国内外聚丙烯(PP)专用产品的开发与应用
- 格式:docx
- 大小:88.21 KB
- 文档页数:48
聚丙烯(PP)的介绍聚丙烯概述聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。
聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。
聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。
而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。
聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。
PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。
然而,通过添加冲击改性剂,可以提高其抗冲击性能。
一、聚丙烯的特性(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。
成型性好,但因收缩率大,厚壁制品易凹陷。
制品表面光泽好,易于着色。
(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。
PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。
(3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
(4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
聚丙烯原材料聚丙烯(PP)是一种常见的塑料原料,广泛应用于各种领域,如包装、医疗器械、汽车零部件等。
作为一种热塑性塑料,聚丙烯具有优异的物理性能和化学性能,因此备受青睐。
本文将从聚丙烯的原材料、生产工艺以及应用领域等方面进行介绍。
聚丙烯的原材料主要是丙烯,丙烯是一种石油化工产品,是石油的裂解产物。
丙烯通过聚合反应可以得到聚丙烯。
聚丙烯的生产工艺主要包括石油的提炼、丙烯的裂解和聚合等环节。
在生产过程中,需要考虑原材料的纯度、稳定性以及生产设备的安全性和稳定性。
此外,还需要考虑生产过程中的环保和能源消耗等问题。
聚丙烯具有良好的物理性能,如硬度、耐磨性、耐高温性等,因此在包装领域得到广泛应用。
聚丙烯包装材料可以用于食品包装、医药包装、化妆品包装等,能够有效保护产品,延长产品的保质期。
此外,聚丙烯还可以用于制作各种容器、瓶盖、瓶塞等,应用十分广泛。
在医疗器械领域,聚丙烯也有重要的应用。
聚丙烯具有良好的生物相容性和耐腐蚀性,因此可以用于制作医疗器械和医疗用品。
例如,手术器械、输液瓶、输液管等都可以采用聚丙烯作为原材料,确保产品的质量和安全性。
此外,聚丙烯在汽车零部件领域也有重要的应用。
聚丙烯具有良好的耐磨性和耐高温性,因此可以用于制作汽车内饰件、车身零部件等。
例如,汽车座椅、车门内饰板、仪表盘等都可以采用聚丙烯材料,提高产品的质量和使用寿命。
总的来说,聚丙烯作为一种重要的塑料原料,具有广泛的应用前景。
随着科技的进步和工艺的改进,聚丙烯的性能和品质将得到进一步提升,为各个领域提供更优质的材料,推动产业的发展和进步。
聚丙烯酰胺的合成进展和应用摘要:聚丙烯酰胺是一种应用广泛的高分子材料,它具有耐腐蚀和抗菌性等优良性能。
本文简单地介绍了聚丙烯酰胺在国内外研究现状及其发展前景。
通过近些年对改性研究,主要集中于如何提高其表面张力、拉伸强度以及柔韧性方面进行讨论;最后针对不同配方制备得到的聚合物选择合适反应条件并合成相应单体配比作为实验对象来探讨各种因素对于产品质量与效果之间关系的影响情况及最优工艺参数以找到更多更好性能和更高效方法。
关键字:聚丙烯酰胺;合成;应用引言:聚丙烯酰胺是一种重要的有机高分子聚合物,具有很高的安全性,但也有一些限制性因素导致它不适合应用于实际生产中。
本文主要介绍了聚丙烯酰胺在国内外发展情况、目前研究热点和近几年内关于其改性研究。
其中重点阐述了不同温度下对树脂改性方法及机理进行综述;其次简单说明一下我国聚丙烯酰胺应用现状以及未来发展趋势,对我国聚丙烯酰胺的应用前景及发展趋势进行了展望[1]。
一绪论1.1 聚丙烯酰胺的发展现状随着社会的不断发展,人们对健康问题愈加重视,所以聚丙烯酰胺也就受到了越来越多的关注。
在我国很多地方都出现过此类事件。
例如:江苏、浙江等地发生了一起由苯胺引起的恶性肿瘤;山东临沂地区与日本、韩国和俄罗斯发生恶性淋巴细胞扩散疾病;广东茂名市与美国接壤云南昆明火车站附近北京路癌基因库被杀死后伤及无辜儿童死亡等等,这些事情都是由于聚丙烯酰胺引发而产生的“毒瘤”问题,这些事件的发生都是由于聚丙烯酰胺引起,而不是由其引发。
所以,聚丙二烯酸盐是解决当前癌症、高血脂和心血管疾病等病理性肿瘤问题的重要途径之一。
1.1.1 本文的研究内容、目的和任务随着人们对聚丙烯酰胺的需求量不断增加,我国也开始了这方面的研究,并取得一定进展。
由于各种原因导致生产规模小、产量低且难以再生资源相对匮乏等问题制约着其发展和应用;近年来石油价格上涨速度加快以及油价大幅度提高使原油含氧率降低而天然气产能过剩等一系列因素共同作用致使全球能源结构被进一步调整优化。
PP产品的基本介绍PP产品是一种聚丙烯材料制成的产品,具有轻便、高强度、耐磨损、耐腐蚀等特点。
PP产品具有广泛的应用领域,在建筑、电子、汽车、包装等行业都有着重要的应用。
下面将对PP产品的基本介绍进行详细的说明。
材质PP产品的材质是聚丙烯,它是一种不透明的热塑性塑料,具有优良的机械性能和加工性能。
PP材料具有较好的耐水性、化学稳定性和电绝缘性,广泛应用于汽车、电器、医疗器械、食品包装等领域。
制造工艺PP产品的制造工艺主要有注塑成型、挤出成型和吸塑成型三种。
其中,注塑成型是应用最多的一种,它主要通过将塑料颗粒加热在模具中塑形成型,制成各种大小、形状的PP制品。
挤出成型则是将恒定的PP熔体通过挤出机器挤出成所需要的形状;吸塑成型则是将热塑性塑料吸入模具中制造所需的产品。
应用领域PP产品的应用领域非常广泛,主要包括以下几个方面:建筑PP材料在建筑领域中,可用于制造防水卷材、隔热材料、管道等。
PP卷材具有重量轻、高拉伸强度和防水性能好等特点,广泛应用于建筑屋顶、地下室等防水领域。
电子PP材料在电子产品制造领域中,可用于制造电子零部件、电缆、光纤等。
PP 材料具有优良的绝缘性能、耐高温性能、耐辐射性能、较高的机械强度和导电性等特点,在电子领域中有着重要的应用。
汽车PP材料在汽车制造领域中,可用于制造汽车零部件、车身外壳和内部装饰件等。
PP材料具有抗冲击、高强度、重量轻、耐候性好等特点,在汽车领域中有着广泛的应用。
包装PP材料在包装领域中,可用于制造各种塑料袋、保鲜膜、食品盒等。
PP材料具有耐水、防潮、防腐等特点,是包装领域中比较理想的材料之一。
以上是PP产品的基本介绍,PP材料具有广泛的应用领域,是一种非常优秀的热塑性材料。
随着人们对生活质量的不断提高和技术的不断发展,PP产品的应用领域将不断扩大,为经济的发展和人们的生活带来更多的便利和贡献。
环保聚丙烯绝缘中压电力电缆关键技术的研究与开发摘要:在日常中压电力电缆中采用的绝缘材料虽然也是聚丙烯,但属于热固性材料,无法将其循环利用,不管是去应力时间还是生产成本都比热塑性材料更高,所以需要加强相关研究开发工作,以便能够获得更加环保的材料。
基于此,本文就针对环保聚丙烯绝缘中压电力电缆关键技术进行研究,首先探讨环保聚丙烯绝缘中压电力电缆技术发展情况,然后分析聚丙烯材料现状,最后论述聚丙烯绝缘加工工艺,希望通过文章探讨能够为相关从业人员提供一定参考。
关键词:聚丙烯;电力电缆;生产工艺前言:聚丙烯属于非极性材料,拥有良好的性能,并具有一顶环保性,利用聚丙烯材料既能够提高传输容量,还能够降低生产成本,让生产工艺变得更加简单,所以适用于电力线路传输。
以现有技术工艺,不断调整和改善中压电缆材料,对成品电缆成效与质量进行研究,从而促使电力电缆材料能够得以良好改进,相关工艺技术持续创新进步,从而推动电缆行业的发展。
下面笔者就针对相关内容进行详细阐述。
一、环保聚丙烯绝缘中压电力电缆技术发展情况在上个世纪六十年代,美国公司(现Montell公司)率先研发出了PP共聚物,将其用于制作为电线电缆的绝缘材料。
PP基材料是电缆中重要的绝缘材料,而且在西方发达国家被成批量生产,并获得了广泛应用。
根据相关统计显示,截止到2019年,国外已经投入使用的改性PP电力电缆共计长达5万千米。
我国在PP改性方面的研究起步较晚,电线电缆中使用和研究PP绝缘料依然处于刚起步状态,还需要不断开发使用电力电缆产品[1]。
国内对于聚丙烯的研究,已经深入到了其在高压直流电缆主绝缘方面的使用,然而却依然还处在试制阶段,例如国内研究使用聚合物基及纳米高性能PP绝缘材料当作高压电力电缆,和电缆企业共同研究110kV直流电缆,已经试制的电缆正处于运行状态。
相较于XLPE电缆绝缘材料而言,PP材料具有更轻的质量,而且没有气味与毒性,还拥有良好耐热性能与电气性能。
2024年聚丙烯市场发展现状1. 引言聚丙烯是一种重要的合成材料,广泛应用于各个领域,如塑料制品、纤维、电子、汽车等行业。
本文将分析聚丙烯市场的发展现状,包括市场规模、主要应用领域、发展趋势等方面的内容。
2. 市场规模聚丙烯市场在过去几年保持了稳定增长的趋势。
根据市场调研数据显示,全球聚丙烯市场规模已超过XX亿美元,并预计未来几年将继续保持稳定增长。
亚太地区是聚丙烯市场的主要消费地区,其市场规模占据了全球的xx%,主要受益于该地区工业生产的快速发展。
3. 主要应用领域聚丙烯在各个行业中都有广泛的应用。
以下是一些主要应用领域的介绍:3.1 塑料制品由于聚丙烯具有良好的可塑性和耐久性,被广泛应用于塑料制品生产。
例如,塑料袋、瓶子、容器等都是聚丙烯的常见制品。
随着人们对环保意识的提高,聚丙烯可回收利用的特性也促使其在塑料制品行业的需求不断增长。
3.2 纤维聚丙烯纤维在纺织行业中使用广泛。
聚丙烯纤维具有良好的抗菌性、耐晒性和柔软性,因此被用于制造各种纺织品,如面料、家居用品等。
同时,聚丙烯纤维还具有较低的成本和易于加工的优势,使其在纤维行业具有竞争优势。
3.3 电子聚丙烯在电子行业中的应用也越来越多。
由于聚丙烯具有优异的绝缘性能,被广泛应用于电线电缆等电子产品的绝缘层。
此外,聚丙烯还可以用于制造电子元件的外壳和支架,提供保护和支撑作用。
3.4 汽车聚丙烯在汽车行业中的应用主要体现在汽车零部件的制造上。
例如,汽车内饰件、底盘保护件等均可使用聚丙烯材料制作。
聚丙烯具有良好的韧性和抗冲击性,能够满足汽车行业对零部件强度和耐久性的要求。
4. 发展趋势聚丙烯市场的发展趋势主要包括以下几个方面:4.1 新技术的应用随着科技的进步,新技术在聚丙烯生产过程中的应用也逐渐增多。
例如,聚丙烯的高分子量、高定向度和特殊功能添加剂等新技术的应用,使聚丙烯在性能上得到了进一步提升。
4.2 环保需求的增加随着环保意识的提高,聚丙烯制品的环保性能也成为了消费者关注的重点。
双向拉伸聚丙烯(BOPP)薄膜工业技术应用和发展双向拉伸聚丙烯薄膜是20世纪60年代发展起来的一种透明软包装材料。
它是用专门的生产线将聚丙烯原料和功能性添加剂混合,熔融混炼,制成片材,然后通过纵拉和横拉设备将片材在纵、横两个方向高度取向制成薄膜。
其取向倍率(纵向拉伸倍率和横向拉伸倍率的乘积)与生产设备的设计能力有关,一般是所铸片材宽度的40-60倍,生产速度从100-300m/min,所做薄膜的厚度在4-50μm之间。
双轴拉伸聚丙烯的生产方法,加工工艺和本身的结构特点赋予BOPP薄膜许多优异的性能。
如它比流延PP(CPP)膜和吹塑薄膜机械强度更高,透明性和光泽度更好。
BOPP薄膜具有机械强度高、尺寸稳定性好、质轻、无毒、防潮、密封性好、市场应用范围广、印刷性良好等优点,被包装行业誉为“包装皇后”,并被广泛应用于食品、糖果、香烟、茶叶、果汁、牛奶、纺织品等包装领域中。
国际上BOPP薄膜自1962年实现工业化生产以来发展迅速,其年增长速率保持在12%-15%左右。
BOPP薄膜工业化在我国起步较晚,20世纪70年代开始研制和试产,1982年从德国引入第一条BOPP膜生产线,1984投产。
由于我国的BOPP膜市场需求大,促使BOPP工业得以迅猛发展。
到2004年为止,我国BOPP薄膜生产线的产能为190万吨,实际产量约为176万吨,有几十家大型公司从事BOPP薄膜的生产和经营,可以说,BOPP膜产业是我国包装行业的一个非常重要的分支。
1.BOPP薄膜生产设备可以说,生产BOPP薄膜的设备是所有塑料加工设备中最为复杂的设备之一。
在BOPP行业,生产BOPP薄膜的设备简称BOPP薄膜生产线。
它包括电器控制系统、原料系统、挤出机系统、过滤器、模头、铸片机、纵拉机、横拉机、边料回收系统、电晕处理系统、测厚仪、卷取系统和分切机等。
生产薄膜的幅宽从4-8m不等,薄膜的层数有一层、二层、三层,最多的可达七层。
目前使用最多的是A/B/C三层共挤出生产线,每一层都配备一台挤出机。
中国透明聚丙烯(TPP)行业概况一、中国透明聚丙乙烯产量透明聚丙烯(TPP)是聚丙烯的一种重要改性品种,其应用范围涵盖从包装材料到医用产品的诸多领域,是目前聚丙烯大家族中发展较为迅速的成员。
例如在如医用注射器、药瓶等医药器械,保鲜膜,糖果包装纸等透明包装,以及微波炉餐具、一次性餐盒、透明饮料杯等家庭用品方面具有广泛的用途。
茂金属透明聚丙烯(mTPP)是这一家族中的后起之秀,具有高透明度、高模量、高耐热、易加工等特点,是目前国内外聚烯烃公司努力追逐的高性能高附加值聚丙烯产品之一。
2015年我国透明聚丙烯产量为121.48万吨,2020年我国透明聚丙烯产量增长至183.92万吨。
明聚丙烯在性能上,比其他传统透明高分子材料透明PC、透明PVC有相对优势:工艺较简单;良好的透明度与光泽度;较低密度;较均衡的刚度与抗冲击强度;可完全回收再利用等。
二、透明聚丙乙烯市场规模概况目前,透明聚丙烯在玩具、包装材料、医疗机械、工业零部件等领域已有应用。
特别是透明聚丙烯耐热性优秀,因而非常适用于透明性要求高且在高温下使用或消毒的器具,如医用注射器、微波炉炊具、婴儿奶瓶、一次性快餐用具等。
近年来,市场对于透明聚丙烯的需求持续快速增长。
2015年我国透明聚丙烯市场规模为146.10亿元,2020年我国透明聚丙烯市场规模增长至215.49亿元。
三、全球透明聚丙乙烯发展概况目前全球透明聚丙烯生产商主要有埃克森美孚化工公司、德国蒙特尔公司、英国石油阿莫科公司、韩国SK集团、美国亨斯曼集团、日本三井、美国陶氏化学公司、巴斯夫股份有限公司、北欧化工(Borealis)有限公司、韩国三星集团、荷兰巴塞尔公司、日本JPP、韩国大林等企业。
四、未来透明聚丙乙烯发展概况以及趋势透明聚丙烯树脂通过注射、热成型、吹拉成型等各种加工工艺,生产出适用于日常生活各种领域的产品。
透明聚丙烯不仅具有优异的透明性和光泽度,而且还具有较高的热变形温度。
由于其高性价比,透明PP相较传统透明材料(PET、PS等)具有更广泛的应用范围和更广阔的应用前景。
国内外聚丙烯生产工艺介绍一、PP生产工艺简介聚丙烯的生产工艺按聚合类型分类主要有3种,即本体法工艺、气相法工艺和本体-气相法组合工艺。
早期还有溶液法工艺和溶剂浆液法工艺(简称浆液法、也称淤浆法)。
丙烯聚合催化剂性能的提高促进了PP生产工艺的不断进步,PP生产工艺已经从初期的低活性、中等规度的第一代工艺(溶液法、浆液法),以及高活性、可省脱灰工序的第二代工艺(浆液法及本体法),发展到超高活性、无需脱灰及无需脱无规物的第三代工艺(气相法、本体-气相组合工艺)。
近年来,传统的浆液法工艺在PP生产中的比例明显下降,新建的PP装置已不再采用传统的浆液法工艺。
当前,世界上先进的PP生产工艺主要是属于第三代PP 生产工艺的本体-气相组合工艺和气相法工艺。
本体-气相法组合工艺典型的专利技术有:Basell公司的Spheripol本体-气相法组合工艺技术、Prime Polymer公司的Hypol本体-气相法组合工艺技术、Borealis公司的Borstar本体-气相法组合工艺技术和中国石化的ST本体-气相法组合工艺技术。
气相法工艺典型的专利技术有:Dow化学公司Unipol 气相流化床工艺技术、Lummus公司的Novolen气相法工艺技术、Ineos公司的Innovene气相法工艺技术、Basell公司的Spherizone气相法工艺技术、日本聚丙烯公司(JPP)的气相法工艺技术以及住友公司(Sumitomo)的气相法工艺技术。
世界上采用气相法工艺和本体-气相法组合工艺的聚丙烯生产装置的比例逐年增加,目前各国在建和新建的聚丙烯装置基本上多采用气相法工艺和本体-气相法组合工艺。
由于催化剂体系的发展和其活性的大幅度提高,上世纪90年代以后新建大型聚丙烯装置已基本上不使用浆液法。
在过去的20年中各种气相法工艺都发展很快,2006年底,气相法工艺的生产能力占到了全球聚丙烯生产能力的34%。
2010年底,包括在建装置的产能在内,气相法工艺约占50%。
我国流延聚丙烯膜(CPP)及其专用料的开发进展流延聚丙烯膜(Cast Polypropylene film;CPP)是通过将熔体流延骤冷生产的一种无拉伸、非取向的平挤薄膜。
它具有质轻、优异的透明性、良好的热封性、厚度均匀性、防潮、耐油性、耐较高温度,抗刮性和包装机械适用性好,广泛地应用于服装、针纺织品以及食品包装;同时也可用作高温蒸煮膜、复合膜内层热封材料和金属化基膜。
与BOPP 相比,CPP膜具有加工设备简单、单位面积成本低的优势;同吹塑聚丙烯薄膜(IPP)相比,CPP光学性质优良,制膜速度快,经过表面电晕处理可以用于彩印、复合、镀铝等方面。
我国流延薄膜生产起步于20世纪80年代,目前已具有一定的生产能力和生产水平。
尤其是近几年,随着消费市场的发展,聚丙烯流延薄膜的发展得以加速,市场份额逐年增大,2008年我国CPP表观消费量将近40万吨。
然而,我国用于CPP生产的专用料的发展却远落后于CPP膜的生产,将近60%的专用料靠进口,尤其是新型高档次CPP膜专用料几乎完全依赖进口,不能满足CPP 膜快速发展的需要,制约着高档次膜包装材料的开发。
因此,加大用于生产CPP膜专用料生产技术的开发,打破这种供需不平衡的状况是具有重要经济和社会效益的。
一、国内CPP薄膜的开发情况CPP薄膜按用途不同可分为(超)低温热封膜、耐低温冲击膜、抗静电薄膜、一般蒸煮膜、耐高温蒸煮膜、金属蒸镀膜和纵向易折封膜等;或分为通用型、金属化型和蒸煮型薄膜。
CPP薄膜一般分为两级,即蒸煮级和非蒸煮级。
蒸煮级是指能与PET、NY、铝箔等通过干式复合后,制成的耐高温蒸煮杀菌的复合用基材薄膜。
这类薄膜主要采用共聚聚丙烯原料。
当用于高温蒸煮时(耐120℃以上蒸煮杀菌),则采用多相共聚聚丙烯制得;当用于一般蒸煮(耐100℃~120℃以下),由无规共聚聚丙烯制得。
非蒸煮级是指不能做蒸煮袋内层基材,只能用于普通包装薄膜,这种膜通常由均聚物制得。
汽车用改性PP材料性能开发与应用作者:张祎阳来源:《科学与财富》2016年第01期摘要:本文从PP材料的改性原理,汽车用改性PP材料的性能要求出发,阐述了汽车用改性PP材料的开发研制过程,并通过实例说明,开发出来的新产品已在汽车上得到了广泛应用。
关键词:改性 PP 树脂收缩率共混一、前言随着汽车工业的不断发展,节能与环保成为了汽车工业的两大课题,而工程塑料以其重量轻、设计空间大、制造成本低、性能优异、功能广泛,最终能使汽车在轻量化、安全性和制造成本几方面获得更多的突破,从而成为了二十一世纪汽车工业最好的选择。
近十年来随着科技进步,塑料在汽车上的应用获得了巨大的发展,已由普通的装饰用途,发展至制造结构性及功能性的部件,其应用领域已扩展到整车的各大总成系统,零件数量已超过整车零件数量的10%。
而在汽车用诸多塑料品种中,各类PP(聚丙烯)材料在汽车上的开发与应用,一直是汽车工业和塑料工业关注的焦点。
通过各种改性加工手段可以获得满足各种汽车部件不同功能要求的改性PP材料,加之其优异的性能价格比,使各种增韧、填充、增强PP材料在汽车各大总成系统中获得了广泛应用。
并且不断有一些新的技术及应用正在或即将问世。
目前,发达汽车工业国家单车PP材料的用量达到近40kg,占整车塑料材料应用量的1/3,成为汽车上所有塑料材料中用量最大的品种。
二、PP材料改性原理PP(聚丙烯)是继尼龙之后发展的又一优良树脂品种,它是一种高密度、无侧链、高结晶的线性聚合物,由于其来源广泛、密度小、力学均衡性好、耐化学腐蚀、易加工及价格低廉等突出优点,因而被广泛使用。
但通用PP材料收缩率(成型收缩率:1.0-2.5%)大,制品尺寸稳定性差,容易产生翘曲变形;低温易脆断,低温韧性差;耐光老化、耐热老化性能差等缺点。
无法满足汽车保险杠、仪表板、护风圈、发动机风扇等部件的特殊使用要求,因此必须对通用PP材料进行改性。
利用溶度参数相近的两种或两种以上的聚合物材料及助剂在一定的温度下进行机械掺混,得到一种新材料的方法叫机械共混改性法。
据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a以上。
日本透明PP市场以微波炉炊具及家具两方面的消耗量最大。
日本出光化学公司制造出与PVC具有同样透明性和光泽性的透明PP,此刻可以广泛替代普通透明PVC制作文具、笔记本一类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200 t透明PP。
韩国LG Caitex公司将透明PP作为PET的替代品推向市场,应用于水瓶、洗涤剂瓶、个人护理品的包装等方面。
Fina公司市场部声称,他们的透明PP新产物将打人具有300kt/a市场容量的PS食品包装。
德国BASF公司的PP无规共聚物Novolen3248 TC,具有高流动性〔熔体流动速率为48g/l0min〕、低翘曲性,透明度达90%,雾度10%,适用于薄壁包装与日用品。
Solvay公司研制的PP无规共聚物EltexPKLl76,含有乙烯和透明剂,主要用于制造单层透明瓶和挤压片材,片材可热压成型各种容器及装饰品。
其产物具有玻璃般的光泽、很好的化学不变性、耐环境应力开裂性和冲击强度。
德国Schneioler公司和Klein公司用透明聚丙烯替代PVC用于透明硬包装。
美国Amoco公司用透明改性剂出产的聚丙烯树脂经注、拉、吹工艺加工而成的水瓶可替代聚酯水瓶。
Montell Polyolefins公司比来推出了α烯烃改性PP树脂,牌号别离为273RCXP和276RCXP,主要用于注塑成型。
两种牌号的树脂都没有添加成核剂和透明助剂,此中273RCXP树脂的熔体速率为14g/10min,表示出低的气味性以及好的耐应力发白性能。
该树脂的透光性能相当于最好的PP无规共聚物,具有较高的光泽度,可制作成母粒形状用于出产固体或类似于用尼龙做成的半透明色母粒。
276RCXP树脂的熔体流动速率为16g/l0min,透光性和光泽度稍差些,但该树脂却展示出极佳的低温冲击性能,在低温下储藏后能经反复加热且耐冲击,可制作放于微波炉中的容器。
1.1聚丙烯塑料的改性及应用中国塑料加工工业协会改性塑料专业委员会副理事长兼秘书长教授级高级工程师刘英俊1聚丙烯在合成树脂生产中占据重要地位,发展极为迅速聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。
在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。
而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。
预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。
表1列出近期投产和正在建设的聚丙烯装置的地点和产能。
在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。
这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。
另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。
2聚丙烯基本知识2.1树脂与塑料的定义和分类树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。
在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。
塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。
热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。
聚丙烯改性及其汽车保险杠的研制中文摘要本论文通过橡胶(POE)、聚丙烯(PP)、滑石粉共混和添加成核剂改变聚丙烯的结晶形态两种方式来对聚丙烯进行增韧,并通过马来酸酐(MAH)与苯乙烯(St)对聚丙烯(PP)进行增强极性改性,研究了改性后复合材料的性能,并取得了一定的效果。
在研究橡胶增韧PP的过程中,采用了DOW化学公司近几年推出的用茂金属催化剂通过乙烯和辛烯原位聚合技术生产的一种饱和乙烯一辛烯共聚物(POE)增韧改性PP。
对PP/POE体系的力学性能进行了研究,并用差示扫描量热仪(DSC)对其进行了详细的表征。
结果表明,POE加入随含量的增加,PP的冲击强度和断裂伸长率不断升高,拉伸屈服强度不断降低,且随着拉伸速率的增加,PP/POE共混体系的拉伸屈服强度逐渐升高,而断裂伸长率则逐渐降低;分析表明,加入POE破坏了PP分子链的规整性,阻碍PP的结晶,,导致其结晶度不断降低;POE与PP具有较好的相容性,POE加入没有改变PP的晶面间距和晶型。
在研究滑石粉对聚丙烯增强的过程中,采用1250目的滑石粉增强填充PP/POE体系,并对其力学性能进行了研究,随着滑石粉用量的增加,混合体系的冲击强度降低,但其断裂伸长率在加入15%之前一直在上升,15%后开始下降。
滑石粉对PP有异相成核作用,随着滑石粉的加入,球晶渐趋不规则,边界变得模糊,球晶尺寸下降,球晶分布趋于均匀。
在研究成核剂改变聚丙烯进行增韧的过程中,用β晶型成核剂(TMB-4)对PP的结晶和力学性能进行研究,结果表明,TMB-4能使共聚PP拉伸强度有所提高,TMB-4因诱发PP产生大量β晶,使其缺口冲击强度和断裂伸长率提高了56%和15%。
通过POE、成核剂、滑石粉复配来对PP进行增韧,并对其力学性能进行表征,结果表明,其冲击强度和拉伸强度都有一定程度的提高,综合性能良好。
一些性能达到了保险杠对PP复合材料的要求。
关键词:聚丙烯,POE,滑石粉,成核剂,结晶,力学性能安徽建筑工业学院本科生毕业论文AbstractIn the thesis,the polypropylene(PP) resin was modified for toughness by two methods,Including the adding of POE and Talcum powder,blending with nucleators to modify the crystallization off PP.And by maleic anhydride (MAH) and styrene (St) on polypropylene (PP) to enhance the polarity.The properties of PP composite were studied and the result is good.Saturation ethylene-oetylene copolylner(P0E) produced by DOW chemistry company via ethylene and octylene original position polymerization eatalysised by metallocene was adopted,when studying modified PP.the mechanical properties Of the PP/POE system were studied and they were investigated by differential seanning calorimetry(DSC).The results show that the impact strength and rupture elongation ratio of PP/POE can be increased gradually and tensile yield intension reduced gradually as the adding content of POE,while tensile yield intension can be increased gradually and rupture elongation ratio reduced gradually as the increasing of rate of estension.The crystallization analysis s how that the erystallization degree of PP was redueted sequeneely by adding POE to damage PP molecular thain regulation and hind PP crystallization.The crystallization shape and interplanar distance of PP was not changed by adding POE and there is very good consisteney between PP and POE.In the research process of that Talc reinforced polypropylene, talc was used to increase PP/POE system, and the mechanical properties were studied.with the increase of the amount of talc,the impact strength of the mixed system decreased, But the elongation at break before joining the 15% has been rising, over 15% began to decrease.Talc on PP play the role of heterogeneous nucleation,With the addition of talc,Spherulites become more irregular,boundaries are blurred,Spherulite size decreases,Spherulites to uniform.The influence ofβform(TMB-4) nucleators on erystallization and mechanieal properties of impact co-polypropylen was studied,the results show that TMB-4 inereases tensile intension to some extent.TMB-4 because of its indueting co-PP togenerate more.βcrystal form has more evidently increased impact strength and rupture elongation ratio of PP about 56% and 15% .The PP resin was modified for toughness by multiplicity formulation of POE,talc and nueleators,and the meehanieal properties of PP/POE/talc/nucleators were tested.The results show that Impact strength and tensile intension can be inereased to some extent and combination property is good.The PP composite reach the require of auto bumper.聚丙烯改性及其汽车保险杠的研制Keywords:polypropylene,POE,nueleator,crystallization,mechanical property安徽建筑工业学院本科生毕业论文目录第1章引言 (V)1.1国内外聚丙烯汽车保险杠发展现状 (1)1.1.1介绍 (1)1.1.2国内外聚丙烯汽车保险杠及专用料的发展概况 (1)1.2汽车保险杠用聚丙烯存在问题和开发难点 (3)1. 3聚丙烯汽车保险杠专用料 (3)1.3.1聚丙烯与弹性体共混料 (3)1.3.2 PP/EPDM型反应型共混料 (4)1.3.3嵌段共聚PP/聚烯烃热塑性弹性体(TPE)共混料 (4)1.3.4新型高分子材料—丰田超级烯烃聚合物 (4)1.3.5非交联发泡保险杠 (4)1.3.6汽车保险杠专用树脂 (5)1.3.7可涂饰汽车保险杠 (5)1.4汽车保险杠的成型方法和回收利用 (5)1.4.1汽车保险杠的成型方法 (5)1.4.2汽车保险杠的回收利用 (6)1.5汽车保险杠用聚丙烯增韧改性 (6)1.5.1化学改性 (6)1.5.2物理改性 (8)1.6汽车保险杠用聚丙烯增强改性 (10)1.7聚丙烯增韧增强改性存在的问题 (10)1.8聚丙烯增加极性改性 (11)1.9研究目的及意义 (11)第二章弹性体POE改性聚丙烯概述 (12)2.1 POE弹性体 (12)2.1.1 POE的性能 (12)2.1.2 POE对PP的共混改性 (12)2.2 POE与其他弹性体的比较 (13)2.3不同牌号的POE对共混体系力学性能的影响比较 (14)第三章实验 (16)3.1聚丙烯基料的选择 (16)3.2 增韧剂的选择 (16)3.3 填料的选择 (17)3.4实验部分 (18)3.4.1实验原料 (18)3.4.2主要设备 (18)3.4.3样品的制备 (19)3.5测试与表征 (21)聚丙烯改性及其汽车保险杠的研制3.5.1熔体流动速率测定 (21)3.5.2热变形温度测定 (22)3.5.3拉伸性能测定 (22)3.5.4冲击性能测定 (22)3.5.5示差扫描量热仪(DSC) (22)3.5.6 偏光显微镜 (23)第四章实验结果与讨论 (24)4.1 PP/POE混体系的物理机械性能分析 (24)4.2.PP/POE共混体系DSC分析 (27)4.4 PP/β成核剂体系性能 (30)4.5 MAH-St多组分单体熔融接枝聚丙烯 (33)第五章聚丙烯保险杠材料研制 (34)5.1 保险杠配方设计 (34)5.2 实验原料 (34)5.3主要设备 (34)5.4测试与表征 (34)5.5实验结果 (34)第六章总结 (35)参考文献 (36)致谢 (40)聚丙烯改性及其汽车保险杠的研制第1章引言1.1国内外聚丙烯汽车保险杠发展现状1.1.1介绍目前汽车制造业正向降低车身自重、减轻能源消耗方向发展。
高熔体强度聚丙烯的应用及市场研究报告聚丙烯力学及耐热性能良好,应用领域广泛,是产量及市场需求量年增长率最为迅速的通用型热塑性树脂之一。
预计2018年全球的聚丙烯产能可达81.5 Mt,市场需求量达74.0 Mt[1-5]。
作为一种半结晶的高分子材料,普通聚丙烯的相对分子质量分布范围通常较窄,DSC表征结果显示,普通聚丙烯熔程较短,当加工温度升至熔点附近时,熔体强度急剧下降。
由于上述缺陷,当普通聚丙烯用于正压或负压热成型时,制品容易出现壁厚不均;用于物理或化学发泡时,发泡材料的泡孔易于破裂导致强度及回弹性不能满足要求;挤出流延生产板材时出现流痕,卷曲及尺寸稳定性差;用于熔喷纺丝时容易出现丝束断裂不匀等问题[6-9]。
高熔体强度聚丙烯(HMSPP)可有效改进上述普通聚丙烯在加工过程中遇到的问题。
本文综述了HMSPP的性能特点、应用领域、近年来国内外市场开发及应用现况。
1 HMSPP特性及应用1.1 特性作为表征聚合物熔体延展性的重要参数,熔体强度通常被定义为熔体抵抗拉伸的能力。
在挤出、发泡、热成型、吹塑、挤吹和纺丝等塑料加工技术中,聚合物熔体均会发生拉伸和剪切流动。
故考察包括熔体强度在内的一系列流变性能对聚合物熔体的延伸性能的评价非常重要。
熔体强度一般通过熔体拉伸流变仪得到,表现为熔体起始拉伸形变至发生断裂处的最大拉力值。
提高聚丙烯的熔体强度的方式包括通过聚合工艺调整单一增加高相对分子质量组分的含量,通过催化剂及给电子体技术调控重均相对分子质量与数均相对分子质量的比值(即相对分子质量宽度),通过与支化低聚物和/或聚合物共混引入分支结构,以及通过反应接枝在聚丙烯内部产生长支链(LCB)结构[6]。
单纯增加聚丙烯大相对分子质量组分的方法,可有效提高聚丙烯熔体的牵伸黏度,从而达到提高熔体强度的目的。
但是,该方法具有影响加工工艺、增加能耗、降低加工效率等缺陷,极大地限制了应用领域。
通过熔融共混及反应接枝引入LCB结构的方式,增加聚丙烯分子间链缠结及系带链分子的数量,可使聚丙烯的熔体强度有效提高。
国内外聚丙烯(PP)专用产品的开发与应用1 前言聚丙烯(P P)由于原料来源丰富、价格便宜(是所有合成塑料中价格最低的品种之一)、易于加工成型、产品综合性能优良,用途非常广泛,已成为通用树脂中发展最快的品种,是一种市场需求量大、经济价值高的原材料。
由于工程塑料价格较高,而P P通过改性可以拓展应用领域,能替代或部分替代P V C、A B S和P S等工程塑料,也能部分替代其他材料如玻璃、纸和金属材料。
因此世界各大P P 生产厂家越来越注重高性能化和功能化P P专用产品的开发研究,新品级、高性能的P P产品日益增多,使P P经过较短时间已成为全球塑料发展速度最快的一种。
2 PP供需状况及产品结构2.1 国外PP产品结构西欧和东欧占全球P P树脂市场的23%和3%。
P P树脂的年增长率达到7%,其中西欧的年增长率将达到7.5%,在薄膜、片材及纤维领域的增长将有所减慢,但仍有强劲的增长,其年增长率仍将达到 6.25~6.75%。
P P的消费方式因地区而不同。
一般说,注塑料应用在工业化国家消费中占主要份额,特别是在那些汽车工业发达的国家和地区。
农业国在工业化发展的早期阶段,纤维用比重较大,主要用作编织袋、防水布等。
在工业化国家,耐用消费品,如汽车、家电和地毯约占P P最终用途的50%。
世界P P的主要用途是生产注塑制品,占P P消费的主要份额,广泛应用于汽车、家电,周转箱等。
此外,P P在纤维和薄膜方面所占的比例也较大。
P P的应用范围宽,领域多,几乎没有一种应用可以超过P P总市场份额的25%,由美国P P牌号的分布来看,窄带料和纺丝料虽然相对集中,但份额也不超过10%。
有些公司,如A m o c o公司生产更多的纺丝料、窄带料和加成核剂的专用料。
另外一些公司,如M o n t e l l生产更多的注塑和吹塑用的共聚物。
过去用热成型和吹塑加工P P有困难,现通过改进加工工艺和树脂性能得以解决。
目前研究工作更多地集中于扩大P P吹塑和片材热成型的应用。
另据估计,P P和交联P P(P E X)树脂将出现快速增长,由于P P树脂新品级的出现,将可作为传统非塑料材料和P V C 树脂在建筑领域和排污管道领域的替代品。
大家期望P P树脂的年增长率超过9%,P E X树脂的年增长率将超过 5.5%,主要用于室内暖气装置和卫生管道系统。
2.2 我国PP供需状况及产品结构目前,我国P P工业的布局是,大型P P生产装置以引进技术为主,中型和小型P P生产以国产化技术为主。
引进技术主要有釜式反应器液相本体-气相本体组合法H y p o l工艺、环管式反应器液相本体—气相本体组合法S p e r i p o l工艺。
目前国产化技术中,小型生产装置仍占很大比例,几乎全部采用间歇式本体法工艺。
我国P P平均物耗还明显高于世界先进水平。
从产品结构上看,高附加值产品比例还明显低于世界先进水平。
加之关税递减,国外高性能P P产品将不断流入中国,在国内市场,我们面临的竞争对手也是经过合并重组后的世界特大型石化公司。
尽管我国P P的产量增长较快,但开工率较低,特别是其品种与牌号不足,P P均聚物低档通用料占绝大多数,而其共聚物、高档专用料主要依靠进口。
因此、目前我国P P产品的生产和技术开发重点应以专用料为主,向高附加值方向发展。
P P工业应调整产品结构,开拓新的应用领域,进一步增加品种、牌号,即大力研究、开发P P高附加值专用料产品。
目前,我国P P工业的布局是:大型P P装置以引进技术为主,中型及小型生产装置则以国产技术为主。
表1列出了我国进口的PP牌号情况。
表2列出了我国主要PP企业开发生产的部分牌号情况。
表2我国主要P P企业开发生产的部分牌号据统计,我国的P P树脂用于生产编织制品占45%,注塑占12%,薄膜占7.4%,纤维占9.3%。
而近几年我国的生产结构与消费结构尚有很大差距。
在我国PP树脂消费结构中,编织制品消费量最大,占消费量的50%左右,注塑料、薄膜及纤维等所占比重偏低,而世界PP消费结构中注塑应用占了主要的份额,特别是那些汽车工业发达的国家和地区。
这说明我国PP消费市场还不成熟,我国PP树脂产品结构有待进一步调整。
今年预计国内市场需求量将增加11%左右,但国产PP品种中拉丝料多,均聚物多,抗冲共聚物、BOPP膜、高速纺丝和共聚注塑料少,许多还需要通过进口补充国内需求缺口。
3 PP生产技术进展3.1 催化剂是PP工业技术进步的基础科技进步日新月异,合成树脂及塑料的性能不断得到提高,新的品种不断出现。
继Z-N催化剂和高效负载型催化剂之后的茂金属聚合催化剂将逐步部分取代传统催化剂。
茂金属催化剂体系具有催化活性高、单一活性中心、聚合物结构可精确调控等特点。
并且能适应于现有的P P聚合装置和工艺,无需大的改动,可以用在现有的任何一种聚合工艺装置上。
P P催化剂发展及其工艺特点见表7。
目前,具有优异性能的茂金属等规P P(i P P)和环烯经共聚物(C O C)以及茂金属间规P P(s P P)等已开始进入市场,有关茂金属及其P P的专利已达数百项,其重要性在国际上已得到共识,对P P工业发展将产生巨大影响。
常用的在聚合阶段生产P P改性新产品的方法有两种,即:改进的Z-N高效催化剂的应用和将金属茂催化剂用于生产P P共聚物。
催化剂能改进聚合工艺、大分子成核性和提高P P性能。
3.1.1 传统催化剂仍是推出新的PP产品的主力虽然茂金属可制得许多性能优异的“超级-P P”,许多大公司也正集中人力、财力进行其工业开发,但是茂金属催化剂制造的树脂也存在问题,主要是加工性能差和价格昂贵,因此现在市场上推出的高性能P P产品大多是用传统的Z i e g l e r-N a t t a催化剂生产的。
不断改进的新一代高活性催化剂体系仍是目前向市场推出新的P P新产品的主力。
改进的Z-N高效催化剂用于P P的共聚。
它能改善聚合工艺、大分子的成核性,从而提高P P性能。
因此提高聚合用催化剂等级,能得到高结晶度(达99%微晶)的产品,并控制共聚单体准确进入共聚物分子链结构,如Z-N第四代催化剂不仅能对共聚物的组成、分子结构、相对分子质量及相对分子质量分布进行自由剪裁,而且能对各种聚合物相进行定位,这种催化剂具有很规则的聚合反应动力学,可顺利地进行丙烯/乙丙橡胶的聚合或多元共聚。
这是由于乙丙橡胶相是在先形成的均聚物相中生成的,因而理想形态的多相共聚物合金可在反应器中直接合成。
根据不同的需要,采用不同的单体及单体量,生成不同的相数,可在反应器中直接合成出一系列具有新的性能的P P合金。
巴塞尔公司开发了新型Z-N催化剂系列,预计2003年推向商业化应用。
这种专利的琥珀酸盐Z-N催化剂已在意大利和荷兰的巴塞尔P P装置上获得验证。
这种先进的第5代催化剂通过改进分子量分布,可大大改进均聚体和多相共聚体P P性质。
这种催化剂与标准的第4代Z-N催化剂(使用邻苯二甲酸盐体为内部授体)相比,产率可提高40~50%。
第5代Z-N催化剂由巴塞尔1999年推出,采用琥珀酸盐作为内部授体,改进了催化剂控制分子量分布、等规度和低聚物含量的能力。
陶氏化学公司也推出P P新催化剂和过程控制软件用于其U n i p o l P P工艺。
先进的齐格勒-纳塔催化剂用于生产可满足工程特定要求的I m p p a x抗冲共聚级P P。
联碳和陶氏化学联合重组后第一次推出工业化新催化剂-S h a c 330 P P催化剂,它建立在S h a c310和320P P催化剂采用的形态学控制平台基础上。
这种新一代的催化剂改进了装置操作,大大降低了U n i p o l P P工艺技术的转让费用。
使用这种催化剂可使装置产能提高15~25%,而无需增加投资。
另外,设计了基于W i n d o n s N T的自动过程控制软件适用于U n i p o l P P工艺技术,该软件可与装置自动化和公司信息系统相集成。
道化学(D o w C h e m i c a l)公司已于2001年上市其U n i p o l P P(P P)工艺使用的新型催化剂和工艺控制软件。
该公司称新型Z-N催化剂是专为该公司领先的I m p p a x耐冲击P P共聚物生产设计的。
这是道化学公司与联碳合并以来首个工业化的催化剂。
该S h a c330P P催化剂依靠使用S h a c310和320P P催化剂的高度成功的控制形态平台。
这种最新一代催化剂为U n i p o l P P工艺技术的特许使用者,提高了装置生产效率,较大地降低生产成本。
道化学公司专利特许副总裁J o h n D e a r b o r n称,使用该催化剂,可使装置在不投资情况下产量增加15~25%。
公司已为使用U n i p o l P P工艺技术的装置专门设计和组合了W i n d o w N T型的工艺自动控制软件。
公司声称该软件“体现着第三方开发程序方面的重大进展。
”3.1.2茂金属催化剂将对未来PP新产品的推出产生深远影响茂金属和单活性中心(S S C)催化剂技术使P P产品性能显著改进,并进一步扩大了P P的应用领域。
埃克森美孚公司的U n i v a t i o n(E x x p o l/U n i p o l)技术、巴塞尔公司的M e t o c e n e和S p h e r i p o l技术、J P C/三菱化学公司的J P C技术、陶氏化学公司的I n s i t e/S p h e r i p o l技术、北欧化工公司的B o r e c e n e技术、阿托菲纳公司的A t o f i n a技术、三井化学公司的三井技术、B P公司的B P技术等均可采用茂金属/S S C催化剂技术生产高性能等规P P、抗冲共聚P P、无规P P、间规P P或弹性均聚P P。
采用茂金属催化剂的一个显著特点是它能制造Z-N催化剂不易聚合的新型P P聚合物,如间规P P、丙烯/苯乙烯的无规和嵌段共聚物、丙烯与长支链烯烃、环烯烃、二烯烃等的共聚物。
另外,金属茂催化剂可从分子级水平控制P P共聚物的物理性能,得到立体规整的、分子量分布窄的P P,且可利用现有的生产工艺设备生产。
德国W i t c o公司在美国专利5789332中透露了一种在流化床反应器中生产载体茂金属催化剂体系的方法。
茂金属和铝氧烷能够同时被载于载体上,该技术将大大地降低铝助催化剂的用量和简化从聚会产物中分离催化剂的过程。
适合使用的载体是Ⅱ、Ⅲ、和Ⅳ族元素的氧化物,优选的是M g O、A l2O3和S i O2。
发明者认为除降低费用和简化聚合物与催化剂分高体系处理,并能控制粒子形态学使催化剂具有相应活性。
这种新催化剂的活性是茂金属催化剂最大活性的10倍多,而且该催化剂的活性持续时间长。