初中物理常用研究方法

  • 格式:doc
  • 大小:24.00 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中物理常用研究方法

初中物理教材的各个章节都有意识、有步骤地渗透了物理学的科学研究方法,各种方法并不是孤立存在的,而是处在密切的相互联系之中。即使某一类方法,其中也必定包括了其他一些方法,只不过这一方法起主导作用罢了。例如实验方法,在根据实验目的进行设计、操作以及对实验结果进行分析时,同时要用到观察、比较、分析、综合、归纳等各种各样的思维方法。中考中对这方面内容考查正逐渐加强,涉及到的一些具体方法有:猜想法、观察法、实验法、分析法、综合法、归纳法、分类法、隔离法、假设法、比较法、等效(替代)法、建立理想模型法、控制变量法、实验推理法、转换法、类比法等研究物理问题的方法。下面是几种实用性强,近几年中考中常考到的科学研究方法。

一、控制变量法

物理学研究中常用的一种研究方法——控制变量法。所谓控制变量法,就是在研究和解决问题的过成中,对影响事物变化规律的因素和条件加以人为控制,只改变某个变量的大小,而保证其它的变量不变,最终解决所研究的问题。

在实验数据的表格上的反映为:某两次实验只有一个条件不相同这种方法,若两次实验结果不同,则与该条件有关,否则无关。反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同。控制变量法是中学物理中最常用的方法,也是中考出题最多的方法。

可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。

如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论。通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R。

1.蒸发的快慢与哪些因素有关

2.滑动摩擦力的大小与哪些因素有关

3.液体压强的大小与哪些因素又关.

4.浮力的大小与哪些因素有关

5.压力的作用效果与哪些因素有关

6.滑轮组的机械效率与哪些因素有关

7.动能的大小与哪些因素有关

8.重力势能的大小与哪些因素有关

9.导体的电阻与哪些因素有关

10.探究电流与电压的关系

11.探究电流与电阻的关系

12.探究电流做功的多少与哪些因素有关

13.探究电流的热效应与哪些因素有关

14.探究电磁铁的磁性强弱与哪些因素有关

15.影响蒸发快慢的因素

二、转换法

在物理学习中,有时需要研究看不见的物质(如电流、分子、力、磁场),这时就必须将研究的方向转化到由该物质产生的学生熟知的各种可见的效应、效果上,由此来分析、研究该物质的存在、大小等情况,这种研究方法称为转换法。转换法作为一种思维方式也时常在分析、解决问题时应用到,如:分子的运动,电流的存在等。

如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定。即根据电流产生的效应来判断;磁场运动看不见、摸不着,判断磁场是否存在时,我们可以根据它产生的作用来认识它即用小磁针放在其中看是否转动来确定。判断电磁铁的磁性强弱时,用电磁铁吸引大头针的多少来确定。再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量。在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等。

中学物理课本中,

测不规则小石块的体积我们转换成测排开水的体积

我们测曲线的长短时转换成细棉线的长度

在测量滑动摩擦力时转换成测拉力的大小

大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度

测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化)通过电流的效应来判断电流的存在(我们无法直接看到电流),

通过磁场的效应来证明磁场的存在(我们无法直接看到磁场),

研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);

在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度。

在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度。

密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的。

在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近。以上列举的这些问题均应用了这种科学方法。。

三、等效替代法

某些物体的物理量由于受到实验本身的特殊限制或因实验器材的条件限制,不可以或很难直接进行测量,可以通过测量与之有相同效果的物体的物理量来进行研究,从而得出相同的结论,这种研究问题的方法就是等效替代法,这种方法可以使要研究的问题简单化、直观化,易于理解,便于操作。

初中物理应用实例: ⑴在力的合成中,若干个共同作用的分力就可以等同于作用效果相同的一个合力,相反,一个力也可以分解为作用效果相同的若于分力。⑵在电路中,若干个电阻,可以等效为一个合适的电阻,反之亦可,如串联电路的总

电阻、并联电路的总电阻都利用了等效的思想。⑶在“曹冲称象”中用石块等效替换大象,效果相同。⑷在研究平面镜成像实验中,用两根完全相同的蜡烛,其中一根等效另一根的像

四、理想模型法

理想模型法就是指把复杂的问题简单化,摒弃次要因素,抓住主要因素,对实际问题进行理想化处理,构成理想化的物理模型。这是一种重要的物理研究方法,有时为了更加形象的描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。

初中物理应用实例:⑴匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难度,得出的结果又具有极高的精度,在允许的误差范围内与实际相吻合。

⑵杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理想化,认为它无形变。

⑶汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。

⑷光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理|青境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。

(5).电路图是实物电路的模型

(6).研究连通器原理时用到液片模型。研究肉眼观察不到的原子结构时建立原子核式结构模研究肉眼观察不到的原子结构时建立原子核式结构模型。

五、类比法

为了把要表述的物理问题说得清楚明白,往往用具体的、有形的、人们所熟知的与之很相似的事物来对照要说明的那些抽象的、无形的、陌生的事物。通过类比,使人们对所要揭示的事物有一个直接的、具体的、形象的认识,找出类似的规/律。

如研究电流时用水流比作电流、用“水压”类比“电压”。电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论。学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流。用抽水机类比电源。抽水机是提供水压的装置;

类似的,电源是提供电压的装置。水流通过涡轮时,消耗水能转化为涡轮的动能;

类似的,电流通过电灯时,消耗的电能转化为内能。我们学习分子动能的时候与物体的动能进行类比;研究做功快慢时与运动快慢进行类比,学习功率时,将功率和速度进行类比。

六、科学推理法

实验推理法它以大量的可靠的事实为基础,以真实的实验为原形,通过合理的推理得出结论,深刻地揭示物理规律的本质,是物理学研究的一种重要的思想