第一章 勾股定理单元测试(A卷,含答案)
- 格式:doc
- 大小:196.50 KB
- 文档页数:5
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B. -C.D.2、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.53、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm5、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.56、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.7、如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )8、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△=6+.其中正确的结论是()AOBA.①②③⑤B.①②③④C.①②③④⑤D.①②③9、下列四组数中,不能构成直角三角形边长的一组是( )A. B. C. D.10、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A.8B.9.5C.10D.11.511、满足下列条件的,不是直角三角形的是()A. B. C.D.12、图1为一个长方体,AD=AB=10,AE=6,M,N为所在棱的中点,图2为图1的表面展开图,则图2中MN的长度为()A.11B.10C.10D.813、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.414、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A. B.2 C.1.5 D.15、在直角三角形中,自锐角顶点引的两条中线为和,则这个直角三角形的斜边长是( )A.3B.2C.2D.6二、填空题(共10题,共计30分)16、《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为________.17、如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为________.18、在中,若,,,则________.19、如图,在矩形中,,,对角线相交于点O,点P为边上一动点,连接,以为折痕,将折叠,点A的对应点为点E,线段与相交于点F.若为直角三角形,则的长________.20、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为________.21、在△ABC中,AB=4,AC=3,BC=5,则△ABC的面积是________.22、如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在x轴上,若△AOB 为等腰三角形,则点B的坐标为________.23、如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当CE的长为________时,△CEB′恰好为直角三角形.24、在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(尺),中部一处折断,竹梢触地面处离竹根尺,试问折断处离地面________尺.25、在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC 的长和cos∠ADC的值.27、如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.28、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.29、如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.30、如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、B6、B7、A8、A9、B10、A11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
第一章勾股定理单元测试卷一、选择题(每小题4分,共32分)1.(4分)分别有下列几组数据:①6、8、10 ②12、13、5 ③17、8、15 ④4、11、9,其中能构成直角三形的有()A.4组B.3组C.2组D.1组2.(4分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.(4分)如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.514.(4分)下列三角形中,不是直角三角形的是()A.三角形三边分别是9,40,41B.三角形三内角之比为1:2:3C.三角形三内角中有两个角互余D.三角形三边之比为2:3:45.(4分)为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为()A.0.7米B.0.8米C.0.9米D.1.0米6.(4分)如果三角形一个内角等于另外两个内角之和,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能7.(4分)直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cm B.8.5cm C.cm D.cm8.(4分)如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空:(每空4分,共24分)9.(4分)如图,正方形B的面积是.10.(4分)如图,小方格都是边长为1的正方形,求四边形ABCD的面积.11.(8分)一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有米.12.(4分)一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距km.13.(4分)如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .三、解答题:(共44分)15.(7分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?16.(7分)新中源陶瓷厂某车间的人字形屋架为等腰△ABC,AC=BC=13米,AB=24米.求AB边上的高CD的长度?17.(7分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.18.(8分)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?19.(7分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.20.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.北师大新版八年级数学上册《第1章勾股定理》2016年单元测试卷(1)参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)分别有下列几组数据:①6、8、10 ②12、13、5 ③17、8、15 ④4、11、9,其中能构成直角三形的有()A.4组B.3组C.2组D.1组【解答】解:①62+82=100=102,符合勾股定理的逆定理;②52+122=132,符合勾股定理的逆定理;③82+152=172,符合勾股定理的逆定理;④42+92≠112,不符合勾股定理的逆定理;故选:B.2.(4分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.3.(4分)如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.51【解答】解:∵=15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.4.(4分)下列三角形中,不是直角三角形的是()A.三角形三边分别是9,40,41B.三角形三内角之比为1:2:3C.三角形三内角中有两个角互余D.三角形三边之比为2:3:4【解答】解:对于A:92+402=412,满足勾股定理的逆定理,所以该三角形是直角三角形;对于B:设三个内角为x,2x,3x则,x+2x+3x=180°,x=30°.此时三个内角分别为30°、60°、90°,即有一个角是直角,所以该三角形是直角三角形;对于C:三角形三内角中有两个互余,即另外一个角是90°,所以该三角形是直角三角形;对于D:设该三角形的三边为2x、3x、4x则(2x)2+(3x)2=13x2≠(4x)2=16x2,不满足勾股定理,也没有角为直角,所以不是直角三角形.故选D.5.(4分)为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为()A.0.7米B.0.8米C.0.9米D.1.0米【解答】解:梯脚与墙角距离:=0.7(米).故选A.6.(4分)如果三角形一个内角等于另外两个内角之和,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能【解答】解:三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形.故选B.7.(4分)直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cm B.8.5cm C.cm D.cm【解答】解:∵直角三角形的两条直角边分别为5cm,12cm,∴斜边==13cm,设斜边上的高为h,则直角三角形的面积=×5×12=×13•h,∴h=cm.故选D.8.(4分)如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9﹣x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.二、填空:(每空4分,共24分)9.(4分)如图,正方形B的面积是144 .【解答】解:由正方形的面积公式可知,AC=13,AD=5,由勾股定理得,DC==12,则CD2=144,∴正方形B的面积是144,故答案为:144.10.(4分)如图,小方格都是边长为1的正方形,求四边形ABCD的面积12 .【解答】解:由题意可得:四边形ABCD的面积=5×5﹣×1×2﹣×4×3﹣×2×3﹣×2×3=12,所以,四边形ABCD的面积为12.故答案为12.11.(8分)一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有25 米.【解答】解:∵52+122=169,∴=13(m),∴13+12=25(米).∴旗杆折断之前有25米.故答案为:25.12.(4分)一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距17 km.【解答】解:作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×0.5km=8km,BC=30×0.5km=15km.则AB=km=17km故答案为17.13.(4分)如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了8 步路(假设2步为1米),却踩伤了花草.【解答】解:由题意可得:AB==10(m),则AC+BC﹣AB=14﹣10=4(m),故他们仅仅少走了:4×2=8(步).故答案为:8.14.(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三、解答题:(共44分)15.(7分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.16.(7分)新中源陶瓷厂某车间的人字形屋架为等腰△ABC,AC=BC=13米,AB=24米.求AB边上的高CD的长度?【解答】解:∵等腰三角形ABC,CD⊥AB,∴AD=BD=AB=12m,∵AC=BC=13m,∴CD==5m.答:AB边上的高CD的长度是5米.17.(7分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.18.(8分)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?【解答】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH 在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB==15cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB==10cm,则需要爬行的最短距离是15cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB==5cm,∵15<10<5,∴则需要爬行的最短距离是15cm.19.(7分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.20.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【解答】解:(1)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)设EC的长为xcm,则DE=(8﹣x)cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8﹣x)2,即16+x2=64﹣16x+x2,化简,得16x=48,∴x=3,故EC的长为3cm.。
(时间:90分钟 满分:100分)一、选择题(每小题3分,共24分)1在△ABC 中,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,下列条件中能判断△ABC 为直角三角形的是( )A .a +b =cB .a =b =2C .∠A =∠B =∠CD .a ∶b ∶c =3∶4∶52在下列长度的各组线段中,是勾股数的一组是( ) A .0.3,0.4,0.5 B .6,8,10 C .4,5,6 D.35,45,13如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍4如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A .12米 B .13米 C .14米 D .15米5△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或336如图所示,在△ABC 中,三边a 、b 、c 的大小关系是 ( ) A .a <b <cB .c <a <bC .c <b <aD .b <a <c7如图,直线l 的同侧有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .558(2007黑龙江哈尔滨中考)如图,矩形纸片ABCD 中,AB =8 cm.把矩形纸片沿直线AC 折叠,点B 落在点E 处.AE 交DC 于点F ,AF =254cm ,则AD 的长为( )A .4 cmB .5 cmC .6 cmD .7 cm二、填空题(每小题3分,共24分)9若三角形的三边长为39,36,15,则此三角形是__________.10(2007江苏扬州中考)下图是一个外轮廓为矩形的机器零件平面示意图,根据图中尺寸(单位:mm)计算两孔中心A 和B 的距离为______mm.11如图所示,一张矩形纸片ABCD ,AD =9 cm ,AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是__________.12如图所示的是一长方形公园,如果某人从景点A走到景点C,则至少要走__________米.13小明要把一根长为70 cm的木棒放到一个长、宽、高分别为50 cm、40 cm、30 cm 的木箱中,此木棒能放进去吗?答:__________.14如图,隔湖有两点A、B,从与BA方向成直角的BC方向的点C,测得CA=100米,CB=80米,则AB=__________.15如图所示,图中阴影部分的面积为__________.16如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点C的最短路程大约是__________.三、解答题(共52分)17(8分)如图,一个高4 m、宽3 m的大门,需要在对角线的顶点间加固一个木条,求木条的长.18(8分)图(1)、图(2)中的每个小正方形的边长都是1,在图(1)中画出一个面积是3的直角三角形;在图(2)中画出一个面积是5的四边形.(1)(2)19(8分)如图所示是水上乐园的一个滑梯,AD=AB,若高BC=4 m,CD=2 m,求滑道AD的长.20(10分)如图所示,有一块四边形的土地ABCD,先测量得到AB=26米,AD=24米,CD=6米,CB=8米,DB=10米.试求这块土地的面积.21(8分)如图所示,水池中离岸边D点1.5 m的C处,直立长着一根芦苇,出水部分BC 的长是0.5 m,把芦苇拉到岸边,它的顶端B恰好合在D点.求水的深度AC.22(10分)如图所示,一次缉毒行动中,警方获可靠信息,一运毒车将经过5号公路,但由于车上有爆炸装置,警方无法靠近,只能使用远程射击的方法,为了减少对周围的伤亡,警方选中一距离公路120 m的隐蔽处P点,射程为200 m,准备行动,此时发现,运毒车已经来到与P点的水平距离为300 m处,若运毒车的车速为20 m/s,那么警方发现后要在几秒钟内对其进行射击?参考答案1答案:D2解析:满足a2+b2=c2的三个正整数叫勾股数,因为62+82=102,所以选B.答案:B3解析:设三角形的两条直角边分别为a,b,斜边为c,则有a2+b2=c2.所以(2a)2+(2b)2=(2c)2.所以当a ,b 扩大2倍时,c 也扩大2倍. 答案:B4解析:13米长的梯子可以达到建筑物的高度可设为x 米,因梯子的底端离建筑物5米,由勾股定理得x 2=132-52,x =12米.答案:A5解析:如图,当高AD 在△ABC 的外部时,BD 2=AB 2-AD 2=81,CD 2=AC 2-AD 2=25.所以BD =9,CD =5.BC =BD -CD =4.此时△ABC 的周长为15+13+4=32.当高AD 在△ABC 的内部时,BC =BD +CD =14.此时△ABC 的周长为15+13+14=42.答案:C 6答案:D7解析:由题图可知a 2+c 2=b 2.所以b 2=16. 答案:C8解析:由折叠可知∠EAC =∠BAC =∠FCA.所以AF =FC.所以DF =CD -CF =CD -AF =AB -AF =8-254=74.在Rt △ADF 中,AD 2=AF 2-DF 2,所以AD =6(cm).答案:C9解析:因为362+152=392,所以该三角形是直角三角形. 答案:直角三角形10解析:由题图可知AC =150-60=90(mm),BC =180-60=120(mm),在Rt △ABC 中,AB 2=AC 2+BC 2=22 500=1502. 所以AB =150(mm). 答案:150 11答案:5 cm12解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x米,由勾股定理得x2=1202+3502,解得x=370米.答案:37013解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x cm,根据题意,得x2=502+402+302=5 000,702=4 900,因为4 900<5 000,所以能放进去.答案:能14解析:由勾股定理得AB2=AC2-BC2=1002-802,所以AB=60(米).答案:60米15解析:本题隐含条件阴影部分为长方形,故只要求出右侧直角三角形的一条未知直角边,即132-52=12,∴阴影部分的宽为2,面积为2×5=10.答案:1016答案:13 cm17分析:木条长的平方=门高长的平方+门宽长的平方.解:设木条的长为x m,则有x2=32+42=52.所以x=5(m).所以木条的长为5 m.18分析:(1)只需画直角边为2和3的直角三角形即可.这时直角三角形的面积为12×2×3=3;(2)画面积为5的四边形,我们可画边长的平方为5的正方形即可.解:如图所示.19解:如图,过点D作DE⊥AB于点E,则有BE=CD=2 m.所以AE=AB-BE=AB-2=AD-2,在直角三角形ADE中,AD2=AE2+DE2,且DE=BC=4 m,所以AD2=(AD-2)2+42.所以AD=5 m.20解:在△ABD 中,∵AB =26米,AD =24米,DB =10米, ∴AD 2+BD 2=AB 2.∴∠ADB =90°.∴S △ABD =12AD·BD =12×24×10=120(平方米).在△BCD 中,∵DB =10米,CD =6米,CB =8米,∴BC 2+CD 2=BD 2. ∴∠C =90°.∴S △BCD =12CD·BC =12×6×8=24(平方米).∴S 四边形ABCD =S △ABD +S △BCD =144(平方米). 答:所求土地的面积是144平方米.21解:设AC =x ,则在Rt △ACD 中,AD =x +0.5, ∴(x +0.5)2=x 2+1.52,∴x =2. 答:水的深度AC 为2 m.22分析:求出运毒车进入和逃出射程区的路程AB 与AD 是解决问题的关键,在Rt △PBC 中,由勾股定理求得BC 后,可得出所需数据.解:如图所示:PC ⊥l ,由题意可知PC =120 m.假设运毒车行至B 点时,进入射程,运毒车行至D 点时,逃出射程,则BD =2BC ,PB =200 m ,由勾股定理得BC 2=PB 2-PC 2=2002-1202=25 600. ∴BC =160 m .而AC =300 m , ∴AB =140 m ,BD =320 m.∴进入射程的时间为140÷20=7(s),逃出射程时间为(140+320)÷20=23(s). ∴警方发现后要在7~23 s 内对其进行射击.。
第一章 勾股定理单元检测一、选择题(本大题共10小题,每小题3分,共30分)1.在△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为( ). A .21 B .15 C .6 D .以上答案都不对2.在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,则△ABC 的面积为( ). A .84 B .24 C .24或84 D .84或243.如图,直角三角形ABC 的周长为24,且AB ∶BC =5∶3,则AC 的长为( ).A .6B .8C .10D .124.如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为( ).A .9B .3C .D .5.如图,在△ABC 中,AD ⊥BC 于点D ,AB =17,BD =15,DC =6,则AC 的长为( ). A .11 B .10 C .9 D .8(第4题图) (第5题图)6.若三角形三边长为a ,b ,c ,且满足等式(a +b )2-c 2=2ab ,则此三角形是( ). A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .直角三角形7.一直角三角形两直角边分别为5,12,则这个直角三角形斜边上的高为( ). A .6B .8.5C .D .8.底边上的高为3,且底边长为8的等腰三角形腰长为( ). A .3 B .4 C .5 D .6 9.一只蚂蚁沿直角三角形的边长爬行一周需2 s ,如果将该直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A .6 sB .5 sC .4 sD .3 s 10.如图,在Rt △ABC 中,∠ACB =90°,AB =4.分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于( ).949220136013A.2π B.3π C.4π D.8π二、填空题(本大题共4小题,每小题4分,共16分)11.等腰三角形一腰长为5,一边上的高为4,则其底边长为________.12.观察图形后填空.图(1)中正方形A的面积为__________;图(2)中斜边x=________.13.四根小木棒的长分别为5 cm,8 cm,12 cm,13 cm,任选三根组成三角形,其中有________个直角三角形.14.东东想把一根70 cm长的木棒放到一个长、宽、高分别为30 cm,40 cm,50 cm的木箱中,他能放进去吗?答:______.(填“能”或“不能”)三、解答题(本大题共6小题,共54分)15.(8分)如图,已知等边△ABC的边长为6 cm.(1)求AD的长度;(2)求△ABC的面积.16.(8分)如图,在一块由边长为20 cm的方砖铺设的广场上,一只飞来的喜鹊落在A 点处,该喜鹊吃完小朋友洒在B,C处的鸟食,最少需要走多远?17.(9分)如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m的半圆,其边缘AB=CD=20 m,点E在CD上,CE=2 m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)18.(9分)图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系.19.(10分)如图,一架云梯长25 m,斜靠在一面墙上,梯子靠墙的一端距地面24 m.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?20.(10分)有一块直角三角形状的绿地,量得两直角边长分别为6 m,8 m.现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案1答案:D点拨:△ABC可能为锐角三角形.此时BC=15+6=21;△ABC也可能为钝角三角形,此时BC=15-6=9.2答案:C 点拨:△ABC 为锐角三角形时,S △ABC =×14×12=84;△ABC 为钝角三角形时,S △ABC =×4×12=24. 3答案:B 点拨:设AB =5x ,则BC =3x ,由勾股定理可得AC =4x ,所以5x +3x +4x =24,解得x =2,所以AC =8.4答案:D 点拨:S 阴=S △ABE +S △ACG +S △BCF==. 5答案:B 点拨:因为在Rt △ABD 中,AD=8,所以在Rt △ACD中,AC 10.6答案:D 点拨:由(a +b )2-c 2=2ab ,得a 2+2ab +b 2-c 2=2ab ,即a 2+b 2=c 2.因此△ABC 为直角三角形.7答案:D 点拨:由勾股定理得斜边长为13,所以5×12=13h ,得h =.8答案:C 点拨:由等腰三角形的“三线合一”及勾股定理可得腰长为5.9答案:C 点拨:把直角三角形的边长扩大1倍,即直角三角形的周长变为原来的2倍.因此所用时间为原来的2倍,即为4 s.10答案:A 点拨:因为S 1=,S 2=BC 2, 所以S 1+S2=(AC 2+BC2)=×16=2π.11答案:6或点拨:当底边上的高为4时,底边的长为6;当腰上的高为4,且三角形为锐角三角形时,底边长为4,且三角形为钝角三角形时,底边的长为12答案:36 13 点拨:由勾股定理易得.13答案:1 点拨:边长为5 cm,12 cm,13 cm 时,可组成直角三角形.14答案:能 点拨:= cm >70 cm ,所以能放进木棒去.15解:(1)∵△ABC 为等边三角形, ∴BD =3(cm).在Rt △ABD 中,由勾股定理得AD (cm).(2)S △ABC =×BC ×AD =×6× =(cm 2).16解:AB 是4×3方格的对角线. 由勾股定理得:1212111222222c b a c b a ⋅⋅+⋅+⋅222119()18442a b c ++=⨯=6013221228AC AC ππ⎛⎫⋅⋅= ⎪⎝⎭8π8π8π=1212AB =2020×5=100(cm).BC 是5×12方格的对角线,由勾股定理得BC =20=20×13=260(cm). 因此最短距离为100+260=360(cm).17解:把半圆柱体展开后,可得下图.由题意可知AD =πr =4π(cm), DE =20-2=18(cm).在Rt △ADE 中,AE22(m).18解:(1)由勾股定理可得最长线段的长为. 能画4条,如图所示.(2)∠ABC 与∠A ′B ′C ′相等. ∵在立体图中,易得∠ABC =90°,又在平面展开图中,对于△A ′B ′D 和△B ′C ′E 有∴△A ′B ′D ≌△B ′C ′E (SAS). ∴∠DA ′B ′=∠EB ′C ′.∵∠DA ′B ′+∠A ′B ′E =90°, ∴∠A ′B ′D +∠EB ′C ′=90°, 即∠A ′B ′C ′=90°.∴∠ABC =∠A ′B ′C ′.19解:(1)由题意,设云梯为AB ,墙根为C ,则AB =25 m ,AC =24 m ,223110+=,,,A D B E A DB B EC DB EC ''=⎧⎪''''∠=∠⎨⎪''=⎩于是BC==7 m. 故梯子底端离墙有7 m.(2)设下滑后云梯为A ′B ′,则A ′C =24-4=20(m).在Rt △A ′CB ′中,B ′C 15(m). ∵15-7=8 m,∴梯子不是向后滑动4 m ,而是向后滑动了8 m. 20解:依题意,设在Rt △ABC中,∠ACB=90°,AC =8,BC =6, 由勾股定理得AB10(m).(1)如图①,当AD =AB =10 m 时,CD =6(m).图①∴C△ABD =10+10+12=32(m).(2)当AB =BD =10 m 时,CD =10-6=4(m),图②∴AD .∴C △ABD =10+10=(20+.(3)当AD =BD 时,设AD =BD =x m , CD =(6-x ) m ,在Rt △ACD 中,CD 2+AC 2=AD 2, 即(6-x )2+82=x 2, 解得x =. 此时C △ABD =×2+10=(m).222524-==253253803。
第一章勾股定理学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 将直角三角形的三边长同时扩大2倍,得到的三角形是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等腰三角形2. 下列几组数中是勾股数的一组是( )A. 3,4,6B. 1.5,2,2.5C. 9,12,15D. 6,8,133. 小明在一个长方形的水池里游泳,长方形的长和宽分别为30m ,40m ,小明在水池中沿直线最远可以游( )A. 30mB. 40mC. 50mD. 60m4. 下列条件能判定△ABC 为直角三角形的是( )A. a =13,b =14,c =15B. ∠A:∠B:∠C =1:2:4C. a =32,b =42,c =52D. ∠A +∠B =∠C5. 如图,已知每级台阶的宽度都是30cm ,每级台阶的高度都是15cm ,连接AB ,则AB 等于( )A. 195cmB. 200cmC. 205cmD. 210cm6. 如图,小方格都是边长为1的正方形,则△ABC 中BC 边上的高是( )A. 1.4B. 1.5C. 1.6D. 27. 如图,在长方形ABCD 中,AB =3 cm ,AD =9 cm ,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则△ABE 的面积为( )A. 3cm2B. 4cm2C. 6cm2D. 12cm28.如图①是美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全等的直角三角形紧密拼接,形成飞镖状,且外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积( )A. 6B. 12C. 16D. 249.如图,在△ABC中,AC=BC,∠ACB=90∘,点D在BC上,BD=3,DC=1,P是AB上的动点,则PC+PD的最小值为( )A. 4B. 5C. 6D. 710.如图所示,有一块长方形场地ABCD,长AB=20m、宽AD=10m,中间有一堵墙,高MN=2m,一只蚂蚁要从A点爬到C点,它必须翻过中间那堵墙,则它至少要走( )A. 20mB. 24mC. 25mD. 26m二、填空题(本大题共5小题,共15.0分)11.如图,将长为8cm的橡皮筋放置在一条直线上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了cm.12.若直角三角形的两条直角边的长分别为a,b,且满足(a−3)2+|b−4|=0,则该直角三角形的斜边长为.13.已知两条线段的长为5和12,当第三条线段长的平方为________时,这三条线段能组成一个直角三角形.14.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=________°.15.如图,在Rt△ABC中,∠ABC=90∘,AB=20,以AC,BC为直径的半圆的面积分别为S1,S2,则S1−S2=(结果保留π).三、解答题(本大题共7小题,共56.0分。
第一章勾股定理单元测试题(一) 1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).(A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ). (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( )(A )6秒(B )5秒 (C )4秒 (D )3秒 9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ). (A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ).(A )20 (B )24 (C )28 (D )32 11.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以222c b a =+D.在Rt △ABC 中,∠B =90°,所以222c b a =+12.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来 的( )A.1倍 B.2倍 C.3倍 D.4倍13.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形14.如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积 为( )A.313 B.144 C.169 D.2515.如图,在Rt △ABC 中,∠ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( )A.6 cm B.8.5 cm C.1360cm D.1330cm 16.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1︰2︰3B.三边长的平方之比为1︰2︰3C.三边长之比为3︰4︰5D.三内角之比为3︰4︰517.如图,在△ABC 中,∠ACB =90°,AC =40,BC =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为( )A.6 B.7 C.8 D.9 A18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A.6 cm B.8 cm C.10 cm D.12 cm19.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 20.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,已知a ∶b =3∶4,c =10,则△ABC 的面积为( )A .24 B .12 C .28 D .3021.在△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为( ).A .21B .15C .6D .以上答案都不对22.在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,则△ABC 的面积为( ).A .84B .24C .24或84D .84或2423.如图,直角三角形ABC 的周长为24,且AB ∶BC =5∶3,则AC 的长为( ).A .6B .8C .10D .1224.如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为( ).A .9 B .3 C .94 D .9225.如图,在△ABC 中,AD ⊥BC 于点D ,AB =17,BD =15,DC =6,则AC 的长为( ).A .11 B .10 C .9 D .8(第24题图) (第25题图)BC第17题图A BC第4题图26.若三角形三边长为a ,b ,c ,且满足等式(a +b )2-c 2=2ab ,则此三角形是( ). A .锐角三角形 B .钝角三角形C .等腰直角三角形 D .直角三角形27.一直角三角形两直角边分别为5,12,则这个直角三角形斜边上的高为( ). A .6 B .8.5 C .2013 D .601328.底边上的高为3,且底边长为8的等腰三角形腰长为( ).A .3B .4C .5D .629.一只蚂蚁沿直角三角形的边长爬行一周需2 s ,如果将该直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A .6 s B .5 s C .4 s D .3 s30.如图,在Rt △ABC 中,∠ACB =90°,AB =4.分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于( ).A .2π B .3π C .4π D .8π31..等腰三角形一腰长为5,一边上的高为4,则其底边长为________. 32.观察图形后填空.图(1)中正方形A 的面积为__________;图(2)中斜边x =________.33.四根小木棒的长分别为 5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.34.东东想把一根70 cm 长的木棒放到一个长、宽、高分别为30 cm,40 cm,50 cm 的木箱中,他能放进去吗?答:______.(填“能”或“不能”)35.现有两根木棒的长度分别是40 cm 和50 cm ,若要钉成一个三角形木架,其中有一个角 为直角,则所需木棒的最短长度为________.36.在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD ⊥BC 于点D ,则AD =_______. 37.在△ABC 中,若三边长分别为9,12,15,则以两个这样的三角形拼成的长方形的面积为________.38.如图,某会展中心在会展期间准备将高5 m ,长13 m ,宽2 m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.39.在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,如果三边长满足222c a b =-,那么△ABC 中互余的一对角是_________.40.若一个直角三角形的一条直角边长是7 cm ,另一条直角边比斜边短1 cm ,则该直角三角形的斜边长为________.41.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2. 42.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一 条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草.43.如图,一架云梯长25 m,斜靠在一面墙上,梯子靠墙的一端距地面24 m.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?44如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?45张老师在一次“探究性学习”课中,设计了如下数表:2(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=__________,b=__________,c=__________.(2)以a,b,c为边长的三角形是不是直角三角形?为什么?46如下页图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.47如图,在长方体ABCD A B C D ''''-中,2AB BB '==,AD =3,一只蚂蚁从A 点出发,沿长方体表面爬到C '点,求蚂蚁怎样走路程最短,最短路程是多少?48、如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m 。
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
北师大版八年级上册《第一章勾股定理》单元测试(含答案)八年级数学勾股定理单元测试(时间:100分钟总分:120分)班级学号姓名得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C .①③ D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是()A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D .a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是() A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是()A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A .600米B . 800米C . 1000米D. 不能确定二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______第10题图第13题图第14题图第15题图米.14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b =2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。
- 1 - 第一单元《勾股定理》 一、选择题:(4分×8=32分,请把你的正确答案填入表格中)
1、以下列各组数据为三角形三边,能构成直角三角形的是( D ) A、4cm,8cm,7cm B、2cm,2cm,2cm C、2cm,2cm,4cm D、13cm ,12 cm ,5 cm 2、将直角三角形的三边长缩小到原来的一半,得到的三角形是( A ) A、直角三角形 B、锐角三角形 C、钝角三角形 D、以上结论都不对 3、若三角形三边长为a、b、c,且满足等式abcba2)(22,则此三角形是( D ) A、锐角三角形 B、钝角三角形 C、等腰直角三角形 D、直角三角形 4、在△ABC中,∠C=90°,若AB=5,则2AB+2AC+2BC=( D ) A、10 B、15 C、30 D、50 5、如图1,直角三角形ABC的面积为24,且AB:BC=4:3,则AC=( ) A、3 B、5 C、10 D、12
6、直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为( ) A、6 B、8.5 C、1320 D、1360 二、填空题:(每空4分,共20分)
7、如图,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC= 。 8、木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68 cm,这个桌面___________(填”合格”或”不合格”). 9.如图,直线l上有三个正方形a、b、c,其中a、c的面积分别为5和11.求正方形b的面积. - 2 -
10.已知正方形的面积为25cm2,以这个正方形的一边为斜边作一个直角三角形,且有一条直角边的长为3cm,则另一条直角边长为________ 11.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是
三、解答、说理题: 1、一个零件的形状如图所示,工人师傅按规定做得AB=3、BC=4、AC=5、CD=12、 AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗? (8分)
ABC 图4第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( ) A.10米 B.6米 C.5米 D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A.5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4. 5.如图3, 一个高米,宽米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A. 米 B. 米 C. 4米 D. 米二、填空题(每小题4分,共计32分) 6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了______米.8.如图5,小明将一张长为20cm ,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图2图3图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB 、DC 为3m ,两撑脚间的距离BC 为4m ,则AC=____m 就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A 走到景点C ,则至少要走_____米.图8 图9 图1012.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米. 13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、米、米,A 、B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是______米.三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B 点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB 处的宽度.D B A15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).17.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?12090 AB 小河东北牧童 小屋18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽米,请问这辆送家具的卡车能否通过这个通道.2.6m4m20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走,遇到障碍后又往西走2km ,再转向北走到处往东一拐,仅走就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?图1图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米, 则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米, 则由题意知1084x=,所以x=5. 答案:C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米,因梯子的底端离建筑物5米,由勾股定理得: x 2=132-52,x=12米. 答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=; (2) 展开前面上面由勾股定理得AB2=22(14)229++=; (3)展开左面上面由勾股定理得AB2=22(21)425++=; 所以最短路径的长为5cm . 答案:A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知A. 132≠122+62, B. 122≠82+62 ,2=122+52 ,2≠42+42. 答案:C .5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x 米,由勾股定理得:x 2=1.522,解得. 答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝, 根据题意,得x 2 =502+40 2 +302=5000.702 =4900, 因为4900<5000,所以能放进去.A BC图4 答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000, 由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002 , 所以BC=1600.李明向正东方向走了1600米. 答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20. 答案:20cm .图5 图6 图7 9.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5. 答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米). 答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.D B A图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15. 答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]22 ,x =. 答案:.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt △ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm.答案:彩旗下垂时最低处离地面的最小高度h 为170cm.. 17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B的距离就可以,借助勾股定理可以求出来. 答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km.ABDPNA ′M120902.6m4m18.解析:本题关键是能将红莲移动后的图画出, 红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5. 答:水深尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =米,运用勾股定理求出AB 即可. 答案:过直径的中点O ,作直径的垂线交下底边于点D , 如图所示,在Rt △ABO 中,由题意知OA=2,, 所以2222 1.4 2.04AB =-=. 因为4-2.6=1.4,21.41.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可. 答案:如图1和图2.ABD C21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是.图2图1。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在中,于点D,且是的中点,若则的长等于()A.5B.6C.7D.82、如图,⊙M与x轴相交于点A(2,0)、B(8,0),与y轴相切于点C,则圆心M的坐标是()A.(3,5)B.(5,3)C.(4,5)D.(5,4)3、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为b,则ab的值是()A.4B.6C.8D.104、如图,在4×3的长方形网格中,已知A,B两点为格点(网格线的交点称为格点),若C也为该网格中的格点,且△ABC为等腰直角三角形,则格点C的个数为()A.5B.6C.3D.45、如图,圆锥侧面展开得到扇形,此扇形半径,圆心角,则此圆锥高的长度是()A.2B.C.D.6、下列说法中正确的个数为()①如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;②对角线相等的平行四边形是菱形;③如果一个一元二次方程有实数根,那么;④三个角相等的四边形是矩形.A.1个B.2个C.3个D.4个7、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m 的小明()A.没有危险B.有危险C.可能有危险D.无法判断8、四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sinθ的值()A. B. C. D.9、如图,网格中每个小正方形的边长均为1,点,,都在格点上,以为圆心,为半径画弧,交最上方的网格线于点,则的长为()A. B.0.8 C. D.10、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②AF+BE=EF;③当点E与点B重合时,MH= ;其中正确结论的个数是( )A.0B.1C.2D.311、如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B (0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.212、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:①;②;③;④.其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④13、已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.20B.16C.12D.1014、如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形所在平面作直角三角形BEC,F为CD的中点,则EF的最小值为()A. B. C. D.15、如图,A,B是直线l同侧的两点,作点A关于直线l的对称点A′,连结A′B.若点A,B到直线l的距离分别为2和3,则线段AB与A′B之间的数量关系是()A.A′B 2﹣AB 2=13B.A′B 2﹣AB 2=24C.A′B 2+AB2=25 D.A′B 2+AB 2=26二、填空题(共10题,共计30分)16、如图,点G是正方形ABCD的AB边的中点,点E、F在对角线AC上,并且AE=EF=FC,如果AB=2,则BF+GE=________.</p>17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、读诗求解:“出水三尺一红莲,风吹花朵齐水面,水平移动有六尺,水深几何请你算?”请你写出水的深度为________尺.19、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.20、已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是________ 三角形.21、如图,已知四边形ABCD是平行四边形,BC=3AB,A、B两点的坐标分别是(1,0),(0,2),C、D两点在反比例函数y=(k>0,x>0)的图象上,则k的值等于________.22、如图,在矩形ABCD中,对角线AC, BD交于点O,已知∠AOD=120°, AB=1,则BC的长为________23、如图,在边长为的正方形中,点Q是边的中点,点P是边上的一点,连接,,且,则线段的长为________ .24、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?28、在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.29、如图,是等腰直角三角形,,D是斜边的中点,分别是边上的点,且,若,,求线段的长.30、如图,△ABC中,,且AD=AC.若∠ABC=45°,D是BC边上一点,BD-DC=1.求DC的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、B5、C6、A7、B8、D9、A10、C11、D12、B13、A14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)28、。
北师大版八年级上册数学第一章《勾股定理》测试卷(含答案)一.选择题1.下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,2.下列各组数中,能构成直角三角形的三边的长度是()A.3,5,7B.,,C.0.3,0.5,0.4D.5,22,233.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角∠AOB走“捷径”,在花圃内走出了一条“路”AB.他们踩伤草坪,仅仅少走了()A.4m B.6m C.8m D.10m4.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定5.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.6.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.77.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.178.有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.2022B.2021C.2020D.19.下列各组数中,不是勾股数的是()A.6,8,10B.9,41,40C.8,12,15D.5k,12k,13k(k为正整数)10.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2二.填空题11.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.12.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.13.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD=.14.将一副三角尺如图所示叠放在一起,如果AB=10cm,那么AF=cm.15.若△ABC的三边a、b、c,其中b=1,且(a﹣1)2+|c﹣|=0,则△ABC的形状为.16.如图,已知在Rt△ABC中,∠BCA=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1,S2,则S1+S2=.17.如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.18.请写出两组勾股数:、.19.如图,某开发区有一块四边形的空地ABCD,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,则要投入元.20.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.三.解答题21.如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.22.如图,∠B=90°,AB=4,BC=3,CD=12,AD=13,点E是AD的中点,求CE的长.23.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.24.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.25.如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).26.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.27.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.参考答案一.选择题1.解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.2.解:A、∵32+52=34≠72,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵()2+()2=7≠()2 ,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵(0.3)2+(0.4)2=0.25=(0.5)2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵52+222=509≠232,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选:C.3.解:在Rt△AOB中,AB==10m,∴AO+BO﹣AB=6+8﹣10=4m.即少走了4m.故选:A.4.解:根据题意得:如图:OA=40×20=800m.OB=40×15=600m.在直角△OAB中,AB==1000米.故选:C.5.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.6.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.7.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.8.解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2021次后形成的图形中所有的正方形的面积和为2022.故选:A.9.解:A、62+82=102,能构成直角三角形,是正整数,故是勾股数;B、92+402=412,能构成直角三角形,是正整数,故是勾股数;C、82+122≠152,不能构成直角三角形,故不是勾股数;D、(5k)2+(12k)2=(13k)2,能构成直角三角形,是正整数,故是勾股数;故选:C.10.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.二.填空题11.解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为10×11=110.故答案是:110.12.解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.13.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.14.解:在Rt△ACB中,∠ACB=90°,∠B=30°,∴AC=AB=5,∵FC∥DE,∴∠AFC=∠D=45°,由勾股定理得,AF==5(cm),故答案为:5.15.解:∵(a﹣1)2+|c﹣|=0,∴a﹣1=0,c﹣=0,解得a=1,c=,∵12+12=()2,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.16.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.17.解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).阴影故答案是:96m218.解:两组勾股数是:3、4、5;6、8、10;故答案为:3、4、5;6、8、10.19.解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,S 四边形ABCD =S △BAD +S △DBC =,==36. 所以需费用36×200=7200(元).故答案为:720020.解:三级台阶平面展开图为长方形,长为8dm ,宽为(2+3)×3dm , 则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:x 2=82+[(2+3)×3]2=172,解得x =17.故答案为:17.三.解答题21.证明:∵MN ⊥AB 于N ,∴BN 2=BM 2﹣MN 2,AN 2=AM 2﹣MN 2∴BN 2﹣AN 2=BM 2﹣AM 2,又∵∠C =90°,∴AM 2=AC 2+CM 2∴BN 2﹣AN 2=BM 2﹣AC 2﹣CM 2,又∵BM =CM ,∴BN 2﹣AN 2=﹣AC 2,即AN 2﹣BN 2=AC 2.22.解:在Rt △ABC 中,∠B =90°,∴,∵CD =12,AD =13,∵AC 2+CD 2=52+122=169,AD 2=169,∴AC 2+CD 2=AD 2,∴∠C =90°,∴△ACD 是直角三角形,∵点E 是AD 的中点,∴CE =.23.(1)△ABE 是等腰直角三角形,证明:∵Rt △ABC 绕其锐角顶点A 旋转90°得到在Rt △ADE ,∴∠BAC =∠DAE ,∴∠BAE =∠BAC +∠CAE =∠CAE +∠DAE =90°,又∵AB =AE ,∴△ABE 是等腰直角三角形;(2)∵四边形ABFE 的面积等于正方形ACFD 面积,∴四边形ABFE 的面积等于:b 2.(3)∵S 正方形ACFD =S △BAE +S △BFE即:b 2=c 2+(b +a )(b ﹣a ),整理:2b 2=c 2+(b +a )(b ﹣a )∴a 2+b 2=c 2.24.解:(1)△ABC 为直角三角形,理由:由图可知,,BC =,AB ==5,∴AC 2+BC 2=AB 2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.25.解:所画图形如下所示,其中点A即为所求;.26.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S=BC•AD=×14×12=84.△ABC27.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.。
www.czsx.com.cn
- 1 -
第一章 勾股定理单元测试(A卷)
一、填空题:(3分×10=30分)
1.△ABC,∠C=90°,a=9,b=12,则c=__________.
2.△ABC,AC=6,BC=8, 当AB=__________时,∠C=90°.
3.等边三角形的边长为6 cm,则它的高为__________.
4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.
5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.
6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.
7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.
8.等腰三角形的两边长为2和4,则底边上的高为__________.
9.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
D
C
B
A
图(1) 图(2) 图(3)
10.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是
__________.
二、选择题(3分×10=30分)
11.下列各组数中,不能构成直角三角形的一组是( )
A.1,2,5 B.1,2,3 C.3,4,5 D.6,8,12
12.如图(2),△ABC中AD⊥BC于D,AB=3,BD=2,DC=1, 则AC等于( )
A.6 B.6 C. 5 D.4
13.已知三角形的三边长之比为1∶1∶2,则此三角形一定是( )
www.czsx.com.cn
- 2 -
A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形
14.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长( )
A.4 cm B.8 cm C.10 cm D.12 cm
15.如图(3),以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大
的半圆面积,则这个三角形是( )
A.锐角三角形; B.直角三角形; C.钝角三角形; D.锐角三角形或钝角三角形
16.△ABC中,∠A,∠B,∠C的对边分别是a,b,c下列命题中的假命题是( )
A.如果∠C-∠B=∠A, 则△ABC是直角三角形
B.如果c2=b2-a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)( c-a)=b2, 则△ABC是直角三角形
D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形
17.如图(4),△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC
等于( )
DC
B
A
D
C
B
A
图(4) 图(5)
A.3 B.4 C.5 D.13
18.如图(5),△ABC中,AB=AC=10,BD⊥AC于D,CD=2,则BC等于( )
A.210 B.6 C.8 D.5
19.△ABC中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( )
A.1 B.3 C.23 D.43
20.直角三角形的一条直角边是另一条直角边的31,斜边长为10 ,它的面积为( )
www.czsx.com.cn
- 3 -
A.10 B.15 C.20 D.30
三、解答题:(共40分)
21.(6分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动
工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上
述数据,求出隧道BC的长(精确到0.1 km).
图(6)
22.(8分)如图(7),△ABC中,AB=15 cm, AC=24 cm,∠A=60°.求BC的长.
C
B
A
图(7)
23.(8分)如图(8),△ABC中,CD⊥AB于D.
(1)图中有( )个直角三角形.
A.0 B.1 C.2 D.3
(2)若AD=12,AC=13则CD=__________.
(3)若CD2=AD·DB, 求证:△ABC是直角三角形.
DCB
A
www.czsx.com.cn
- 4 -
图(8)
24.(8分)小明把一根长为160 cm的细铁丝剪成三段,作成一个等腰三角形风筝的边框
ABC(如图9),已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?
D
C
B
A
图(9)
25.(10分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B
两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中
的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7
千米的公园,问计划修建的这条公路会不会穿过公园?为什么?
45
C
B
A
60
图(10)
www.czsx.com.cn
- 5 -
参考答案
一、1.15 2.10 3.33cm 4.1∶3∶2 5.1360 6.12+63 7. 96 8.15
9.2+23 10. 5或7
二、11.D 12.B 13.D 14.C 15.B 16.B 17.B 18.A 19.C 20.B
三、21.27.7 km
22.过C作CD⊥AB于D,BC=21 cm
23.(1)C (2)5 (3)AC2=AD2+CD2 ①
BC2=CD2+BD2 ②
①+②得
AC2+BC2=2CD2+AD2+BD2=2AD·BD+AD2+BD2=(AD+BD)2=AB2
∴△ABC是直角三角形.
24.AB+BD=21×160cm=80cm.
设AB=x cm,则BD=(80-x)cm,由勾股定理知
AD2+BD2=AB2,即402+(80-x)2=x2,解得x=50
∴AB=AC=50 cm,BC=60 cm.
25.过点C作CD⊥AB于D,得CD=3-1>0.7,故不穿过公园.