初中数学最值问题集锦+几何地定值与最值

  • 格式:doc
  • 大小:758.31 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何的定值与最值

几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:

1.特殊位置与极端位置法;

2.几何定理(公理)法;

3.数形结合法等.

注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、

逻辑推理与合情想象相结合等思想方法.

【例题就解】

【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值

为.

思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,

1AB一常数,当CQ越小,CD越小,DQ⊥CC′,CD2=DQ2+CQ2,DQ=

2

本例也可设AP=x,则PB=x-

10,从代数角度探求CD的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:

(1)中点处、垂直位置关系等;

(2)端点处、临界位置等.

【例2】如图,圆的半径等于正三角形ABC的高,此圆在沿底边AB滚动,

切点为T,圆交AC、BC于M、N,则对于所有可能的圆的位置而言,MTN为的度数()

A.从30°到60°变动B.从60°到90°变动

C.保持30°不变D.保持60°不变

思路点拨先考虑当圆心在正三角形的顶点C时,

其弧的度数,再证明一般情形,从而作出判断.

注:几何定值与最值问题,一般都是置于动态背景下,

动与静是相对的,我们可以研究问题中的变量,考虑当变

化的元素运动到特定的位置,使图形变化为特殊图形时,

研究的量取得定值与最值.

【例3】如图,已知平行四边形ABCD,AB=a,BC=b(a>b),P为AB 边上的一动点,直线DP交CB的延长线于Q,求AP+BQ的最

小值.

思路点拨设AP=x,把AP、BQ分别用x的代数式表示,

运用不等式ab

b

a2

2

2≥

+(当且仅当b

a=时取等号)来求最小值.

【例4】如图,已知等边△ABC内接于圆,在劣弧AB上取异于A、B的点

M,设直线AC与BM相交于K,直线CB与AM相交于点N,证明:线段AK 和BN的乘积与M点的选择无关.

思路点拨即要证AK·BN是一个定值,在图形中△ABC

的边长是一个定值,说明AK·BN与AB有关,从图知AB为

△ABM与△ANB的公共边,作一个大胆的猜想,AK·BN=AB2,

从而我们的证明目标更加明确.

注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.

【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.

思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.

注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:

(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;

(2)构造二次函数求几何最值.

学力训练 1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点

或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,

则BB ′+CC ′+DD ′的最大值为 ,最小值为 .

2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,

R(均不同于点O),则△PQR 的周长的最小值为 .

3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到

MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等

于 .

4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径

MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )

A .1

B .2

2 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,

沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )

A .212π+

B .2412π+

C .214π+

D .242π+

6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是

AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )

A.线段EF的长逐渐增大B.线段EF的长逐渐减小

C.线段EF的长不改变D.线段EF的长不能确定

7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.

(1)求证:MN∥AB;

(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.

(2002年云南省中考题)

8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,