浅谈地质勘查及深部地质钻探找矿技术

  • 格式:doc
  • 大小:28.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈地质勘查及深部地质钻探找矿技术

本文就深部地质钻探找矿技术加以简单的技术分析。

标签:地质勘测技术分析深部找矿

1深部地质钻探现状

我国矿产资源分布广泛,从目前矿产资源勘查开发利用情况来看,我国矿产资源探明程度仅为1/3左右,在地质找矿方面还有相当大的潜力。我国地质找矿勘查工作平均深度在300~500m之间,而西方发达国家勘查深度平均在800m,大部分稀贵金属的找矿深度达到几千米。我国深部找矿勘查技术尚处于起步阶段,随着找矿深度的不断增加,在钻探技术上还有很多问题有待解决。岩芯钻探是地质找矿工作中的重要环节,要探明地下深部矿藏,除利用先进的地质理论和物化探、遥感等探测技术外,最终需要通过岩芯钻探技术取出地下岩芯,通过试验分析才能确定矿产资源的埋藏深度、品位和储量,并最终提交有效的地质找矿成果。现阶段深部地质钻探存在的问题主要有:用于深部钻探施工的配套装备落后,更新缓慢机械化程度不高,综合效率低,属于逐渐淘汰的装备;钻探队伍的组织体系缺失,人才匮乏,尤其中级以上钻探技术人员严重不足,缺乏科技创新的领军人员;生产一线缺乏高素质的钻探工人,不利于钻探工程产业的良性发展;钻探工法难以攻克复杂地层,技术的引进、推广与自主研发不足以支撑发展的需要;实施深部岩心钻探面临人才、装备、机具和技术等困难;管理粗放,结构松散,效率不高成本降低困难;不足以展示新时期地矿人的风采。

2深部找矿技术要点

2.1综合应用现代技术

找矿的方法有很多种,现代找矿方法应借鉴传统找矿思路,考虑从岩石物理性质差异的角度去了解地表到深部的情况以及成矿规律,同时使用现代科技,提高找矿技术的现代性,使用各种精密的地球物理仪器测量,获得较为准确的详细的数据,利用信息系统将各种数据制作成图表供技术人员参考。此外,地质、地球化学、地球物理等研究人员都应与勘探人员密切合作,提高找矿质量。

2.2“地、物、化三场异常相互约束”技术方法

要想实现找矿技术方法的创新,则就要采用“地、物、化三场异常相互约束”的技术方法。这类创新办法特别是在老矿山的深部和覆盖区的定位预测中有着重要的作用。虽然这个方法能够使得地质勘探工作趋向于创新道路,但也还存在一些不可避免的不足:①就目前来说,磁、重、电法在圈定异常的情况下仍然占据着举足轻重的作用,但是对隐伏异常体的边界和深度圈定的准确率还有待提高。

②各种非常规的深穿透地球化学勘查技术在隐伏元素异常应用中的效果十分明显,但在埋藏深度的勘查方面还有缺陷。③现代先进的地震勘探技术可准确圈定

地质结构中的各种构造面,可是无法找准矿产的主要位置。虽然这些方法存在缺陷,但在确定地质、地球化学、地球物理异常中还是常见的方法。新思路和新方法都应得到应用,保证找矿准确度的增加,以便更能满足生产单位和国家的实际需求。所以在新环境下,的确需要一些新技术作为支持。

2.2.1X射线荧光技术

X荧光分析技术能够使单位获得矿产元素成分和品位更加轻便、更加快速、更加灵巧,在未来的地质勘查中有着至关重要的,其找矿勘查的效果也很明显。它的主要原理是:某些物质在受到激发后,可以在较短的时间内发出比激发光波长更大的波长的荧光,这就别称为X特征射线,利用这种X射线能量的差异特性使用在找矿勘查工作中就能叫做荧光技术。实践证明,X荧光技术对勘查铜、铅、锌金属矿都是准确有效的技术方法,它不仅能准确的实现目前矿产资源的坐在位置,还能显示地下隐伏构造,并分清楚矿产资源之间的界限,对勘探矿层的厚度加以确定。工作中,以X荧光分析技术分析的结果会受到矿产颗粒的大小、平整度、均匀度及水分度等因素的影响而导致结果有微小差异,但这些问题都不会影响到该技术的正常使用,测量精度仍可得到保证。

2.2.2甚低频电磁法

现代找矿、勘查工作的不断深入,勘探的难度和复杂度也在逐渐增加,由于时间的推移,浅部矿和表露矿越来越少,这无疑增加了地质勘探的难度,甚低频电磁法就是在这样的情况下被研发出来的,它能满足深层地质的勘探,并提高其精确度。甚低频电磁法是一种浅层物探技术,在使用中,通过对测量的数据进行Fraser滤波处理,然后再结合勘探地质的控矿规律以及勘探矿体的赋存规律,高效、准确地圈定掩盖区内异常地质和矿区的分布,以便获得矿区的准确部位,最后达到为深部找矿提供依据。这种方法方便、快捷、准确,且在隐伏一半隐伏矿体的空间定位中都能显示较好的效果。但在使用该方法的时候,要满足不论在地球上任何一点,都至少要能够收到一个甚低频电台所发射的电磁信号,而这也正是确保使用该方法能发挥更好作用的关键。当然,甚低频法也不可避免的存在着一些不足:比如说在选择信号源的时候就会受到一定的限制;时间也会影响到电滋波的强度,特别是在日出、日落时受到影响更大,所以要合理选择工作时间。

2.3采用GPS感应系统采集信息

GPS是在1964年的建成的“海军导航卫星系统”的基础上发展起来的,是一种全球定位系统。通过卫星,它能实现无线电导航定位,能在地球上任何一个地方、时间连续不断的实行导航,定位,并为我们提供精确的三维数据坐标。找矿地质勘探中也经常使用该技术,在使用中,要先建立感应系统,该系统是由空间的导航星座、地面点的控制站、GPS接收机及地面通信网所组成。而监控系统则是由监控中心、网络中继站、现场分控站、GPS基准站、GPS流动站等组成。在信息采集的过程中,有些岩石矿物有着稳定的物理结构及化学组分,也就是有稳定的本征光谱吸收特征,而之所以有光谱特征的产生,是因为物质内部离子、基团的晶体场效应或者基团的振动效果导致而成。一般来说,不同的矿物质都有

着自己独一无二的辐射能力,所以如果用波普仪对采样进行光谱曲线的测量,再把测量得到的光谱同资源库中的光谱进行对比,就可以判定地质中是由哪些矿物组合而成。同时根据曲线的吸收特征,选择适当的图像波段进行信息收集的工作。3地质勘查找矿实例分析

某地,以往曾进行过大量的地质勘查工作,仅对浅部矿体予以验证,但是深部矿体的勘查资料很少。现将该区的地质特征介绍如下:

3.1地层

地层自西向东自老而新呈走向NE、倾向SE、倾角7°~30°的单斜状展布。探矿工程揭露地层自老而新为奥陶系中统峰峰组(02f)、石炭系中统本溪组(C2b)、上统太原组(C3t)、二叠系下统山西组(Pls)。地表零星出露有二叠系下统下石盒子组(Plx),上统上石盒子组(P2s)、石千峰组(P2sh);三叠系下统刘家沟组(T1l)、和尚沟组(Tlh);第三系及第四系松散层广泛出露。

3.2构造

区内构造以断裂为主,其中尤以高角度正断层较为发育,这类构造主要为北东向,并有多次继承和发展,在构造复合位置,是岩浆岩入侵的良好通道。

3.3岩浆岩

区域内中生代燕山期岩浆活动强烈,分布广泛,岩性以中性岩为主。根据已有地质勘查资料,岩浆岩侵入部位自古生界中奥陶统(02)至中生界三叠系(T)地层,产状呈多分枝的岩床状,形态复杂。岩浆岩是本区磁铁矿成矿母岩。

3.4磁异常

磁异常曲线规整圆滑,呈近似等轴状椭圆形态。以150y值圈定异常,其走向长6000m,宽5500m,以300y值圈定异常等磁力线,其走向长约3600m,宽3500m。由此看出,异常规模比较大。

3.5成矿条件分析

根据以上地质资料分析,本区具备邯邢式铁矿的基本成矿地质条件。矿区内浅部虽是煤系地层,其下则是奥陶系地层,北东向断层构造控制了岩浆岩的入侵及矿田的分布,经钻探验证,本区在深部揭露闪长岩,同时也见到了接触带和磁铁矿。综上所述,本区具备接触交代条件,奥陶系中统含膏角砾岩地层为岩浆的侵入提供了空间,对其接触交代起了催化作用,故而在该地层中有可能形成多层厚大矿体。

3.6勘查结果