柔索牵引并联机器人的简介及发展概况
- 格式:doc
- 大小:1.99 MB
- 文档页数:18
并联机器人的主要特点及应用这台机器早在90年代就问世了,现在是19994s;这台机器的新一代动力;这台新一代的动力;这很难在医学上使用。
在19994年很难工作;通过与传统的串联机器人的比较,分析了并联机器人的特点.介绍了并联机器人在运动模拟器,并联机床,工业机器人,微动机构,医用机器人,操作器方面的应用,指出了并联机器人研究面临的几个主要问题。
1.并联机器人是一种”知识密集”型机器人,并联机器人技术是近几十年来迅速发展起来的一门交叉学科,它涵盖了机构学、机械设计、力学、计算机工程学等多门学科的知识和最新研究成果,具有刚度大、精度高、承载力强和使用性能好等优点,代表着机电一体化的最高成就。
并联机器人作为一个新的学科发展对象,在社会生活的绝大领域都具备广泛的应用价值。
且随着科技发展的需要,其创新设计被提出了更高的要求,故对并联机器人进行研究和开发有相当重大的意义。
以6-SPS并联机器人为研究对象,本文首先根据其上下平台的空间矢量关系,推导出了机构的位置反解方程,并提出了基于位置反解的杆长迭代法来求位置正解的新方法。
通过实例对6-SPS 并联机器人的正反解进行了数值验证,证明了杆长迭代法是可行的。
分析了6-SPS并联机器人工作空间的限制因素,并根据机构特点提出在姿态给定情况下工作空间的几何确定方法。
该方法以运动学反解为基础,求出了工作空间的边界方程。
并从边界方程得到了6-SPS并联机器人的工作空间形状为6个空心球体的交集。
分析了6-SPS并联机器人的机构特征,结合机器人微分关系建立了Stewart机构的位姿误差模型。
再通过软件Adams分析,绘制出了机器人相同运动轨迹时分别在初始杆长误差和铰点位置误差影响下的位姿误差曲线。
2.考虑20945;只是高,装载能力; 3.绝对明确的特征;工作空间;根据这些要点,机器需要高度。
39046没有高速或重载;这是一个很大的用途。
使用两种不同类型的桌面。
台式机看起来只需要222330度的高和高速空间;它们专门使用: 1.食品、医药、电子化学,发展 2.B.:航天飞机连接;线路上的电机穿梭机,36718;装置;医疗卧室附件。
并联机器人行业调研报告并联机器人是一种具有多个执行机构,可以同时完成多个任务的机器人系统。
与串联机器人相比,它具有更高的生产效率和更广泛的适用性。
在过去的几年中,随着技术的不断进步,一个不断发展的并联机器人行业正逐渐形成。
本文将对该行业进行调研,并就其发展现状、应用领域、市场前景等方面进行分析。
首先,目前并联机器人行业正迅速发展。
随着自动化技术的不断推进和人工智能的不断发展,越来越多的企业开始使用并联机器人来完成生产线上的任务。
与传统的串联机器人相比,它们具有更高的生产速度和更大的木材范围,可以完成更复杂的任务。
并联机器人行业的快速发展为企业提高生产效率提供了更多的选择。
其次,并联机器人在多个领域有着广泛的应用。
目前,它们主要应用于制造业、医疗、服务业等领域。
在制造业中,它们可用于完成产品的组装、搬运、焊接等工作。
在医疗领域,它们可用于手术辅助、康复训练等任务。
在服务业中,它们可用于餐厅服务、接待等工作。
并联机器人在这些领域的应用,不仅提高了工作效率,还减少了人工成本,使得企业更加具有竞争力。
此外,并联机器人行业的市场前景也十分广阔。
根据市场调研机构的数据显示,到2025年,全球并联机器人市场预计将达到数十亿美元。
这一庞大的市场规模将带来巨大的商机。
并联机器人行业的发展也将推动相关行业的进步,如传感器技术、控制算法等领域将会得到更多的关注和投资。
然而,并联机器人行业也面临一些挑战和问题。
首先,技术的不断进步和竞争的加剧,使得并联机器人的性能要求不断提高。
企业需要投入更多的研发资源来提升产品的竞争力。
此外,由于并联机器人的复杂性,其维护和运维成本也相对较高,这也是企业在选择使用并联机器人时需要考虑的问题之一。
综上所述,随着自动化技术的不断进步,并联机器人行业正迅速发展。
其在制造业、医疗、服务业等领域有着广泛的应用,市场前景广阔。
然而,该行业也面临一些挑战和问题。
未来,我们可以预见并联机器人将在更多领域中发挥重要作用,并推动相关技术的发展。
柔性机器人技术的应用和发展方向柔性机器人技术作为一种新兴的机器人技术,具有灵活性高、适应性强等特点,被广泛应用于许多领域。
本文将探讨柔性机器人技术的应用领域,并分析其发展的方向。
一、医疗领域柔性机器人技术在医疗领域中有着广泛的应用前景。
在手术中,柔性机器人能够模拟人手的灵活性,通过微创手术的方式减少患者的伤痛。
比如,柔性机器人可以用于胃镜、肠镜等内窥镜手术中,提高手术的精确性和安全性。
此外,还可以用于康复机器人,帮助患者进行康复训练,恢复活动能力。
二、制造业柔性机器人技术在制造业中的应用也越来越广泛。
传统的机器人往往需要事先编写固定的程序来完成特定任务,而柔性机器人可以通过传感器和智能控制系统实时感知和响应环境变化,具有更高的灵活性和适应性。
在制造流程中,柔性机器人能够根据实时生产需求进行自主调整,提高生产效率和灵活性。
三、农业领域农业是另一个柔性机器人技术的重要应用领域。
柔性机器人可以应用于农田作业和农产品采摘等环节。
相比传统的农业机械,柔性机器人能够更好地适应复杂多变的农田环境,进行高效精准的农业作业。
例如,柔性农机可以根据植物的生长情况进行精准的植株剪枝和浇水,提高农作物的产量和质量。
四、服务领域柔性机器人技术在服务领域也有广泛的应用。
例如,柔性机器人可以用于餐饮业,自动化地制作食物或服务顾客。
另外,柔性机器人还可以用于个人护理、家庭助理等服务场景,提供更加智能和高效的服务。
柔性机器人具备与人类进行良好互动的能力,能够更好地融入人们的生活。
未来柔性机器人技术的发展方向:1. 感知能力的提升:柔性机器人需要通过丰富的传感器系统来感知环境,提高对复杂环境的适应能力,例如通过视觉、触觉和听觉等感知技术,实现更加精准的操作和判断。
2. 学习能力和智能化:柔性机器人需要具备学习和适应能力,能够通过数据分析和机器学习等技术不断优化自身的行为和决策,实现更加智能化和灵活的应用。
3. 构造材料和传动机制的改进:柔性机器人需要采用柔性的构造材料和高效的传动机制,以实现更好的灵活性和自由度,从而适应各种复杂环境和工作任务。
并联机器人原理1. 引言随着科技的不断发展,机器人在各个领域中的应用越来越广泛。
并联机器人作为机器人领域的一个重要分支,在工业自动化、医疗手术、航天等领域中发挥着重要作用。
本文将介绍并联机器人的原理、结构和应用,并从机构设计、运动学分析、动力学模型等方面进行深入探讨。
2. 并联机器人的定义和分类并联机器人是指由两个以上的机器人并联组成的机器人系统。
根据其结构和运动特点的不同,可以将并联机器人分为平台式并联机器人、串联式并联机器人和混联式并联机器人。
2.1 平台式并联机器人平台式并联机器人由一个移动平台和多个执行器组成,执行器通过机械连接装置连接到移动平台和工作台之间。
它具有高精度、高刚度和高灵活性的特点,在精密加工、装配和仿真等应用中得到广泛应用。
2.2 串联式并联机器人串联式并联机器人由多个运动杆件组成,杆件通过运动副连接在一起,形成一个连续链式结构。
串联式并联机器人通过杆件之间的相对运动实现工作台的运动,具有较大的工作空间和自由度,适用于需要较大工作范围和高精度运动的应用。
2.3 混联式并联机器人混联式并联机器人是平台式和串联式并联机器人的结合,既可以实现平台式并联机器人的高刚度和高精度,又能够实现串联式并联机器人的大工作空间和自由度。
混联式并联机器人在飞行器研究、空间站维修等领域具有广泛应用。
3. 并联机器人的机构设计并联机器人的机构设计是实现其运动特性的关键。
机构设计主要包括支撑结构、传动机构和执行机构。
3.1 支撑结构支撑结构是并联机器人的基础,负责支撑整个机器人系统的重量和载荷。
支撑结构应具有足够的刚度和稳定性,以保证机器人在工作过程中的精度和稳定性。
3.2 传动机构传动机构是实现并联机器人运动的关键组成部分,可以通过齿轮传动、皮带传动、链传动等方式实现。
传动机构应具有较高的传动精度和可靠性,以保证机器人的运动精度和稳定性。
3.3 执行机构执行机构是并联机器人的动力来源,可以是液压驱动、电动驱动或气动驱动等。
并联机构及机器人并联机构(Parallel Mechanism,简称PM),定义为动平台和定平台通过至少两个独立的运动链相连接,机构具有两个或两个以上自由度,且以并联方式驱动的一种闭环机构。
特点是所有分支机构可以同时接受驱动器输入,然后共同决定输出。
1931年,Gwinnett在其专利中提出了一种基于球面并联机构的娱乐装置(图1);1940年,Pollard在其专利中提出了一种空间工业并联机构,用于汽车的喷漆(图2);之后,Gough 在1962年发明了一种基于并联机构的六自由度轮胎检测装置(图3);三年后,Stewart首次对Gough发明的这种机构进行了机构学意义上的研究,并将其推广应用为飞行模拟器的运动产生装置,这种机构也是目前应用最广的并联机构,被称为Gough-Stewart机构或Stewart 机构。
并联机构的特点:(1)与串联机构相比刚度大,结构稳定;(2)承载能力大;(3)微动精度高;(4)运动负荷小;(5)在位置求解上,串联机构正解容易,但反解十分困难,而并联机构正解困难反解却非常容易。
从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构。
另可按并联机构的自由度数分类:(1 )2 自由度并联机构。
(2 )3 自由度并联机构。
(3 )4 自由度并联机构。
(4 )5 自由度并联机构。
(5 )6 自由度并联机构。
2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。
平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。
3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai并联机构,空间3自由度并联机构,如典型的3-RPS机构、属于欠秩机构。
文章编号 2 2 2并联机器人研究的进展与现状Ξ陈学生陈在礼孔民秀哈尔滨工业大学机械电子工程教研室哈尔滨摘要 并联机器人是一类全新的机器人 它具有刚度大!承载能力强!误差小!精度高!自重负荷比小!动力性能好!控制容易等一系列优点 在 世纪将有广阔的发展前景∀本文根据掌握的大量并联机器人文献 对其在运动学!动力学!机构性能分析等方面的主要研究成果!进展以及尚未解决的问题进行了阐述∀关键词 并联机器人 运动学 动力学中图分类号 ×° 文献标识码ΡΕΧΕΝΤΔΕςΕΛΟΠΜΕΝΤΑΝΔΧΥΡΡΕΝΤΣΤΑΤΥΣΟΦΣΤΕΩΑΡΤΠΛΑΤΦΟΡΜΡΕΣΕΑΡΧΗ≤ ∞ ÷∏ 2 ≤ ∞ 2 2¬ ∏ΜεχηανισμΕλεχτρονιχΕνγινεερινγσπεχιαλτψ ΗαρβινΙνστιτυτεοφΤεχηνολογψΑβστραχτ × √ ∏ ∏ ≥ • ∏ ∏ ∏Κεψωορδσ1引言 Ιντροδυχτιον并联机器人是一类全新的机器人 它具有刚度大!承载能力强!误差小!精度高!自重负荷比小!动力性能好!控制容易等一系列优点 与目前广泛应用的串联机器人在应用上构成互补关系 因而扩大了整个机器人的应用领域∀并联机器人可以作为航天上的飞船对接器!航海上的潜艇救援对接器 工业上可以作为大件的装配机器人!精密操作的微动器∀近年来还研究将它用作虚拟 轴加工中心 以及毫米级的微型机器人等 可以预见这类机器人在 世纪将有广阔的发展前景∀它的复杂的机构学问题属于空间多自由度多环并联机构学理论这一新分支 这项理论是随着并联机器人研究而发展起来的 他不仅直接针对并联机器人 对于随机器人高技术发展起来的多机器人协调!多足步行机!多指多关节高灵活手爪等构成的并联多环机构学问题 都具有十分重要的指导意义∀最早在 年≥ 提出利用 自由度并联机构作为飞行模拟器用于训练飞行员≈ ∀从结构上看 他使用 根支杆将上下两平台连接而成 根支杆都可以独立的自由伸缩 分别用球铰和虎克铰与上下平台连接 这样上下平台就可以进行 个独立运动 具有六个自由度 称为≥ 平台 图 是典型的 2 的≥ 平台机构∀ 年澳大利亚著名机构学教授 ∏ 提出 可以应用 自由度的≥ 2 平台机构作为机器人机构≈ ∀到 年代中期 国际上研究并联机器人的人还寥寥无几 仅有 ⁄ 2 !∞ !ƒ !≠ ! !⁄∏ !× 等数人 出的成果也不多∀到 年代末特别是 年代以来 并联机器人才被广为注意 并成了新的热点 许多大型会议均设多个专题讨论 国际上的著名学者有• 2 ! ! !ƒ ! ! !≥∏ 2 ! ! ∏ 等∀仅 年就有 多篇这方面的文章发表∀本文将根据掌握的大量并联机器人文献 对其在运动学!动力学!机构性能分析等方面的主要研究成果!进展进行阐述 并以此来确定并联机第 卷第 期 年 月机器人ΡΟΒΟΤ∂≥Ξ收稿日期器人的研究趋势和这一领域尚未解决的问题∀图 典型的 2≥°≥并联机构ƒ × 2≥°≥2 运动学 Κινεματιχσ运动学研究内容包括位置正解!逆解∀速度!加速度分析两部分内容∀位置正解就是给定 根杆长 确定平台的位姿∀位置逆解就是给定平台的位姿 确定 根杆长∀与串联机器人相反 并联机器人位置逆解比较容易 而正解非常复杂∀在上下平台带有 和个不同连接点的特定的结构被指定为 ∗ 型≥ 平台机构 最简单的就是 2 型 八面体结构 而一般的就是 2 型≥平台机构∀2 1 位置正解世纪 年代后期到 年代中期 位置正解在≥ 平台机构研究领域处于核心的位置∀机构学研究者一开始就从数值解法和解析解法两个方向展开大量的研究 并取得了一系列进展∀2 1 1 位置正解的数值解法数值解法数学模型简单 可以求解任何并联机构 但是不能求得机构的所有位置解∀学者们使用了多种降维搜索算法 来获得位置正解∀他们通过几何的和算法的手段 把问题简化成为 个方程组的求解 通过 维搜索得到了全部的实数解≈ ∗ ∀ 2和°2≤ ≈也提出了找到所有实数解的一维搜索算法∀这一算法是通过一条假想的可变长度的连杆临时取代普通 2 平台机构的一条连杆把它变成 2 平台机构 通过文献≈ 的特殊方法求解修改后的结构并在加上最初移走的连杆的约束 从而求得全部的实数解∀⁄ ∏ 和∏ ∏ 提出了预测∗校正算法 这一方法使用一有效的 维搜索法从纯几何角度考虑捕捉实数解≈ ∀数值算法中牛顿2辛普森法是一类计算效率较高的算法∀ 改进的牛顿2辛普森法 在主频 兆赫的 ⁄÷处理器上运行一次正解迭代需 2毫秒≈ ∀ ∏ ∏的经典牛顿2辛普森法在主频 兆赫的° ∏ 计算机上计算 自由度并联机构位置正解 次迭代大约要 毫秒∀他指出对于 自由度的≥ 平台机构 计算时间大约会是 倍 即 毫秒≈ ∀ 的经典牛顿2辛普森法 在≥ 2 工作站上计算正解 经次迭代 大约需 毫秒≈ ∀以上所有的数值方法仅在寻找实数解是有用的对应于实际的结构 不能用于预测所有解的个数∀为了获得所有的解必须在复数域内确定方程的解∀√ 提出了实现这一目标的最成功的数值解法 他以多边形系统形式给出了公式表达式 通过的方法来求解≈∀在复数域内找到了个解 他得出结论是一般情况的解个数上限是 后来这个结论由下面讨论的分析方法证实了∀年代 国内学者们也进行了大量的研究∀燕山大学的黄真等对 2≥°≥机构通过部分输入转换的方法 将该机构的位置正解问题由六维降为三维 经巧妙的数学处理 直接得出了速度!加速度反解表达式 从而简化了机构的运动分析≈ ∀西南交大陈永等提出了一种基于同伦函数的新迭代法 不需选取初值并可求出全部解≈ ∀该方法用于求解一般的 2≥°≥并联机构的位置正解 较方便的求出了全部 组解∀华中理工的李维嘉采用虚拟连杆 将难于求正解!甚至无法求正解的机构简化成与之相近的!易于求正解的的 2 结构形式 把得出的 2 型的正解 作为求这类机构正解的初始值 通过极少次迭代 得出了其正解的全部精确值≈ ∀工程兵工程学院刘安心等研究了上下平台均不为平面的最一般 2≥°≥并联机构位置正解∀他建立了含六个变量的位置正解方程组 利用四元齐次化法 跟踪 条同伦路径 求出了全部 组位置正解≈ ∀国内研究关于计算时间还没有文献提到∀2 1 2 位置正解的解析解法解析解法能够求得全部的解 输入输出的误差效应可以定量地表示出来 并可以避免奇异问题 在理论和应用上都有重要的意义∀国内外学者求解正解的解析解 都是采用从特殊构型到一般构型的思路进行的∀求解特殊构型是从上!下平台的铰链点至少有一个少于 的较简单的特殊构型开始的∀国外学者求解大致有三种方法∀第一种是基于球面 杆机构第 卷第 期陈学生等 并联机器人研究的进展与现状输入输出方程进行的∀最初用来求解 2 型并联机构位置正解 后来又拓展到更复杂的情况 如 2 2 2 等≈ ∗ ∀第二种方法是 先去掉上平台 然后确定支杆与上平台结合点的轨迹 最后使用上平台的形状作为约束条件 推导出正解方程并进一步化简≈ ∗ ∀第三种方法与第二种略有不同 是将整个结构的一个分支转化为等价的串联机构 再加上其余分支对其关节角度的约束来获得方程≈ ∗ ∀应用这些特殊的方法 求出了从最简单的 2 到复杂一些的 2 ! 2 等机构的封闭形式位置正解∀最复杂的情况最多有 组解∀还有一些学者研究发现 当上平台或下平台各自的铰链点具有共线性以及上下平台铰链点构成的多边形具有部分相似性时 正解求解也相对容易些 并给出了相应的正解解析解≈ ∗ ∀ƒ ∏ 和 在前人分析结果和结论的基础上 按照不同的结合方式 详细化分了≥ 平台机构的所有 ∗ 型 根据带有最大可能解的数目 列举了相应的 种结构类型≈ ∀国内正解解析解研究主要是北京邮电大学机械学研究所进行的∀ 年代末 研究人员开始了并联机器人机构位移分析的工作∀他们从简单!特殊的并联机构开始 首次获得 2×°≥! 2 ≥°≥台体机构位置正解∀随后又分别获得 2 型! 2 型机构! 2 台体机构! 2 型机构和 2 型! 2 型机构位置正解 并验证了机构解的数目≈ ∀ 年末 文福安!李静宜和梁崇高在借鉴前人经验的基础上 用坐标点描述机构平台在空间的位姿 用基本距离和相对位置系数描述机构的结构参数 利用计算机代数系统 ∞2⁄ ≤∞! ∏ × 和 作为有力工具 终于推导出了一般 2 平台机构的一元高次的输出方程≈ ∀在解决并联机器人机构位移分析这一重要课题上 中国人走在了世界的前列∀此外 北京工业大学的饶青等利用机构的几何等同性原理建立正解的基本方程 最后推导出了一个 阶的一元位移输入输出方程 从而得到了封闭正解≈ ∀研究者们的结果都得出正解最多有 组解 但是到目前为止 还没有发现具有 组实数解的并联机构∀≥ 和° 研究的 2≥≥耦合器曲线与≥ 平台机构装配模式的一致性可能是很有希望的出发点≈ ∀2 1 3位置正解的其他解法在线控制要求 首先在所有可能解中 一个满足实际情况的解能明确确定 然后求解的速度要足够快∀为满足这两方面的要求 学者们一方面利用附加传感器来解决解的不确定问题 另一方面采用解耦和线性化方法加快计算速度≈ ∗ ∀还有一些学者 如 和 等探索了神经网络方法 来求≥ 平台机器人的位置正解≈ ∀神经网络通过利用逆解结果训练学习 实现从关节变量空间到机器人工作空间的复杂非线性映射关系 避免了求解位置正解时公式推导和编程计算等繁杂的过程 故求解计算简单∀加之神经网络计算有并行特点 使得利用∂ ≥ 技术制造ƒ °求解器成为可能 从而可以达到更高的求解速度 从根本上解决ƒ °的实时求解 因此是一种很有前途的方法∀但多解性问题 奇异性还没有解决 有待进一步研究∀2 2速度和加速度分析速度和加速度分析 最早是在ƒ 和 的文献中见到≈ ∀他们研究发现≥ 平台机构力的正变换是直接的线性映射关系 可以用 ≅ 矩阵 表示∀其实就是传统意义的雅可比矩阵∀ƒ 通过 的线性变换 导出了逆速度运动学公式 通过 的转置获得了正向运动速度运动学∀加速度运动学也可以类似的处理得到∀由于速度运动学能直接用于微分运动 和 已经将它用于关节的精度分析≈ ∀燕山大学黄真教授利用影响系数法对并联机构的速度加速度进行了分析≈ ∀机构的一阶影响系数就是传统意义的雅可比矩阵∀影响系数法能够以简单的显式表达式表示机构的速度!加速度!误差和受力等 另外还可以从分析影响系数矩阵入手 深入分析机构的一些性能 如奇异性!驱动空间与工作空间的映射!灵活度!各向同性及可操作度等∀而影响系数矩阵本身计算比简单 因此影响系数法是一种较好的机构分析方法∀3动力学与控制 Δψναμιχσανδχοντρολ 与大量的运动学文献相比 关于动力学的文献相对要少得多∀早期进行动力学的讨论是ƒ 和 在忽略连杆的惯性和关节的摩擦后 得出了≥ 机器人的动力学方程≈ ∀≥∏ 通过分析关节约束反力的方法分析了≥ 机器人的逆动力学方程 但是文献中缺乏动力学条件的详细推导≈ ∀⁄ 和≠ 通过 2∞∏ 法 在假定关节无摩擦 各支杆为不对称的细杆 即重心在轴上且饶轴向的转动惯量可以忽略 条件下 完成了≥ 2 机器人的逆动力学分析≈ ∀ 和 ∏在简化机器人 年 月了机构的几何和惯性分布后 推导出了机器人的 2 方程≈ ∗ ∀ 分析了≥ 机器人腿的惯性对动力性能影响≈ ∀对于具有一般结构和惯量分布的≥ 机器人 ⁄ ∏ 和 ∏ ∏ 推导出了完整的逆动力学方程 并利用 2∞∏2 法建立了一个高效的算法 能够很好的应用于并联机器人的动力学计算≈ ∀他们运用此法 得出了 2 °≥和 2°≥≥型≥ 机器人封闭的动力学方程≈ ∀ 指出由于机构结构的并联特点 并行计算方案可以很好的应用到并联机构的计算问题中去≈ ∀任务空间的动力学公式利用 2∞∏ 法 将能够很好的用于一般的并联机器人 也可以用于其他类型的并联机器人∀≥ 平台机器人的控制也很少有文献报道 几乎是尚未解决的领域∀现有的试验样机也都是把各个自由度当成完全独立的系统 采用传统的° ⁄控制 控制效果不够理想∀为使并联机器人能进入实际应用阶段 对其控制理论!控制系统与技术还需做进一步深入的研究∀即截至目前 关于并联机器人的动力学和控制研究还没有完全开展起来∀尽管机器人完整的动力学公式已经有了 但关于他的动力特性的结论很少∀现在也还没有研究出能够充分利用并联结构特点的控制策略∀4机构性能分析 Μεχηανισμπερφορμανχεσαναλψσισ4 1奇异形位分析当机器人机构处于某些特定的形位时 其雅可比矩阵成为奇异阵 行列式为零 这时机构的速度反解不存在 机构的这种形位就称为奇异形位∀当并联机构处于奇异形位时 其操作平台具有多余的自由度 机构将失去控制 因此在设计和应用并联机器人时应避开奇异形位∀实际上 机器人不但应该避开奇异形位 而且也应该避免在奇异形位附近的区域 因为当机器人工作在奇异形位附近时 其运动传递性能也很差∀因此奇异形位分析对机器人的应用具有重要意义∀机构的奇异形位可以通过分析机构的雅可比矩阵行列式等于零的条件求的 ƒ 和曲义远等发现≥ 平台机构的奇异形位是上平台相对下平台转过 度的位置≈ ∀ 等通过机构的速度约束方程 把并联机构的奇异形位分为边界奇异!局部奇异和结构奇异三种形式≈ ∗ ∀另一种有效的方法是 线几何法 它通过线丛和线汇的特性来判别机构的奇异形位 直观且能找出所有的奇异形位≈ ∀要完整的描述奇异形位的特征 就必须在≥ 2 机器人六维的任务空间中 参数化的表示出整个奇异超曲面∀只有这样才有可能描述出由奇异超曲面分割的工作空间各区域的边界 进而描绘出奇异点在工作空间中限制机构可控性的程度∀但这样的描述非常困难 目前还没有文献发表∀在应用中的实际问题是如何在执行任务时规划出路径避开奇异区域∀更普遍的是在两位置点中间规划出能够避开奇异区域的路径∀ 等通过在奇异区域附近重新构造一预先规划的路径 从而避开了≥ 平台的奇异点≈ ∀⁄ ∏ 和 ∏ ∏ 用公式表述了≥ 平台机构的无奇异点的路径规划问题 提出了在工作空间中规划理想路径的策略≈ ∀然而判断符合其策略的理想路径的存在性问题还没有严格的准则可用∀奇异形位的影响及避免问题 其它并联机器人与≥ 平台机器人在概念上是相似的∀4 2误差分析和补偿机器人的操作精度是衡量机器人工作质量优劣的主要指标之一∀并联机构的实际位姿与指令位姿间的偏差 称为并联机构的位姿误差∀由于并联机构属于空间并联闭链机构 误差分析相当困难 尚需探讨的问题还比较多 实际应用的理论和方法就更少了∀关于并联机器人误差分析的文献也相当有限∀佛罗里达大西洋大学的机器人中心的 ∏ ! 和• 等进行了一些研究∀ 年 • 和 分析了加工误差!安装误差和连杆偏置对机器人精度的影响 并提出采用参数识别 进行误差补偿≈ ∀ 年 ∏ 利用附加传感器 实现了并联机器人的自校准系统≈ ∀国内 东北大学的邹豪!王启义等从并联机构与串联机构的运动学等效出发 提出了并联机构位姿误差放大因子分析法≈ ∀位姿误差因子能对误差定量分析 可用于机构参数优化和结构精度分析∀燕山大学的黄真和杨建中利用影响系数法分析了机构的误差 并开发出了并联式机器人误差补偿器≈ ∀这个补偿器的原理是 等于 年提出的∀4 3工作空间及灵活度分析工作空间是并联机器人的工作区域 是衡量机器人性能的重要指标 根据操作器工作时的位姿特点 工作空间可分为可达工作空间和灵活工作空间≈ ∀可达工作空间是指操作器上某一参考点可以到达的所有点的集合 他不考虑操作器的位姿∀灵第 卷第 期陈学生等 并联机器人研究的进展与现状活工作空间是指操作器上某一参考点可以从任何方向到达的点的集合∀并联机器人工作空间的解析求解是一个非常复杂的问题 它在很大程度上依赖于机构位置解的研究成果 至今仍没有完善的方法 这一方面的文献也有限∀对于比较简单的平面并联机器人工作空间可以解析表达≈ ∗ 而对于空间并联机器人 目前还只有数值解法≈ ∀ƒ 采用固定 个位姿参数中的 个姿态参数和一个位置参数 而让其他两个变换研究了 自由度并联机器人的工作空间≈ ∀ 则利用圆弧相交的方法来确定 自由度并联机器人的定姿态工作空间 并给出了工作空间的 维表示 此法以求工作空间的边界为目的 效率较高 且可以直接计算工作空间的体积≈ ∀ 等同时考虑到各关节转角的约束!各杆长的约束和机构各构件的干涉来确定并联机器人的工作空间 且采用数值积分的方法计算工作空间的体积 比较接近实际≈ ∀除了找到工作空间 一个实际的应用问题是确认工作空间对任务轨迹的包容性问题∀对此 在定姿态直线运动和位置随姿态角线性变化的直线运动两种情况下进行了阐述 它的方法对前者是精确的 对于后者则是近似处理的≈ ∀当机器人机构接近奇异形位时 其雅可比矩阵将成为病态矩阵 此时雅可比矩阵的逆矩阵精度降低 从而使得机构的输入与输出运动之间的传递关系失真 衡量这种失真程度的指标就是灵巧度∀≥ 2 ∏ 等提出了采用雅可比矩阵的条件数来作为机器人的灵巧度≈ ∀它是大于或等于 的实数∀当条件数等于 时 机构处于最佳的运动传递性能 称机构的这一形位为运动学各向同性∀当雅可比矩阵的条件数是无穷大时 机构处于奇异位形∀≠ 则将雅可比矩阵与其转置的乘积的行列式的值定义为机器人的可操作度 用来衡量操作器的灵巧性≈ ∀当机构处于非奇异形位时 可操作度就是雅科比矩阵的行列式的值 当机构处于奇异形位时 可操作度为 ∀实绞上由于矩阵行列式的值并不能代表矩阵求逆的精度和稳定性 用可操作度衡量机构的灵巧性有一定的缺陷∀矩阵的条件数定量的表示矩阵求逆的精度和稳定性 因此用矩阵条件数来表示机器人的灵巧性比较合理≈ ∀≥ 平台机器人工作空间和灵巧度分析的主要难点在机器人位置和姿态具有强烈的耦合性∀在六维空间完整的描述工作空间的边界仅仅只是可能的 因为六维空间很难建立 更难实际应用于设计∀实际应用中 以下几个问题更具有实际意义 给定姿态参数 或者在三维空间给定姿态角的范围 机器人的位置工作空间 是什么给定位置参数 或者在三维空间给定位置参数的范围 机器人的定向能力 是什么给定一条轨迹 它是否都在工作空间之内 此问题与奇异性分析相联系更好 因为实际上工作空间被奇异超曲面分成了几个部分 无法完全使用∀这是关于工作空间的三个极富挑战性的分析问题 相应的工作空间综合问题就是 确定≥ 平台机器人的运动学几何结构 使得在给定的三维区域内 机器人非奇异的工作空间部分具有给定的边界 同时具有给定的定向能力∀这是关于≥ 机器人的困难而又吸引人的设计题目 必将吸引研究者们向着优化设计的方向努力探索∀ 在这方面已经提出了一种值得称道的方法 他在做出一些简化假设后 把这一问题分成两步解决≈ ∀首先在参数空间确定出满足工作空间要求的可行域 然后在可行域中利用数值方法搜索最优解∀她已经将这一方法应用到机器人工作空间的综合问题上了≈ ∀该机器人所需的工作空间是由一系列的空间点和线段给定的∀这一方法如果可以推广 将可望实现≥ 2 机器人真正的工作空间优化综合∀5一些尚未解决的问题 Σομεοπενπροβλεμσ 纵观并联机器人的文献 可以清楚地看到 对于运动学静力学已经作了大量的工作 研究的比较清楚了 对动力学和控制研究的较少 对于奇异形位!工作空间和灵巧度分析 许多问题已经有了不完整的答案 对于系统性的设计并联机器人也少有研究 这方面的研究对于发挥并联机器人的潜在能力至关重要∀以下是并联机器人研究领域一些尚未解决的问题∀他们也很可能在近期引起人们的研究兴趣∀在动力学与控制方面探索特殊的控制策略 使其能够充分利用机构的并联特性 提高性能推导出并联机器人系统关于能控性与能观性的理论结果探索力冗余度≥ 平台机器人的冗余度解决方案∀机器人 年 月在工作空间和奇异性方面提出一种详尽而又易于使用的工作空间的描述方法建立各种奇异性特征的完整描述研究各种奇异性对工作空间的分割情况≥ 平台机器人的工作空间综合给定末端位姿 非奇异路径存在性判定准则的建立在设计方面基于良性工作空间 2 的≥ 机器人的运动学优化综合 开发力冗余度并联机器人 并研究其特性比较冗余度与非冗余度并联机器人的性能优劣 分析冗余度代价 ∏ ∀6结论 Χονχλυσιον并联机器人作为一种全新的机器人 它具有刚度大!承载能力强!误差小!精度高!自重负荷比小!动力性能好!控制容易等一系列优点 与目前广泛应用的串联机器人在应用上构成互补关系 这类机器人在 世纪将有广阔的发展前景∀本文根据掌握的大量并联机器人文献 对其在运动学!动力学!机构性能分析等方面的主要研究成果!进展以及尚未解决的问题进行了阐述∀参考文献 Ρεφερενχεσ≈ ≥ ⁄ ¬ ° ∞ ° 180≈ ∏ ≤ ° ¬≈ ≤ ° 2≤ ∂ ≈ ≤ ° 2≤ ∂ ° ∞∞∞ ≤ 2√ °≈ 2 ∏ ∂ ∞ ° ≥ × 2 ⁄ 2≈ ≤ ° 2≤ ∂ × ≥ ∞ ⁄≈ ≤ ° 2≤ ∂ × ≥ ∞ ⁄≈ ⁄ ∏ ∏ ∏ ×≥ × 31≈ ° ⁄ • ∏ ∏ ≥ ≥ 13≈ ∏ ∏ ×∏ ≥ √ 2 ∏ ≥13≈ ° ° ∏ ∏ ∏2° ≤ √≈ √ × ≥ ∞ ⁄≈ ≥ √ ° ≥ ∏ ≤ ∏ ∞ ≥ ° ° 2 ∞ ≤≈ 黄真 孔宪文 2≥°≥并联机器人机构运动分析 东北重型机械学院学报 16≈ 陈永 严静 同伦迭代法及应用于一般 2≥°≥并联机器人机构正位置问题 机械科学与技术 16≈ 李维嘉 六自由度并联运动机构正向解的研究 华中理工大学学报 25≈ 刘安心 杨廷力 求一般 2≥°≥并联机器人机构的全部位置正解 机械科学与技术 15≈ ⁄∏ ≥ 6≈ • ⁄∏ × ≥ ∞ ⁄ 114≈ • ≤ ≤⁄ ⁄∏ × ≥ ∞ ⁄ 116≈ ≤ ° 2≤ ∂ × 25≈ ∏ ° • ∏ ∂ ∞∞∞× ∏26≈ ∏ ∂ • × ≥ ∞ ⁄ 114≈ ° 11≈ ≤ ÷ ≥ ≥ × ≥ ∞ ⁄ 116≈ ± ≥ √ ⁄ ∞ ≥•∞ ° ∞ 2 209 ° ≤≈ ≤ × ≥ ∞ ⁄ 117≈ ≤ ° 2≤ ∂ ≤ ≥ 2 ƒ× ≥ 2 ∏ × ° ∏ 2≈ ≤ ° 2≤ ∂ × ≥ ∞ ⁄ 115≈ ≤ ° 2≤ ∂ × 28≈ ∏ • × ≥ ∞ ⁄ 116≈ • × 29≈ ≤2 ≥ ≥ ° ∞∞∞ ≤ ∏≈ ∏ • ≥ ≥ 2 ≥ ∞2≈ ≠ ° ≤ × 29≈ ≥ √ ≥∂ • ∏ ° ×29≈ ƒ ∏ e ≤ ⁄ × 30≈ 文福安 梁崇高 廖启征 并联机器人机构位置正解 中国机械工程 10≈ 文福安 李静宜 梁崇高 一般 2 型平台并联机器人机构位置正第 卷第 期陈学生等 并联机器人研究的进展与现状。
并联机器人方案一、并联机器人用途:并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。
可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。
二、系统特点:1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快;2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验;3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。
三、系统配置:1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。
附属件配置有钻铣刀头、用电主轴及冷却系统、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。
2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。
3、用电主轴冷却装置(入水管、出水管及水泵)。
4、绘图装置(绘图笔架及绘图笔)。
5、并联机器人加工平台及工件夹持装置。
6、部分加工演示原材料(石蜡、尼龙等)。
六自由度桌面型并联机器人1.并联机器人系统图片2.并联机器人技术参数3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:115000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:135000.00元并联机器人实验指导书提纲1.概述(并联机器人整体认识)△并联机器人概念及其发展历史;△并联机器人与传统串联机器人的比较(优缺点);△并联机器人在现实中的应用。
2.并联机器人机构认识△典型并联机器人的驱动、组成、结构形式及其特点;△并联器机器人机械系统介绍(图文介绍);△电控系统介绍(图文介绍);△工作空间描述。
3.并联机器人运动学基础,△了解并联机器人运动学坐标系的建立方法(坐标变换);△运动学逆解方程的建立以及逆运动学分析的计算过程(反解推导过程与结果)。
第一章 绪论 1.1 论文的研究背景及意义 随着科学技术的发展以及人们对视频画面质量的要求不断提高,在进行电视转播时,经常需要摄影设备对空中全景进行拍摄,借助于摇臂摄像机、曲臂升降车和直升机航拍设备来完成上述任务是比较成熟的手段,但由于工作区域及拍摄角度等各种条件的限制,这些拍摄设备都不能很好的完成空中拍摄任务。近年来,柔索牵引摄像机机器人的出现为上述问题提供了一个非常完美的解决方法。柔索牵引摄像机器人在广场,大型演播室等三维空间内可达到无盲点旋动、悬停飞行等效果,从而为观众提供一场非同一般的视觉盛宴。 早在1983年就有学者提出柔索牵引摄像机器人的设计思想,不过受限于多根柔索间的协调运动控制与平台振动等方面的技术难题,柔索牵引摄像机器人的拍摄效果一直无法达到理想的要求,经过研究人员和相关领域学者的不断摸索与努力,直到最近几年这种摄像机器人才得到了广泛的应用[1-2]。即使到现在,也很少见到关于摄像机器人机动性指标的最大速度、最大加速度、上升时间、运动变向响应时间等,以及关于稳定性指标的最大振幅、振动频率、调整时间等的深入研究报道,而仅仅是停留在最大运行速度为9m/s的运动性能的定量认识上[3-4],而这种运行速度相对于在两条平行空中索道上滑行的二维索道摄像机人的最大速度36m/s而言还是非常小的,基于此,如果能够更好的协调摄像机器人牵引索间的运动控制,提高驱动电机的转动精度以及减小其响应时间,柔索牵引摄像机器人的最大速度也还有提高的潜力。 目前该种柔牵引机构搭载摄像机系统有着广泛的应用前景,由于其自身的运动特性所带来的特殊视角能给观众带来前所未有的视觉体验,所以包括北京奥运会、南非世界杯、广州亚运会以及央视春晚等大型赛事的实况转播和综艺广播电视节目的录制都采用了该种产品类型的设备。但是国内还未掌握其核心技术,一些大型运动会及综艺转播节目的主办方若需要用到此技术。除了租用了国外的设备包括专业人员外并无他法,但是其价格高昂,不但增加了运营成本,而且在沟通协调方面也有诸多不便。所以我国自己的柔索牵引摄像机器人的早日出现将为央视、地方电视台以及影视设备公司等带来前所未有的惊喜。 1.2 柔索牵引并联机器人的简介及发展概况 1.2.1 柔索牵引并联机器人的简介 由于传统串联机器人具有机械效率低,末端操作精度低等劣势,在20世纪中后期,并联机构的概念慢慢地被相关学者提出[5],由于并联机器人在刚度、精度、负载及结构等方面具有众多的优势,使得其在大物件装配、模拟运动、空间的对接和加工制造等领域得到了非常广泛的应用,但这仅仅是实现了并联连杆机器人的设计。虽然并联连杆机器相对于串联机器人在工作能力上已有很大的进步,但是工作空间小是并联连杆机器人最突出的缺点。 为了解决上述缺点,柔索替代刚性连杆的概念被研究人员提出,这一概念便很快的被应用于柔索牵引并联机器人设计与制造中。作为并联机器人的一个重要分支,柔索牵引并联机器人的显著特点是用柔索代替连杆作为它的驱动元件,这也可以认为柔索并联机器人是由柔索驱动与并联机器人组合而成。柔索牵引并联机器人是一种新型的机器人,在柔索牵引摄像机器人、风洞支撑系统,大射电望远镜等方面应用前景广泛。柔索牵引机器人的设计中采用了铰链转角并结合柔索的伸缩范围,使得机器人具有较大的工作空间;由于柔索的质量轻,运动惯量小,所以柔索并联机器人在负载能力方面也有很大的提高;柔索牵引并联机器人大大地缩减了运动部件的惯量,这使得柔索牵引并联机器人的速度和加速度可以大幅度的提高,这种优势将会在高速运动的场合显现得非常突出[6-7]。
1.2.2 柔索牵引并联机器人的发展概况 早在20世纪80年代初,美国麻省理工学院的学者Landsberger[8]在海洋作业等方面进行了大量的研究并取得了一定的研究成果,在总结经验的过程中提出了柔索牵引并联机器人的设计思想;到了20世纪80年代末Dagalakis等[9]人经过多年的努力,最终研制出了名为ROBOCRANE的索牵引并联机构,但这种并联机构的设计中仍然带有串联子系统,随后基于研究成果及设计经验,他们提出了一种用于起重机的索牵引并联机器人的设计方法。20世纪80年代出在芝加哥举行的机床展览会上,来自美国的Giddings & Lewis公司和Ingersoll公司分别研制出了并联机器人的六足型机床 [10-11],这一研制成果在很大程度上推动了并联机器人的发展并由此引发了并联机器人在制造业领域的广泛研究。 在国内,许多科研院所及相关研究机构也开始了柔索牵引并联机器人的研究,并取得了大量的研究成果。作为中国科学院国家天文台FAST工程总工程师兼首席科学家的南仁东研究员,经过多年的理论研究和实践经验总结,提出将贵州喀斯特洼地作为望远镜台址,建设巨型球面望远镜作为国际SKA的单元,即 500米大口径球面射电望远镜(FAST)项目[12]。国家天文台的李辉、朱文白研究员对天线馈源柔索支撑机构进行了进一步的研究[13]。清华大学的任革学教授等人经过长期的理论研究和科研实践,研制出了一种通过柔索牵引并实现空间自由移动的馈源小车,馈源姿态的调整主要是通过安装在小车上的两轴转动系统完成的[14]。西安电子科技大学段宝岩院士和仇原鹰教授等[15-16]对并联机构进行了大量的理论研究并提出了一种馈源指向跟踪运动的设计方案,这种设计方案中采用了6根大跨度并联柔索牵引馈源舱运动,并建立了该设计方案的50m射电望远镜模型(图 1.1)。华侨大学的郑亚青博士在并联机构方面也做了大量的研究工作,并且取得了丰硕的研究成果,为后续学者的研究提供了充实的参考素材 [17-18],同时厦门大学的林麒教授、刘雄伟教授以及郑亚青博士也通过长期合作,
在柔索牵引并联机器人的研究方面取得了大量成果,并研制出了一种用于进行飞行器风洞实验的模型,该模型由8根索牵引来完成6自由度的运动[19](图 1.2)。中国科学院自动化所的李成栋通过大量的摸索实践,研制出了一种通过4根柔索驱动的自调平起重设备[20],这种期中设备是通过调节柔索的长度使负载在起吊过程中保持水平。哈尔滨工程大学的张立勋教授提出了一种柔索牵引并联机器人的设计思想,这种机器人主要用于病人的骨盆康复训练的中[21]。
图1.1 50m射电望远镜模型 图1.2 柔索牵引风洞飞行器模型 在国外,有影响的柔索牵引摄像机器人有德国的Spidercam(图1.3)与美国的Skycam[22](图1.4)。Spidercam公司研发出一款具有革命性的摄像机搭载系统。该套索牵引并联机器人系统安装在四个绞盘上,系统末端的摄像机在四根柔索的牵引下可以实现空间的三维运动,以便移动到任何理想的位置。美国August Design公司研制出了一种名为SkyCam的索牵引摄像控制系统,它的最快飞行速度能够达13米/秒,而且定位迅速,几乎能够提供任何位置和角度的报道,目前这种设备主要应用于露天大型运动场等开放空间的场合中。 图1.3 Spidercam 图1.4 SkyCam 1.3 本文的研究目的及主要工作 1.3.2 本文的主要工作 基于本文研究目的,文中的具体章节及主要内容安排如下: 第一章 绪论。概述了本文的研究背景及意义,阐述了柔索牵引并联机器人研究领域的相关理论知识及发展概况,说明了论文的课题来源及其研究目的。 第二章 柔索牵引摄像机器人的总体控制方案设计。建立了柔索牵引摄像机器人的运动学模型;选择了摄像机器人的控制模式;通过对摄像机器人运动过程的具体分析及相关运动方程的推导,得到了摄像机器人运动速度的求解及规划方法;在此基础上,提出摄像机器人控制系统的总体设计方案。 第三章 柔索牵引摄像机器人控制台及执行机构设计。分析控制台的功能需求,基于控制台所要实现的功能选择合适的电器元件并设计了电路的主要模块;根据执行机构的组成和功能,概述了执行机构的控制系统,说明了执行机构的主要器件选择及其性能,对比了伺服电机的控制模式并选择出适合该系统的控制模式。 第四章 柔索牵引摄像机器人的上位机软件设计。介绍了上位机软件的开发语言和开发环境,明确了上位机软件功能,开发了上位机软件,提炼出开发过程中的关键技术;结合上位机软件,设计出适合上位机与控制台、上位机与执行机构间的通信连接模式。 第五章 柔索牵引摄像机器人控制系统的实验验证。完成了控制系统的硬件连接和软件配置;进行了控制系统实验,结合仿真软件,对得到的控制结果予以分析,验证了所设计的控制系统的合理性,总结了控制过程中出现的问题及其解决方法。 第六章 总结与展望。总结了本文的研究工作成果及论文中相关问题的解决方法,并对以后的进一步研究工作提出了展望。
第三章 柔索牵引摄像机器人的控制台及执行机构设计 3.2 控制台的设计 3.2.2 控制电路主要器件选择 (1)微处理器的选择 微处理器是控制台的核心,相当于人类的大脑,所以微处理器选择的合适与否直接决定本文所设计的控制系统能否正确完成控制任务。本文所述控制台的微处理器必须具有指令处理时间短、工作稳定、支持串行通信模式等特点,结合现在控制领域广泛应用的微处理器类型以及本文所设计的控制系统的要求,选用ARM系列的LPC 2132作为本文所述控制台的微处理器[31]。 LPC2132是32位ARM7TDMI-STM CPU微控制器,带有16kB片内静态RAM。多达47个GPIO口,1个8路10位A/D转换器,每个通道的转换时间低至2.44µs,非常适合需要多路A/D转换的场合,1个10位D/A转换器,可提供不同的模拟输出。2个32位定时器/计数器,PWM单元和看门狗。多个串行接口,包括2个16C550工业标准UART、2个高速I2C接口(400kbit/s)、SPITM和具有缓冲作用及数据长度可变功能的SSP,片外晶振频率范围:1~30MHz。内部集成实时时钟等,资源比较丰富,使它们特别适用于工业控制和医疗等嵌入式系统[32]。LPC2132芯片的内部结构如图3.2所示。