红外图像的处理及其MATLAB实现
- 格式:doc
- 大小:597.00 KB
- 文档页数:15
实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。
图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。
)<=>F(w,ϕ+θ。
)上式表明,对f(x,y)旋转一个角度θ。
对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。
F(u,v)到f(x,y)也是一样。
三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。
>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。
图像处理与matlab实例之图像平滑(⼀) ⼀、何为图像噪声?噪声是妨碍⼈的感觉器官所接受信源信息理解的因素,是不可预测只能⽤概率统计⽅法认识的随机误差。
举个例⼦: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>⼤⼩不规则。
我们将这种噪声称为随机噪声(random noise),这是⼀种⾮常常见的噪声类型。
⼆、噪声的类型 噪声可以借⽤随机过程以及概率密度函数(Probability Density Function,PDF)来描述,通常可采⽤其数组特征,即均值,⽅差,相关函数等。
按照概率密度函数分为⾼斯噪声、瑞利噪声、伽马噪声、指数分布噪声、均匀分布噪声、脉冲噪声、泊松噪声等。
有的噪声与图像信号的强度不相关,如图像传输过程引⼊的信道噪声、摄像机扫描噪声等,这种噪声称为加性噪声(additive noise)。
常见的加性噪声按照概率密度函数特征分为短拖尾加性噪声(如均匀分布噪声)、中拖尾加性噪声(⾼斯分布噪声)、长拖尾加性噪声(如指数分布噪声)、脉冲噪声(如椒盐噪声、随机数脉冲噪声等)。
有的噪声与图像信号有关,往往随着图像信号的变化⽽变化,如光照变化引起的噪声、飞机扫描图像中的噪声、电视扫描光栅中的相⼲噪声、斑点噪声等。
这种噪声称为乘性噪声(multiplicative noise)。
matlab向图中添加噪声的指令: I1=imnoise(I,type,parameters); 其中,当type为gaussian,所加⼊噪声是parameters为m(均值)、v(⽅差)的⾼斯噪声,这是最普通的噪声。
当type为localvar时,所加⼊噪声是parameters为0(均衡)、v(⽅差)的⾼斯噪声。
当type为poission时,所加⼊的是⽆参数的泊松噪声,在照度⾮常⼩时出现,或在⾼倍电⼦放⼤线路中出现。
当type为salt&pepper时,所加⼊的噪声是parameters为d(密度)的椒盐噪声。
数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
Matlab中的模糊图像处理和图像模糊恢复技术随着数字图像的广泛应用和发展,图像模糊成为一个重要的问题。
由于摄像器材或传输媒介等方面的限制,图像的清晰度可能受到一定程度的影响,导致图像模糊。
在实际应用中,图像的模糊问题会给图像解析、目标跟踪、计算机视觉等许多领域带来困扰。
为了改善模糊图像的质量,并解决图像模糊问题,Matlab提供了一系列的模糊图像处理和图像模糊恢复技术。
一、图像模糊的产生原因图像模糊一般是由光学系统的缺陷、运动物体、相机抖动等因素引起的。
光学系统的缺陷包括镜头的失真、散射、衍射等;运动物体指的是图像中的物体在拍摄过程中出现运动造成模糊;相机抖动是由于相机本身的不稳定性或者手持摄影造成的。
二、模糊图像处理的方法1.滤波方法滤波方法是最基本也是最常用的图像模糊处理方法。
在Matlab中,可以使用各种滤波器对图像进行处理,例如平滑滤波、高斯滤波、中值滤波等。
这些滤波器可以消除图像中的高频噪声,同时也会导致图像的模糊。
2.图像退化模型图像退化模型是描述图像模糊过程的数学模型。
常见的图像退化模型有运动模糊模型、模糊核模型等。
通过了解图像退化模型的特性,可以更准确地恢复图像的清晰度。
在Matlab中,可以根据图像退化模型进行图像恢复的研究和实现。
3.频域方法频域方法是一种基于图像频谱的模糊图像处理方法。
通过对图像进行傅里叶变换,可以将图像从空间域转换到频率域,然后在频率域进行处理,最后再进行逆傅里叶变换得到恢复后的图像。
在Matlab中,可以利用fft2函数进行傅里叶变换和逆傅里叶变换,实现频域方法对图像的处理。
三、图像模糊恢复技术1.盲去卷积算法盲去卷积算法是一种不需要知道图像退化模型的图像恢复方法。
通过对模糊图像进行去卷积处理,可以尽可能地恢复图像的清晰度。
在Matlab中,可以使用盲去卷积相关的函数和工具箱实现图像模糊恢复。
2.基于深度学习的图像超分辨率重建技术深度学习技术如今在计算机视觉领域取得了巨大的成功。
基于MATLAB的数字图像处理的设计与实现摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
目的:改善医学图像质量,使图像得到增强。
方法:利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。
结果:用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。
结论:使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。
关键词:MATLAB;直方图均衡化;高通滤波;图像增强AbstractDigital image processing is an emerging technology, with the development of computer hardware, real—time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services .Digital image processing is used by some algorithms computer graphics image pro cessing technology. Objective:To improve the quality of medical image by enhancing the details。
使用Matlab进行图像增强与图像修复的方法图像增强与图像修复是数字图像处理领域中的重要研究方向之一。
随着数字摄影和图像处理技术的快速发展,越来越多的应用需要对图像进行增强和修复,以提高图像的质量和视觉效果。
在本文中,我们将探讨使用Matlab进行图像增强和图像修复的方法。
一、图像增强方法图像增强是通过对图像进行处理,改善其质量,使其更加清晰、鲜明和易于观察。
下面将介绍几种常用的图像增强方法。
1. 灰度拉伸灰度拉伸是一种简单而有效的图像增强方法,通过拉伸图像的灰度范围,使得图像中的细节更加明确可见。
具体操作是将图像的最低灰度值映射到0,最高灰度值映射到255,中间的灰度值按比例映射到相应的范围。
在Matlab中,我们可以使用imadjust函数实现灰度拉伸。
2. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的灰度分布进行调整,使得图像的对比度得到增强。
具体操作是对图像的灰度直方图进行均衡化处理,将图像的灰度级分布均匀化。
在Matlab中,我们可以使用histeq函数实现直方图均衡化。
3. 锐化锐化是一种常用的图像增强方法,通过增强图像的边缘和细节,使得图像更加清晰和立体。
具体操作是对图像进行高通滤波,突出图像中的边缘信息。
在Matlab中,我们可以使用imsharpen函数实现图像锐化。
4. 去噪去噪是一种常用的图像增强方法,通过抑制图像中的噪声,提高图像的质量。
常见的去噪方法包括中值滤波、均值滤波和小波去噪等。
在Matlab中,我们可以使用medfilt2函数实现中值滤波。
二、图像修复方法图像修复是对图像中存在的缺陷或损坏进行补全或恢复的过程,以提高图像的可视化效果。
下面将介绍几种常用的图像修复方法。
1. 图像插值图像插值是一种常用的图像修复方法,通过根据已知的像素值推测缺失的像素值,从而补全图像中的缺失部分。
常见的插值方法包括最近邻插值、双线性插值和双立方插值等。
在Matlab中,我们可以使用interp2函数实现图像插值。
红外数据处理方法
红外数据处理方法主要分为以下几种:
1. 空间滤波:红外图像中常常存在噪声和干扰,空间滤波可以通过平滑和增强图像以去除噪声和改善对比度。
常用的空间滤波方法有均值滤波、中值滤波和高斯滤波等。
2. 热成像处理:红外图像是由物体的热辐射产生的,热成像处理方法可以通过将热像仪拍摄的图像转换为温度分布图,提取出物体的热信息。
3. 目标检测和跟踪:红外图像中的目标检测和跟踪是红外图像处理的关键任务,常用的方法包括阈值分割、形态学处理和边缘检测等。
4. 特征提取和分类:红外图像中常常需要对目标进行特征提取和分类,以实现目标的自动识别和分类。
常用的方法包括纹理特征提取、形状特征提取和颜色特征提取等。
5. 图像增强:对于红外图像中的低对比度和低分辨率问题,可以采用图像增强的方法来改善图像质量。
常用的图像增强方法包括直方图均衡化、灰度拉伸和局部对比度增强等。
原图4000.03600320028002400200018001600140012001000800600400.010.61520253035404550556065707581.5cm-1%T一、将原文件保存成*.asc 文件。
二、基本处理 1. 基线校正Process →Baseline Correction →Automatic Correction选中原文件,点击Delete删除原文件。
2.平滑处理Process→Smooth→Automatic Smooth,处理后的图象如下注:如自动平滑的效果不理想,也可选择Process→Smooth→Interactive Smooth进行手动平滑。
3.将处理后的文件另存为*.asc文件,命名时加后缀cl,以便与原文件区分开。
4.自动标峰点击图标调整坐标轴范围,点击自动标峰。
4000.03600320028002400200018001600140012001000800600400.00.05101520253035404550556065707581.4CM-1%T3433.02920.11931.01434.51216.21137.4969.6667.5631.6495.45.点击Edit 菜单下的copy,将图片复制到word 文件中。
三、其它处理1. 光谱计算可对光谱进行加减乘除运算,如调整基线位置等。
Process →Spectral Calculator2.归一化光谱归一化是将光谱的纵坐标进行归一化。
对于透射率光谱,光谱归一化是将测试得到的光谱或经数据处理后的光谱中的最大吸收峰的透光率变成所设定的值,并将基线最高点处变为100%。
归一化的光谱是标准光谱,商业红外光谱库中的光谱基本上都是经过归一化的光谱。
Process →Normalize ,打开如下对话框,设置Ordinate Limit 值,A 代表吸光度。
基于Matlab的图像预处理算法实现目录第一章绪论 (1)1.1何谓数字图像处理 (1)1.2数字图像处理的特点及其应用 (1)1.2.1 数字图像处理的特点 (1)1.2.2图像预处理的内容 (2)1.2.3 数字图像处理的应用 (3)1.3MATLAB (4)1.3.1 matlab简述 (4)1.3.2 matlab处理图像的特点 (5)第二章数字图像处理的灰度直方图 (6)2.1灰度的定义 (6)2.2直方图定义 (6)2.2.1直方图的典型用途 (6)2.2.2灰度直方图的计算 (7)2.2.3图像直方图实现代码 (7)2.3直方图均衡 (8)2.3.1 直方图均衡原理 (8)2.3.2直方图均衡的实现 (8)第三章图像平滑与图像锐化 (12)3.1图像的平滑 (12)3.1.1领域平均法基础理论 (12)3.1.2算法实现 (13)3.2图像锐化 (15)3.2.1图像锐化的目的和意义 (15)3.2.2图像锐化算法 (16)3.2.3图像锐化的实现代码 (16)第四章图像噪声与噪声的处理 (19)4.1噪声的概念 (19)4.2图像噪声对图像的影响 (19)4.3噪声来源 (19)4.4噪声图像模型及噪声特性 (20)4.4.1 含噪模型 (20)4.4.2 噪声特性 (21)4.5图像二值化 (21)4.5.1理论基础 (21)4.5.2图像二值化的实现代码 (21)4.6二值图像的去噪 (22)4.6.1理论基础 (23)4.6.2二值图像去噪的实现代码 (23)第五章结论 (25)参考文献 (26)第一章绪论1.1何谓数字图像处理数字图像处理(Digital Image Processing),就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
在Matlab中如何进行图像分割与分析图像分割与分析是计算机视觉和图像处理领域的重要研究方向之一。
它的目标是将一幅图像划分成多个相对独立的区域,并对每个区域进行特征提取和分析,以实现对图像的理解和应用。
在本文中,我们将介绍如何使用Matlab进行图像分割与分析的基本方法与技巧。
一、图像预处理在进行图像分割与分析之前,通常需要对图像进行一些预处理,以消除噪声和增强图像的对比度。
Matlab提供了丰富的图像处理函数和工具箱,可以方便地进行图像预处理。
以下是一些常用的图像预处理步骤:1. 图像读取与显示:使用imread函数读取图像文件,并用imshow函数显示图像。
2. 图像灰度化:将彩色图像转换为灰度图像,可以使用rgb2gray函数。
3. 噪声去除:常用的噪声去除方法有中值滤波、均值滤波等。
Matlab提供了medfilt2和fspecial函数分别用于中值滤波和均值滤波。
4. 图像增强:可以使用直方图均衡化等方法增强图像的对比度。
Matlab提供了histeq函数实现直方图均衡化。
二、图像分割图像分割是将一幅图像划分成多个相似区域的过程。
常用的图像分割方法包括阈值分割、区域生长法、边缘检测等。
以下是一些常用的图像分割方法的实现步骤:1. 阈值分割:通过设定一个阈值,将图像的像素分成两类,一类大于等于阈值,一类小于阈值。
可以使用graythresh函数计算图像的阈值,并使用im2bw函数进行二值化处理。
2. 区域生长法:从种子点开始,根据预设的相似性准则,逐步生长区域。
可以使用regiongrowing函数实现区域生长法。
3. 边缘检测:通过检测图像中明显的边缘,将图像划分成多个区域。
常用的边缘检测方法有基于梯度的方法,如Sobel算子、Canny算子等。
可以使用edge函数进行边缘检测。
三、图像特征提取与分析在图像分割之后,需要对每个区域进行特征提取和分析,以实现对图像的理解和应用。
常用的图像特征包括纹理特征、颜色特征、形状特征等。
Matlab图像处理技术的实践应用近年来,图像处理技术在各个领域中的应用越来越广泛,如医学影像、工业检测、图像识别等。
而作为一种强大的工具,Matlab在图像处理方面发挥着重要的作用。
本文将探讨Matlab图像处理技术的实践应用,并深入了解其中的数学原理和相关算法。
一、图像基本处理在图像处理的初始阶段,我们往往需要对图像进行一些基本的处理,如读取、显示、保存等。
Matlab提供了丰富的图像处理函数,可以轻松完成这些任务。
首先,我们需要读取图像文件。
在Matlab的Image Processing Toolbox中,使用imread函数即可实现。
例如,使用以下命令可以读取一张名为"image.jpg"的图像文件:image = imread('image.jpg');接下来,我们可以使用imshow函数将图像显示在Matlab的图像窗口中,如下所示:imshow(image);此外,Matlab还提供了imwrite函数,用于将图像保存为指定的文件格式。
例如,以下命令可以将图像保存为PNG格式:imwrite(image, 'image.png');二、图像增强和滤波在实际应用中,我们往往需要对图像进行增强或滤波,以提高图像的质量或减少噪声。
Matlab提供了许多图像增强和滤波的函数,如直方图均衡化、中值滤波等。
直方图均衡化是一种常用的图像增强方法,用于提高图像的对比度。
在Matlab 中,我们可以使用histeq函数来实现直方图均衡化。
例如,以下代码将对图像进行直方图均衡化处理:enhanced_image = histeq(image);除了直方图均衡化,Matlab还提供了许多其他的图像增强方法,如局部对比度增强、锐化等。
这些方法可以根据具体的需求选择和调整。
另一方面,滤波是图像处理中常用的一种技术,用于降低噪声或模糊图像。
Matlab提供了常见的滤波方法,如均值滤波、中值滤波等。
MATLAB批量打印输出600PPI的图像且图像不留空⽩⼀前⾔最近收到审稿⼈的修改意见,其中有三条:⼀条为<RC: There were only five images evaluated in the experiment, and I recommend increasing to twenty to further evaluate the algorithm performance.>他说我论⽂只有五副图像⽤来评价算法性能,推荐我⾄少⽤20副图像来仿真算法效果. 另外⼀条为《1.2. Quality RC: The manuscript should include graphics with a resolution of no less than 600ppi.》论⽂中每个图像(图⽚)的分辨率不低于600ppi. 第⼆条让论⽂的每张图像PPI为600PPI,则是让图像更⾼清,细节很清晰!绝⼤多数⼈都是截屏MATLAB图像,⾃然很模糊,达不到600PPI的要求,后⾯给出解决办法。
第三条为ablation experiment,<The manuscript has not shown the ablation experiments.>其实传统的红外图像细节增强,直接⽤matlab实现算法处理,很多经典的论⽂,如UM,直⽅图,BF&DDE,GF&DDE,LEPF&DDE等都没有消融实验.这个⼀般出现在基于深度学习的⽬标检测,如论⽂<Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset>的5.4 Ablation Study.通过阅读这篇论⽂,理解消融实验有三点: 你的算法如果由三个关键创新点组成,那么你就分别去掉这三部分得到对应的实验效果如matlab仿真图像.第⼆点就是⽤客观指标去评价,如PSNR,SSIM,RMSC.第三点⾄少五副图像⽤于在视觉效果和客观指标评价.当然以审稿⼈的严谨态度,你⾄少得搞30副图像.但绝⼤多数SCI论⽂的实验部分都是五副红外图像,三个参考算法,即每⼀张红外图像对应五副不同的结果,那么5副图像就是25张图像了,这样下来已经占了论⽂的⼤多数篇幅了.如果增加为20副,那⾄少得放100张不同结果的图像,估计得占两页纸! 我TM, 真是⽆语! 都是按照发表的论⽂写的,审稿⼈竟然提出如此要求.....但要毕业只好硬着头⽪搞, 哪怕审稿⼈让我摘星星,我也得踮起脚尖向上跳!⼆ MATLAB如何实现⼀次打印20副图像(⼀)下载20副红外图像重点推荐两个数据集:⽤于基于深度学习的红外⽬标检测1.第⼀个数据集2.第⼆个数据集Thermal Infrared Dataset这些数据集,基本上都是⼏百⼏千张图像,所以都是1个G或4个G的⼤⼩,很可怕!所以我直接开通了百度⽹盘会员下载,不然4个G下载不了!若是对深度学习的红外⽬标检测感兴趣,那就必然下载⽤于算法研究!(⼆) matlab实现对输⼊的20副红外图像算法处理后输出思路是;分成两步,第⼀步是把算法处理后的20副红外图像放在⼀个元胞向量中;第⼆步,输出显⽰每⼀个算法的结果图像,并分配⼀个⽂件名;1.第⼀步算法处理得到20副红外图像的输出结果把输⼊的20副红外图像赋值给5⾏4列的元胞数组,⽤循环实现对元胞数组中的每⼀副红外图像做算法处理,赋值给⼀个包含20个元素的元胞向量OUT1,代码如下:%this file is used to%once display the result of Algorithm for 20 images%pattention:the function can't have a figure%--subplot(1,1,1);or imshow(test_R2);clc;close all;clear;%----a example for display different solution images----%324*256I1=imread('../infrared/17sempach_BG1_1.png');I2=imread('../infrared/18sempach_BG2_1.png');I3=imread('../infrared/19sempach_BG3_1.png');I4=imread('../infrared/20sempach_BG4_1.png');%324*256%512*512I5=imread('../infrared/01orange_raw01.png');I6=imread('../infrared/02orange01_nuc.png');I7=imread('../infrared/11green_TIV01.png');I8=imread('../infrared/12red_TIV01.png');%512*512%640*512I9=imread('../infrared/03red_cma01.png');I10=imread('../infrared/04red_cmb01.png');I11=imread('../infrared/06cmA_seq01.png');I12=imread('../infrared/07cmC_seq01.png');I13=imread('../infrared/08cmA_seq1_01.png');I14=imread('../infrared/09cmB_seq2_01.png');I15=imread('../infrared/21FLIR_video_00001.tiff');I16=imread('../infrared/22FLIR_08863.tiff');I17=imread('../infrared/23FLIR_thermal1.tiff');%640*512%1024*512I18=imread('../infrared/13raw01.png');I19=imread('../infrared/14seq3_nuc01.png');I20=imread('../infrared/15seq4_nuc01.png');%1024*512%1024*640I21=imread('../infrared/16seq5_nuc01.png');%1024*640%1024*1024I22=imread('../infrared/03red_cma01.png');I23=imread('../infrared/10seq3_raw01.png');%1024*1024%----a example for display different solution of images----%input 20 different images%Picture save "batch"I = cell(5,4);I{1,1}=I1; I{1,2}=I2; I{1,3}=I3; I{1,4}=I4;I{2,1}=I5; I{2,2}=I6; I{2,3}=I7; I{2,4}=I8;I{3,1}=I9; I{3,2}=I10;I{3,3}=I11;I{3,4}=I12;I{4,1}=I13; I{4,2}=I14;I{4,3}=I15;I{4,4}=I16;I{5,1}=I17; I{5,2}=I18;I{5,3}=I19;I{5,4}=I20;out1 = cell(1,20);%Picture save "batch" by method 1%this method is not recommend%Not centered% for i =1:2% for j = 1:2% temp = I{i,j};% out = GABF_DDE_top820(temp);% out1{(2*(i-1)+j)} = out;% H = figure;% subplot(2,2,(2*(i-1)+j));% imshow(out);title({num2str(i);num2str(j)});% print(H,'-dtiffn','-r600',num2str((2*(i-1)+j)));% end% end%Picture save "batch" by method 2%the result is centred%recommenedfor i =1:5for j = 1:4temp = I{i,j};out = GABF_DDE_top820(temp);out1{(4*(i-1)+j)} = out;% subplot(5,4,(4*(i-1)+j));% imshow(out);title({num2str(i);num2str(j)});endend 2.第⼆步,为每⼀个输出结果分配⽂件名,且让图像显⽰窗⼝不留空⽩先⽤⼀个元胞向量filename存放20个红外图像的⽂件名,然后结合print函数和循环结构,给每个结果指定保存图⽚格式如tiff,图像的分辨率600PPI('-r600'),⽂件名filename{k}其中的⼀个亮点是,matlab显⽰图像不留空⽩,代码仅⼀⾏关键:set(gca, 'position', [0 0 1 1 ]);axis normal;%the csdn websitematlab代码如下:filename = { 'IMA1', 'IMA2', 'IMA3', 'IMA4'...,'IMA5', 'IMA6', 'IMA7', 'IMA8'...,'IMA9','IMA10','IMA11','IMA12'...,'IMA13','IMA14','IMA15','IMA16'...,'IMA17','IMA18','IMA19','IMA20'};for k = 1:length(filename)H = figure; % 指定图⽚打印figure_handlessubplot(1,1,1);imshow(out1{k});set(gca, 'position', [0 0 1 1 ]);axis normal;%the csdn websiteprint(H,'-dtiffn','-r600',strcat('../result/',filename{k})) ;%internet% print(H,'-dtiffn','-r600',num2str(k)) ;%internet end 重点是print函数批量输出不同⽂件名的图像,matlab显⽰图像没有多余的空⽩3.⽤print函数和strcat函数输出图像到指定位置,且更改图像PPI为600(常⽤):前提是输⼊图像本⾝要⾜够清晰:如果你输⼊的截屏图像很模糊,那么更改为600PPI后图像依然模糊。
如何使用Matlab进行图像分析随着计算机视觉技术的快速发展,图像分析在很多领域中扮演了重要的角色。
Matlab作为一种功能强大的工具,被广泛应用于图像处理和分析中。
在本文中,我们将学习如何使用Matlab进行图像分析,探索其强大的功能和应用。
第一部分:图像预处理在进行图像分析之前,首先需要对图像进行预处理,以获取更好的结果。
Matlab提供了丰富的预处理函数,如图像去噪、图像增强、均衡化等。
其中,图像去噪是一个常见的预处理步骤。
使用Matlab的`imnoise`函数可以向图像中添加噪声,而使用`imfilter`函数可以对图像进行滤波去噪处理。
此外,图像增强也是一个重要的预处理步骤。
Matlab提供了多种图像增强算法,如直方图均衡化、对比度增强等。
其中,直方图均衡化可以使图像的亮度分布更加均匀,从而提高图像的视觉效果。
第二部分:特征提取特征提取是图像分析的核心步骤,通过提取图像的特征,可以更好地描述图像内容。
Matlab提供了多种特征提取方法,如颜色直方图、梯度直方图、纹理特征等。
其中,颜色直方图可以描述图像中各个颜色的像素分布情况,梯度直方图可以描述图像中边缘的分布情况,纹理特征可以描述图像中纹理的特性。
在Matlab中,可以使用`imhist`函数计算图像的颜色直方图,使用`imgradient`函数计算图像的梯度直方图,使用`graycomatrix`函数计算图像的纹理特征。
第三部分:目标检测与识别目标检测与识别是图像分析的重要应用之一,可以用于实现人脸识别、物体检测等任务。
Matlab提供了多种目标检测和识别算法,如Haar特征、HOG特征、深度学习方法等。
其中,Haar特征是一种基于积分图像的快速特征提取算法,HOG特征是一种基于梯度直方图的特征提取算法,而深度学习方法则是一种以卷积神经网络为基础的目标检测和识别算法。
在Matlab中,可以使用`vision.CascadeObjectDetector`函数实现Haar特征检测,使用`extractHOGFeatures`函数实现HOG特征提取,使用`trainCascadeObjectDetector`函数实现基于Haar特征的目标检测模型训练,使用`trainNetwork`函数实现深度学习模型训练。
红外细节图像处理算法研究及应用一、绪论红外图像处理是红外成像技术发展的重要组成部分,其应用涵盖丰富和广泛。
红外成像技术可以检测到发热体,对于热成像、夜视、医学成像等领域起着关键作用。
二、红外图像特点与传统成像技术不同,红外成像技术采集到的图像具有以下特点:1. 色彩单一;2. 对比度低;3. 噪声多。
三、红外图像处理算法为了应对红外图像的特点,需要相应的处理算法。
以下为红外图像处理算法的一些应用:1. 平滑滤波算法:红外图像的噪声比较多,平滑滤波算法能够减少噪声并保持边缘信息。
2. 直方图均衡化:红外图像的对比度较低,直方图均衡化算法能够增强图像的对比度。
3. 边缘检测算法:红外图像的边缘信息较重要,不仅能够表现目标物体的轮廓,还能够对图像进行分割。
目前常用的边缘检测算法有Canny算法、Sobel算法等。
四、红外图像处理应用红外图像的处理应用涵盖医学、军事、消防等多个领域。
以下为几个典型应用:1. 医学应用:通过红外热像技术,可以对人体进行无创检测,使得医学影像诊断更加准确和精细。
2. 军事应用:红外感应技术在战争中起着重要作用,可以探测到人体的热区域,实现夜视和远程目标识别。
3. 消防应用:在火灾中,红外热像技术可以用于查找火源,准确定位火灾蔓延的情况。
五、红外图像处理未来发展趋势未来的红外图像处理技术将会更加智能化和高效化。
人工智能将会被广泛应用于红外图像处理领域,人工神经网络等算法将会被用于目标识别和分割。
同时,红外图像处理将会结合更高级的机器学习技术,进行更加复杂的数据分析和处理。
六、结论通过对红外图像处理技术的研究和应用,我们可以看出,红外图像在工农业、医学、军事等各个领域都有着广泛的应用前景。
同时,我们也需要不断完善和创新,使红外图像处理技术不断迭代更新,达到更好的效果和应用效益。
如何在Matlab中进行图像修复和图像修复图像修复是数字图像处理中的一项重要任务,它旨在通过对图像中的损坏或失真进行恢复和修复,以达到改善图像质量和准确性的目的。
Matlab作为一种流行的科学计算和图像处理软件,提供了许多功能强大的工具和函数,可帮助我们实现图像修复的任务。
在本文中,我们将探讨如何使用Matlab进行图像修复和图像修复的技术。
图像修复的一种常见方法是基于图像降噪的方法。
在实际应用中,图像通常包含有损噪声,例如高斯噪声、盐和胡椒噪声等。
这些噪声会影响图像的视觉效果和后续图像处理的结果。
因此,我们首先需要对图像进行降噪处理,以减少噪声对图像的影响。
Matlab中有许多用于图像降噪的函数和工具包,例如medfilt2函数、wiener2函数和imnoise函数等。
其中,medfilt2函数可以实现中值滤波,它通过计算像素领域内的中值来替代当前像素的值,从而有效地降低图像中的脉冲噪声。
而wiener2函数可以实现维纳滤波,它利用图像的频谱信息和噪声模型来减少噪声的影响。
imnoise函数可以用于向图像中添加噪声,可以根据需要选择添加高斯噪声、盐和胡椒噪声等。
通过这些函数的组合使用,我们可以有效地对图像进行降噪处理。
除了降噪处理,图像修复还需要解决图像中的缺失和损坏问题。
图像中的缺失可以是由于损坏或丢失的像素引起的,而图像中的损坏可以是由于物理和环境因素引起的,例如划痕、水印、光照不足等。
对于这些问题,我们可以使用Matlab中的图像修复工具箱来进行修复。
Matlab中的图像修复工具箱包含了一系列的函数和算法,用于处理各种注水、缺失、损坏和失真等问题。
其中,最常用的算法是基于图像内插的方法,它通过对邻近像素的插值来恢复缺失或损坏的像素。
Matlab中的interp2函数可以实现二维图像的内插计算,它可以根据已知像素的位置和值来估计未知像素的值。
另外,Matlab还提供了一些其他的图像修复算法,例如基于梯度的方法、基于PDE的方法和基于深度学习的方法等。
基于MATLAB的图像识别与处理算法研究一、引言图像识别与处理是计算机视觉领域的重要研究方向,随着人工智能技术的不断发展,图像处理在各个领域都有着广泛的应用。
MATLAB 作为一种强大的科学计算软件,提供了丰富的图像处理工具箱,为图像识别与处理算法的研究提供了便利。
本文将探讨基于MATLAB的图像识别与处理算法研究的相关内容。
二、图像预处理在进行图像识别与处理之前,通常需要对图像进行预处理,以提高后续算法的准确性和效率。
常见的图像预处理操作包括灰度化、去噪、边缘检测等。
在MATLAB中,可以利用各种函数实现这些预处理操作,例如rgb2gray函数实现RGB图像到灰度图像的转换,imnoise函数添加噪声,edge函数进行边缘检测等。
三、特征提取特征提取是图像识别与处理中至关重要的一步,通过提取图像中的特征信息来描述和区分不同的目标。
在MATLAB中,可以利用各种特征提取算法实现对图像特征的提取,如HOG(Histogram of Oriented Gradients)特征、LBP(Local Binary Patterns)特征等。
这些特征可以有效地表征图像的纹理、形状等信息。
四、图像分类与识别基于提取到的特征信息,可以利用各种分类器实现对图像的分类与识别。
常见的分类器包括支持向量机(SVM)、K近邻(K-Nearest Neighbors)、神经网络等。
在MATLAB中,集成了这些分类器的函数接口,可以方便地进行模型训练和测试。
通过构建合适的分类模型,可以实现对图像内容的准确分类和识别。
五、目标检测与跟踪除了图像分类与识别外,目标检测与跟踪也是图像处理领域的重要任务。
目标检测旨在从图像中定位和标记出感兴趣的目标区域,而目标跟踪则是追踪目标在连续帧中的位置变化。
在MATLAB中,可以利用深度学习框架如YOLO(You Only Look Once)、Faster R-CNN等实现目标检测与跟踪任务。
- -. - - 总结 红外图像的处理及其MATLAB函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 - -.
- - 总结 图1.1 输入的红外图像 1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; - -. - - 总结 (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示: - -.
- - 总结 图2.1 图像增强方法 下面我们主要介绍其中的几种增强方法。
2.2 红外图像的直方图均衡化 2.2.1 图像的直方图 灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。其中最常用的是一维直方图。它具有以下三个性质:(1)图像与直方图之间是多对一的映射关系;(2)只表示图像每一灰度级出现的频数,而失去了具有该灰级的像素的位置信息;(3)一幅图像各子区直方图之和等于该图像的全图直方图。 一幅图像的直方图可以提供下列信息: (1)每个灰度级上像素出现的频数; (2)图像像素值的动态范围; - -. - - 总结 (3)整幅图像的大致平均明暗; (4)图像的整体对比度情况。 因此,在图像处理中直方图是很有用的决策和评价工具。直方图统计在对比度拉伸、灰度级修正、动态范围调整、图像灰度调整、模型化等图像处理方法中发挥了很大的作用,在本文后面的讨论中将可以看到直方图的重要作用。比较红外图像与可见光图像的直方图,可以总结其直方图特点如下: (1)像素灰度值动态范围不大,很少充满整个灰度级空间;而可见光图像的像素则分布于几乎整个灰度级空间。 (2)绝大部分像素集中于某些相邻的灰度级范围,这些范围以外的灰度级上则没有或只有很少的像素;而可见光图像的像素分布则比较均匀。 (3)直方图中有明显的峰存在,多数情况下为单峰或双峰,若为双峰,则一般主峰为信号,次峰为噪声;而可见光图像直方图的峰不如红外图像明显,一般多个峰同时存在。 以上特点是大多数红外图像直方图所具备的,但也不绝对。实际中的红外图像可能会由于气候条件、环境温度等因素的影响,呈现出与上述特点不完全一致的情形。 图2.2为原红外图像的灰度图和直方图直方图 - -.
- - 总结 图2.2 原始图像的灰度图和直方图 2.2.2 直方图的均衡化
直方图均衡的作用是改变图像中灰度概率分布,使其均匀化.其实质是使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。 由前一章红外图像特点的分析可知,红外图像普遍存在着灰度级比较集中,层次感差等问题,采用直方图均衡算法来进行处理,可以使其灰度级尽量拉开,从而达到对比度增强的效果。下面探讨一下直方图均衡的具体步骤。设一幅图像的像素为n,共有L个灰度级,kn代表灰度级为kr的像素的数目,则第k个灰度- -. - - 总结 级出现的概率(对于灰度级为离散的数字图像,用频率来代替概率)可表示为:
nnrPkkr)(
其中,12,1,0,10Lkr
k。对其进行均衡化后的函数)(rT的离散形式可表
示为: kiikrrknnrPrTS00)()(
式中,12,1,0,10Lkrk。可见,均衡后各像素的灰度值kS可直接由原图
像的直方图得到。
(a) (b) - -.
- - 总结 (c) 图2.3 均衡化后的图像对比
实验证明,直方图均衡对大多数红外图像有效,效果明显,图像对比度大大
增强,原本视觉效果模糊的图像变得清晰,目标的细节得到了突出,方法简单,容易实现,在实践中具有重要意义。 通过以上的理论分析和对具体红外图像的处理,可以得出关于直方图均衡的几个结论: (I)直方图均衡实质上减少灰度等级以换取对比度的加大。直方图均衡化的处理过程中出现了相邻灰度级合并的现象,即原来直方图上频数较小的灰度级被归入很少几个或一个灰度级内,并且可能不在原来的灰度级上; (2)均衡后的直方图并非完全平坦,这是因为在离散灰度下,直方图只是近似的概率密度; (3)当被合并掉的灰度级构成的是重要细节,则均衡后细节信息损失较大。因此可采用局部直方图均衡法来处理: (4)在对比度增强处理中,直方图均衡比灰度线性交换、指数、对数变换的运算速度慢,但比空间域处理和变换域处理的速度快。因此在实时处理中,直方- -. - - 总结 图均衡是一种常用的方法; (5)直方图均衡虽然增大了图像的对比度,但往往处理后的图像视觉效果生硬、不够柔和,有时甚至会造成图像质量的恶化。另外,均衡后的噪声比处理前明显,这是因为均衡没有区分有用信号和噪声,当原图像中噪声较多时,噪声被增强。 2.3 Laplacian算子锐化算法 Laplacian算子是线性二次微分算子,具有旋转不变性,可以满足不同走向的图像边界的锐化要求,对于图像),(yxF,其Laplacian算子为:
22222),(),(),(yyxFxyxFyxF
Laplacian算子锐化后的图像具有以下特征: (1)在灰度均匀区间或灰度斜坡部分F
2
为零,在灰度斜坡的起始处和终点处不
为零; (2) F
2
对细节有较强的相应;
正是由于F
2
有这些特点,使其可以勾划出图像区域的边缘轮廓。因此
Laplacian算子对边缘检测具有很好的功效。 - -.
- - 总结 图2.4 Laplacian算法处理前后图像 2.3 中值滤波算法 中值滤波是常用的一种非线性平滑滤波。它是一种邻域运算,类似于卷积,但不是加权求和计算,而是把邻域中的像素按灰度等级进行排序,然后选择改组的中间值作为输出像素值。他能减弱或消除傅立叶空间的高频分量,但影响低频分量。因为高频分量对应图像中的区域边缘和灰度值具有较大变化的部分,因此概率波可以将这些分量滤除,使图像平滑。 其主要原理是:首先确定一个以某个像素为中心点的邻域,一般为方形领域;然后将邻域中的各个像素的灰度值进行排序,取其中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口;当窗口在图像中上下左右进行移动后,利用中值滤波算法可以很好地对图像进行平滑处理。操作步骤如下: (1)将模板在图像中移动,并将模板中心与图像中心某个像素的位置重合; (2)读取模板下各对应像素的灰度值; (3)将这些灰度值从小到大排列成一列; (4)找出排在中间的一个值; (5)将这个中间值赋给对应模板中心位置的像素。 中值滤波的输出像素是由邻域图像的中间值决定的,因而中值滤波对极限像素值(与周围像素灰度值差别较大的像素)远不如平均值那么敏感,从而可以消除孤立的噪声点,又可以保持图像的细节。 设),(yxf表示数字图像像素点的灰度值,滤波窗口为A的中值滤波器定义为: )},({),(),(yxGMedianyxGAyx