和谐的感觉。
综上所述,数学的美妙之处体现在它与自然科学、工程技术、经济金融、计算机科学和艺术等领域的交融。
数学之美论文2000数学之美论文数学之美论文篇一人类对数学的认识最早是从自然数开始的。
这看似极普通的自然数里面,其实就埋藏着数不尽的奇珍异宝。
古希腊的毕达哥拉斯学派对自然数很有研究,当他们将这数不尽的奇珍异宝的一部分挖掘出来并呈现于人类面前时,人们就为这数的美震撼了。
其实,“哪里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。
一、简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。
如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
欧拉给出的公式:V-E+F=2堪称“简单美”的典范。
世间的多面体有多少没有人能说清楚。
但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
二、和谐美古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分、部分与整体之间的和谐性。
”三、对称美毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。
圆是中心对称图形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。
对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。
如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。
数学美学中的对称美并不局限于客观事物外形的对称。
它着重追求的是数学对象乃至整个数学体系的合理,匀称与协调。
数学概念,数学公式,数学运算,数学方程式,数学结论甚至数学方法中,都蕴含着奇妙的对称性。
张景中:在苦难中升华在中国的科普事业中,许多人默默地贡献出了自己的智慧。
今天,我们要跟您一起去见识一位著名科普作家苦难而传奇的一生。
他现在的身份是:中国科普作家协会理事长、中国科学院院士。
1955年,北京大学数学力学系一年级的一位学生在《数学进展》上发表了一篇论文。
当时,这是一件很不得了的事情。
他非常高兴。
可是,没过多久,编辑部来信了,告诉他有读者问:关于这结果,前人做了哪些工作?他费了九牛二虎之力,终于伤心地发现:早在1920年,德国的哈默尔已经做过这项工作,他只好复信致歉。
当时的他没想到,这位读者居然就是大名鼎鼎的华罗庚教授,其意思无非是要告诉他研究学问的入门规矩。
他叫张景中。
记者:您当年在北京大学学的是纯数学,您在选择这个专业的时候,对于自己未来要做什么是不是很清楚。
张景中:纯数学比较难学,在这方面想做点贡献的话需要特别的努力,大家都有这个感觉。
那时候想过,既然到了数学系,那就要当个数学家。
不过,小时候读科普书时也有这样的想法。
但是,1957年,命运突变,我被错划为右派。
1958年2月被开除学籍,送去劳动教养。
那年我22岁。
先是到农场劳动了8年,然后流浪到新疆,在新疆留守13年。
后来到了1978年底,我去科大教书,一晃就42岁了。
记者:您被划右派的原因是什么?张景中:就是当时的言论跟领导层的言论不一致嘛。
现在来看,跟改革开放之后的很多观点差不多吧。
记者:在多长时间以后您才可以平静地承受这样一个巨大的命运转折?张景中:我对很多事情是做了一些思考的,也看了一些书,慢慢地就明白了:这个公理系统是什么?一个社会是按照什么原则来运转的?如果你触犯了这个原则的话,你很可能是要倒霉的。
我还想,我不可能改变整个国家已经形成的公理系统,那就必须找到适应这个公理系统的方法。
马克思说过,一个人能对社会产生的影响是非常有限的,因为你在对社会产生影响之前,社会首先要影响你。
记者:那时候您心里对自己有什么判断?自己的做法是正确的还是错误的?张景中:当时我就觉得自己发表那些言论,不应该受到那样的处理。
数学让人得到解放--访著名数学家张景中
曾一鸣;张晓旭;周明旭
【期刊名称】《初中生世界(八年级读写版)》
【年(卷),期】2016(000)008
【总页数】4页(P5-8)
【作者】曾一鸣;张晓旭;周明旭
【作者单位】
【正文语种】中文
【相关文献】
1.数学之美让他摘得菲尔兹大奖桂冠--访世界著名数学家、美籍华人丘成桐
2.载誉归来:讲述成功背后的故事——访著名数学家谭昌眉教授
3.数学美妙好玩让人感觉到解放--张景中院士访谈录
4.“不能为长寿而长寿”——访全国政协副主席、著名数学家苏步青教授
5.无问西东唯学与研——访国际著名数学家丘成桐
因版权原因,仅展示原文概要,查看原文内容请购买。
张景中——面积法开辟平面几何新天地提起张景中,景仰之情不禁油然而生,心底涌出一堆的形容词和感叹句。
诸如百折不回燃烧生命、身居逆境不改其志、目光如炬睿智如芒、思维如风顶尖成就、平凡之中凸显伟大、横扫千军势如破竹、与时俱进思维超前、破除迷信引领革命,等等等等,都不足以概括张景中院士对中国教育数学的贡献,即使在整个中国科学界,诞生这样的科学巨人,也是50年来仅见。
张景中的伟大,不在于在高等数学的多少个领域内做出了贡献,恰恰在所有人都认为不可能有突破性进展的初等数学领域,其中最稳定、最古老、最不可能创新的欧式几何王国内,取得了划时代的进展,颠覆性的进展。
从17世纪以来的300多年,世界范围内的大科学家,他们在科学理论上的所有发现,几乎没有普通中学生能够读懂的东西。
在初等数学领域,代数是一潭百年死水,平面几何更是一潭千年死水,没有活水也没有新鲜氧气注入。
是张景中,也仅仅是张景中,只在三年的初中几何教学中,就发现了问题并开始思考教材的改革。
在平面几何2000多年的古老仓库中,捡起了从不被人重视的“面积方法”这件武器,将顽铁锻造成神器,像当年的孙悟空一样,从地下到天上,从18层地狱到33天兜率宫,将2300年不变的并被公认为完美杰作的欧几里德几何体系从公理体系到定理体系,从思想方法到解题思路搅了个天翻地覆,将欧几里德几何体系彻底改造了一番,创造了一个面目一新的张氏几何,名曰新概念几何。
上至各路神仙、下至黎民百姓,看得目瞪口呆,看得如醉如痴。
张景中的这项科学发现,比起60年来国内任何一个科学家的发现影响面都要大得多,因为他的受众是8700万中学生!他影响的是整个中国的下一代。
张景中的脚步没有停歇,他的眼光自然而然地投向了机器证明几何定理这个百年难题。
从莱布尼兹发明数值计算机械化以来,随着计算机科学的发展,机器证明几何定理也有了一定进展。
中国老一辈数学家吴文俊将平面几何坐标化,创立了吴方法——代数消元法,开拓性地推进了机器证明几何定理的研究。
三一文库()/总结〔张景中数学方法总结〕数学的乐趣类似于下棋,是思考之乐、挑战之乐,数学能给人震撼感、力量感和解放感。
小编收集了张景中数学方法总结,欢迎阅读!▲谈教学:让数学更容易也更适合教学张景中,广州大学计算机学院名誉院长、广州大学学术委员会主任、广东省数学教育软件工程技术研究中心主任。
讲座一开场,张景中就以“九九乘法表”带领学生思考其中蕴含的规律。
他通过图例形象直观地阐述数学知识,让复杂问题变得简单化,与师生们共同体验学习数学的乐趣。
早在上世纪70年代,张景中在教学时就想着怎么改革初中的数学教学,让数学变得更容易学。
后来他发现,国外的数学教育主要研究教学方法,而很少考虑数学内容,但如果数学本身太难的话,你用什么方法教他都感到困难。
于是张景中就提出“要把数学变容易”,改进数学知识的组织方式和表达方法,让它更容易学。
为了教育,改造数学,他称之为“教育数学”。
2012年,在广州市科协“千师万苗”工程支持下,海珠实验中学进行了“教育数学”的教学实验,两个实验班共105名学生。
入学测试时,其中一题是让学生画三角形的高,有些钝角三角形的高在外面,有2/3的学生被难倒了。
授课的张东方老师将张景中的一本科普书的内容编成教案,设计了90多节课取代通用教材相应的内容,有些地方还改变了传统的定义。
三年后的中考,这两个班的数学成绩优秀率达到了100%。
▲谈科普:要让中学生看懂,也要让大学生觉得有新意张景中1991年开始享受政府特殊津贴,1995年10月当选中国科学院院士,曾获“全国优秀教师”称号及“全国五一劳动奖章”。
代表性科普作品有《从数学教育到教育数学》、《数学家的眼光》、《新概念几何》等。
一直以来,张景中致力于数学科普写作。
令他高兴的是,科普书的一些内容后来进入数学教材,使更多学生受益。
他曾说过,创作出好的科普作品需要花费很多精力和时间,“写科普作品要当成一个事业来做,这也是个不断地学习的过程。
写科普作品很花心思,比如《数学家的眼光》,六万字写了五年。
院士张景中:我想把数学变容易●那么多青少年喜爱我的作品,是一种幸福,一种享受!●有一阵子,媒体上出现不少讨伐数学竞赛的声音,我留意到了,有的教育专家甚至认为数学竞赛之害甚于黄赌毒。
我的第一个想法是,中国现在值得反对的事情不少,论轻重缓急还远远轮不到数学竞赛吧?●可以把学数学比作吃核桃。
核桃仁要砸开了才能吃到。
有些核桃外壳与核桃仁紧密相连,成都人形象地叫“夹米子核桃”,如果砸不得法,砸开了还很难吃到。
数学教育要研究的,就是如何砸核桃吃核桃仁;而教育数学呢,则是要研究改良核桃的品种,让核桃更美味,更有营养,更容易砸开吃净!●我在北大读书时,一年级的课程就是由江泽涵院士和程民德院士来讲。
那时不要求教授出多少SCI(科学引文索引),争取多少项目经费,教授把主要力量放在教书育人上。
可惜现在很难做到这样了。
一个从事计算机推理研究的科学家,却几十年如一日,热心于用浅显的语言写书给青少年看;他喜爱数学,有志于为教育改造数学,把数学变得更容易。
他是中国科学院院士、计算机科学家、科普作家张景中。
他说:“那么多青少年喜爱我的作品,是一种幸福,一种享受!”名人会人物档案张景中,著名计算机科学家、数学家和数学教育家。
1995年当选为中科院院士,1999年当选为中国科普作家协会理事长,2004年当选中国高等教育学会教育数学专业委员会理事长。
现任广州大学计算机教育软件研究所名誉所长,中国科学院成都计算机应用研究所名誉所长。
张景中在计算机科学和数学领域,取得了一系列有意义的成果。
其还撰写了大量科普文章和通俗读物,1990年被中国科普协会审定为建国以来贡献突出的科普作家之一,1994年被中国少年儿童出版社评为十大金作家之一,2008年被广东省科普协会评为资深科普作家。
其作品《教育数学丛书》、《数学家的眼光》、《院士数学讲座》等多次荣获国家、省、市级奖励。
关键词:科普、科研儿时读科普书是兴趣而今写科普书是责任羊城晚报:张院士,您是怎样开始科普写作的?张景中:我主要从事科研。
把数学变容易--张景中院士访谈录
张景中;赵维坤
【期刊名称】《教育研究与评论》
【年(卷),期】2022()9
【摘要】教育数学关注的是教材中数学内容的优化问题,就是要把数学变容易,从而真正减轻学生的学习负担。
基于“熟悉了,简单了,想通了,直观了,就容易”的想法。
把数学变容易的做法有:改变概念定义的表述;建立更简易、更有力的方法,提供解题的“中巧”。
教育数学40多年的研究在五个方面有重要进展:在初等几何领域发展了面积法,进而发展出消点法;发现了三角函数在小学知识基础上的生长点;针对高中向量部分的学习,发展了向量回路方法;解决了有关微积分如何变容易的问题;探索如何将信息技术用于数学教学,开发了更智能化的动态数学软件--网络画板,使得数学教学更为生动有趣。
【总页数】8页(P4-11)
【作者】张景中;赵维坤
【作者单位】中国科学院;江苏省盐城市毓龙路实验学校;中国教育学会中学数学专业委员会
【正文语种】中文
【中图分类】G63
【相关文献】
1.数学美妙好玩让人感觉到解放--张景中院士访谈录
2.让数学变得容易起来——读张景中院士的数学科普名作
3.让数学变容易些:张景中院士访谈录
4.在粤工作院士张景中坚持科普创作要把数字变容易
5.中国科学院院士张景中:重视数学教育和科学普及
因版权原因,仅展示原文概要,查看原文内容请购买。
【广东科技报】张景中:与数为“伴” 探寻数学之美发稿时间:2011-06-29 09:59:40 浏览次数:1439张景中计算机科学家、数学家和数学教育学家,中国科学院院士。
1959年毕业于北京大学数学力学系,1979年后在中国科技大学数学系任职,1986年到中国科学院成都计算机应用研究所工作,1995年调入广州大学(原广州师范学院)工作,曾任中国科技大学副教授、中国科学院成都计算机应用研究所研究员,副所长,广州大学计算机教育软件研究所所长等,现任广州大学教授,计算机教育软件研究所名誉所长,中国科学院成都计算机应用研究所名誉所长等。
长期致力于计算机科学和数学的研究,在机器证明、教育数学、距离几何及动力系统等研究领域做出了突出的贡献;创立计算机生成几何定理可读证明的原理和算法,该项成果被权威学者认为是使计算机能像处理算术一样处理几何工作的“里程碑”。
曾获国家发明二等奖、中科院自然科学奖一等奖、中国图书奖等多个奖项。
1991年起享受国务院特殊津贴,1995年当选为中国科学院院士。
一生与数学“相伴”,是张景中院士的一个写照。
从当初来到未名湖畔,在北大数学专业求学,与数学结下不解之缘;到文革时期坚持研究,把破解难题作为自己的目标与动力;再到走上大学讲坛,开启教育数学领域,诲人不倦,他都是潜心于数学的一个个数字,一个个符号,一个个公式,一个个图形中,去探寻、发现数学之美。
聚于“未名湖”,迷上数学研究张景中出生在河南省汝南县的一个教师家庭,从小就受到了良好的教育。
1954年夏天,他以优异的成绩,获得了北京大学数学力学系数学专业的录取通知书。
同年9月,他从河南的一个县城汝南,来到了未名湖畔,开始了他长达半个多世纪在数学领域孜孜不倦的追求。
当时的北大数学力学系拥有程民德、江泽涵、周培源等名师,很重视基础课程。
同时,各门课程也安排得很合理,学生有充分时间阅读、思考和讨论。
张景中回忆了这么一段经历:那时《数学学报》发表了一个有误的例子,试图补救。
他想出了补救的方法,并与同学杨路一起给出了论证。
北大数学力学系讲授微积分的程民德教授对学生的研究很是赞赏,特意安排了一次学生科学报告会,让他们讲解这个例子。
这个例子后来发表在武汉《数学通讯》杂志上,也成为他和杨路多年在数学领域合作研究的一个开始。
好景不长,一场政治运动迎面降临。
1957年,张景中被划为右派,随后被开除学籍,到农场劳动。
同窗好友杨路也遭受了同样的待遇。
张景中白天的劳动紧张而又沉重,晚上还要开会。
但无论多忙,随身总是带几本书,那时,他最常翻看的就是《数论基础》。
在此期间,他与杨路常常通信,交流对数学问题的思考,异地联袂攻关,攻克了“逐段单调连续函数迭代根存在性”这一数学难题,成果在《数学学报》发表后,引起国内数学界的关注和后续研究。
他们探索的几何算法在国际上引起了强烈反响,被国内外学术期刊和国际会议文集引用近400篇次,其中被《科学引文索引》收录了100多篇次。
走上大学讲坛,迎来事业的“春天”文革十年,对于张景中来说是一个多灾多难的时期。
1966年8月,他随集体被调往新疆生产建设兵团,并成为了那里组成的一个工程支队中的一员,任务是修一条从库尔勒到若羌的公路,全长四百公里。
那时,每天的工作是挖土、抬土、浇灌水泥、制砖、建桥铺路,劳动之外,除了吃饭、睡觉,就是开会和读“红宝书”;因为是“五类分子”,星期天还要加班劳动,打扫厕所、砍柴,他再也没时间看数学了。
直到1974年4月,张景中到了位于库尔勒地区焉耆县新疆生产建设兵团21团子女中学担任老师,为初二年级学生讲平面几何,这才又再度接触数学。
1978年,张景中迎来了数学研究的春天。
中国科技大学的领导寻访到他的下落,邀请他和杨路参加学术交流。
这两位历尽磨难的挚友,20年来第一次在大学校园里相会。
12月,张景中进入中国科技大学任教,为数学系、少年班讲授微积分。
在中科大工作的6年中,为了克服微积分学入门的难点,张景中提出了非ε语言的极限定义方法,以及连续归纳法。
20世纪80年代,张景中和杨路同时被调到中科院成都数理科学研究室,同时被聘为中科院研究员,分别任研究室正、副主任。
他的学术研究逐渐转入机器证明的新领域。
20世纪90年代,他在美国维奇塔大学进行合作研究,出版以消点法为主题的英文专著《几何中的机器证明》,收集近500条由计算机自动生成可读证明的几何定理。
这项工作得到自动推理领域一些著名科学家的好评,被称为“是计算机发展处理几何问题能力之路上的里程碑”,被美国科学基金委员会组织的专业学术讨论会肯定为“近年来自动推理的几个重要进展之一”。
不久,基于杨路的想法,张景中等人又把消点法用于非欧几何,在计算机上生成一批非欧几何新定理的可读证明。
他们进一步发展了基于前推搜索的逻辑方法,使这一方法达到实用阶段。
成果《几何定理机器证明理论与算法新进展》在1995年获“中科院自然科学奖一等奖”,1997年获“国家自然科学奖二等奖”。
致力创新,创立教育数学理论体系1996年起,张景中的主要兴趣转向数学教育和智能教育软件的研究。
当时,他来到广州师范学院(现广州大学),作为学科带头人创建了教育软件研究所;1998年,他又在该校创办了软件所信息与计算科学本科试点班,近年来已先后培养本科生、硕士生及博士生几十人。
张景中院士不仅提出并倡导教育数学理论,探索教育数学的规律,而且积极开展教育数学的实验、研究工作,创立了教育数学的思想和方法。
早在1974年,张景中在新疆巴州21团子弟中学讲授平面几何时,就萌生了改革数学教育的想法。
在中国科技大学6年的从教生涯中,他的这种想法愈来愈强烈:觉得应当改造现有数学教育方法中与教育规律不相适应的部分。
随着计算机的普及,他找到了实现理想的平台???从计算机辅助教学出发,开发新一代的数学教育软件。
1998年,他参与策划研发出来的教育软件《几何专家》、《立体几何》和《解析几何》推出。
这些软件使数学教师们耳目一新,引起师生们的广泛兴趣。
2002年,张景中主持研发的数学软件《Z+Z 智能教育平台???超级画板》诞生,“取名‘Z+Z’,主要是知识加智能之意;而‘超级’两字借用超级市场,意思是说数学教学和学习所用的一切工具这里应有尽有,好像超级市场一样。
”张景中院士介绍,应用《超级画板》软件,能快速、精确地画出动态几何图形和各种与参数动态关联的曲线。
“软件还有变换、测量、推理、公式编辑、图表绘制、符号演算、课件制作演示及编程环境等多种用处。
”《超级画板》推出后,经教育部基础教育课程教材中心立项,启动了“Z+Z智能教育平台应用于国家数学课程改革的实验研究”。
这项研究吸引了19个省的130多所中学参与。
而他所主持开发的软件《Z+Z智能教育平台》,也于2000年获香港国际发明展览会金奖。
难忘的回忆“童年祖母对我影响最大”张景中说,童年时期对他影响最大的人是祖母。
他曾在一篇回忆的文章中这样写道:“记得她叫李凤彩,是河南汝南李寨一个大地主的女儿,读过私塾,信佛。
那是兵慌马乱的抗日战争年代,她常在炮火声中牵着我和哥哥跑进高梁地的深处,从怀里掏出一本破旧的《古文观止》,教我们读……”“北大是人生黄金时代”由于张景中的勤奋好学和在数学方面极高的天赋,他被同学们誉为北大数学系的“十大才子”之一。
当时北大数学系学生都很积极地参加课外学术活动。
张景中参加了丁石孙先生所指导的代数课外小组,先是研究矩阵的无穷乘积,后来他又对函数的迭代问题产生了很大兴趣。
那时,他不仅成绩好,文学水平也不错,还参加了北大诗社,发表过诗作。
“在1956年夏,系里试行免修制度:自学某门课并在开课前考得优良成绩的可以免修。
我免了两门课,时间更充裕了。
老师们告诉我,不要把时间都用来做题目,要多读书多看文献打下雄厚的基础。
”回首北大岁月,他满怀感慨地说,那可真是个“黄金时代”。
劳动之中忙里偷闲做习题大跃进年代,劳教农场里劳动之紧张沉重不难想象。
在农场里,我种过小麦、水稻,在土化肥厂里烧过石灰、做过盐酸。
干的最多的是挖泥和抬土。
白天劳动,晚上开会。
我随身会带几本书,其中《数论基础》是最常翻看的,里面有许多好习题,忙里偷闲记在心里,上下工的路上或开会时就够想一阵子了。
有时即使在路上不想题,也会边走边下盲棋,对锻炼记忆力很有好处,也有助于形成不用纸笔想问题的习惯。
科普创作,让枯燥数学变得有趣近年来,越来越多的科学家参与到科普创作中,不但为社会奉献了一批科普精品,也产生了示范作用,张景中院士就是其中的突出代表。
他曾兼任中国科普作家协会理事长,并撰写了大量的科普文章和通俗读物,代表作品有《新概念几何》、《帮你学数学》、《数学家的眼光》和《数学与哲学》等。
他深有感触地说:“科普创作是一种责任,一种挑战,也是一种安慰。
社会为我们提供了科学研究的条件和环境,我们当然有责任向大家说明研究对象的情形和研究工作的意义。
”张景中认为,数学不仅是科学和技术,也是文化;文化的延续和发展需要大众的理解和参与,因而数学教育和数学科普的重要性不亚于数学研究。
“能进入教学媒体或科普作品创作的行业中工作,是值得追求和羡慕的事情。
”出于这种想法,自从出版第一本科普著作《数学传奇》起,他花了大量的时间和精力从事数学科普的创作。
张景中说,数学科普创作难在用通俗有趣的语言来说清枯燥的数学定律、公式,他这样形容自己科普写作的状态:“在写科普作品的时候,往往是自己想了很久,想出一个有趣的话题,然后才把它作为一本书或者一个思路的开头。
”科普创作虽然辛苦,但想到能和许多读者特别是年轻人交流思想,许多青少年可能因喜爱自己的作品而对数学产生兴趣,张景中也感到很欣慰,认为这也是一种幸福,一种精神享受。
他为青少年创作的《数学家的眼光》和《数学与哲学》等,受到广泛好评。
由此,他也于1990年被中国科普协会审定为建国以来贡献突出的科普作家之一,1994年又被中国少年儿童出版社评为十大金作家之一。
他所著的《教育数学丛书》(包括《教育数学探索》、《平面几何新路》、《平面几何新路解题研究》等)于1995年获“第九届中国图书奖”和“第一届全国数学教育图书一等奖”;作品《院士数学讲座》2003年获第五届全国优秀科普作品奖科普图书类一等奖,中华人民共和国新闻出版署颁发的第六届国家图书奖;而科普著作《数学家的眼光》也荣获2005年国家科技进步二等奖。
除了热衷于科普创作外,张景中也乐于为学生讲科普。
他多次参加“院士进校园,大手拉小手”、“百名专家进校园”等活动,到广东各地的中小学校做科普报告。
他说,数学的理论是深奥的,是枯燥无味的,但它也是一个很重要的基础学科,是学生必须掌握并运用的“工具”。
而他就是以科普报告的形式,从“数学家的眼光”把数学变得容易些,开启青少年学习数学的兴趣。
小故事三人合作破解世界难题有这样一个古老的未解之题:只用一个固定半径的圆规能作出哪些几何图形?美国著名几何学家佩多(D.Pedoe),在国际期刊上公开征解:已知两点 A 、 B ,能否只用一只生锈的圆规(即固定半径的圆规)找出点C,使ABC成正三角形?几年无人给出解答。