方程(组)与不等式(组)思维导图
- 格式:docx
- 大小:248.01 KB
- 文档页数:13
王老师方程(组)与不等式(组)思维导图用心整理,利人利己
王老师方程(组)与不等式(组)思维导图用心整理,利人利己一.【考点梳理】
考点一、不等式的相关概念
1.不等式
用不等号连接起来的式子叫做不等式.
常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.
2.不等式的解与解集
不等式的解:使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.
3.解不等式
求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.
要点诠释:
不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.
考点二、不等式的性质
性质1:
不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.
性质2:
不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a
c
>
b
c
).
性质3:
不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或a
c
<
b
c
).
要点诠释:
(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a,•则a=b;④若a2≤0,则a=0;⑤若ab>0或
王老师
方程(组)与不等式(组)思维导图 用心整理,利人利己
0a b >,则a 、b 同号;⑥若ab <0或0a
b
<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .
考点三、一元一次不等式(组) 1.一元一次不等式的概念
只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法
一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向. 解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:
解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集
含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.
一元一次不等式组的解集通常利用数轴来确定. 要点诠释:
判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法
王老师方程(组)与不等式(组)思维导图用心整理,利人利己由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.
注:不等式有等号的在数轴上用实心圆点表示.
要点诠释:
解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.
5.一元一次不等式(组)的应用
列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要.
要点诠释:
列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所
有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)
王老师
方程(组)与不等式(组)思维导图 用心整理,利人利己
从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系
一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.
二.【考点梳理】
考点一、一元二次方程 1.一元二次方程的定义
只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.
它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法
(1)直接开平方法:把方程变成2x m =的形式,当m >0
时,方程的解为x =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.
(2)配方法:通过配方把一元二次方程2
0ax bx c ++=变形为2
22
424b b ac x a a -⎛
⎫+= ⎪⎝
⎭的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2
0ax bx c ++=,当2
40b ac -≥时,它的解为x =.
(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:
直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 3.一元二次方程根的判别式
一元二次方程根的判别式为. △>0方程有两个不相等的实数根;
ac 4b 2
-=∆⇔
王老师
方程(组)与不等式(组)思维导图 用心整理,利人利己
△=0方程有两个相等的实数根; △<0方程没有实数根.
上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:
△≥0方程有实数根.
4.一元二次方程根与系数的关系
如果一元二次方程(a ≠0)的两个根是,那么.
考点二、分式方程 1.分式方程的定义
分母中含有未知数的有理方程,叫做分式方程. 要点诠释:
(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.
(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程
和
都是分式方程,而关于的方程
和
都是整式方程.
2.分式方程的解法
去分母法,换元法. 3.解分式方程的一般步骤
(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.
口诀:“一化二解三检验”. 要点诠释:
解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.
⇔⇔⇔0c bx ax 2=++21x x 、a
c x x a
b x x 2121=⋅-=+,
王老师方程(组)与不等式(组)思维导图用心整理,利人利己考点三、一元二次方程、分式方程的应用
1.应用问题中常用的数量关系及题型
(1)数字问题(包括日历中的数字规律)
关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.
(2)体积变化问题
关键是寻找其中的不变量作为等量关系.
(3)打折销售问题
其中的几个关系式:利润=售价-成本价(进价),利润率=
利润
成本价
×100%.
明确这几个关系式是解决这类问题的关键.
(4)关于两个或多个未知量的问题
重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.
(5)行程问题
对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.
注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.
(6)和、差、倍、分问题
增长量=原有量×增长率;
现有量=原有量+增长量;
现有量=原有量-降低量.
2.解应用题的步骤
(1)分析题意,找到题中未知数和题给条件的相等关系;
(2)设未知数,并用所设的未知数的代数式表示其余的未知数;
(3)找出相等关系,并用它列出方程;
(4)解方程求出题中未知数的值;
(5)检验所求的答数是否符合题意,并做答.
要点诠释:
王老师方程(组)与不等式(组)思维导图用心整理,利人利己方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.
注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.
三.
【考点梳理】
考点一、一元一次方程
1.方程
含有未知数的等式叫做方程.
2.方程的解
能使方程两边相等的未知数的值叫做方程的解.
3.等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.
4.一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)
=
+b
ax叫做一元一次方程的标
0≠
x
(0
a
为未知数,
准形式,a是未知数x的系数,b是常数项.
5.一元一次方程解法的一般步骤
整理方程——去分母——去括号——移项——合并同类项——系数化为1——(检验方程的解).
6.列一元一次方程解应用题
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关
王老师
方程(组)与不等式(组)思维导图 用心整理,利人利己
键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:
列方程解应用题的常用公式:
(1)行程问题: 距离=速度×时间 时间距离速度= 速度
距离
时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=
工效工作量
工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分
全体=;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·
10
1
,利润=售价-成本, %100⨯-=成本成本售价利润率;
(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2
,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,
S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=3
1πR 2
h.
考点二、一元二次方程 1.一元二次方程
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式
)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;
bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法
(1)直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.
王老师
方程(组)与不等式(组)思维导图 用心整理,利人利己
(2)配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.
(3)公式法
公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.
一元二次方程)0(02
≠=++a c bx ax 的求根公式:2
1,240)x b ac =
-≥ (4)因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法. 4.一元二次方程根的判别式
一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系
如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a
b x x -=+21,a c
x x =21.也就是说,对于任何一个有实数根的一元二次方程,两根
之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:
一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.
考点三、分式方程 1.分式方程
分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是: ①去分母,方程两边都乘以最简公分母; ②解所得的整式方程;
③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.
王老师方程(组)与不等式(组)思维导图用心整理,利人利己3.分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法. 要点诠释:
解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.
考点四、二元一次方程(组)
1.二元一次方程
含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是
ax+by=c(a≠0,b≠0).
2.二元一次方程的解
使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.
3.二元一次方程组
两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.
4.二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.
5.二元一次方程组的解法
①代入消元法;②加减消元法.
6.三元一次方程(组)
(1)三元一次方程
把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.
(2)三元一次方程组
由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.
要点诠释:
二元一次方程组的解法:
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.
(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
王老师方程(组)与不等式(组)思维导图用心整理,利人利己(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.
考点五、不等式(组)
1.不等式的概念
(1)不等式
用不等号表示不等关系的式子,叫做不等式.
(2)不等式的解集
对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.
对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.
求不等式的解集的过程,叫做解不等式.
2.不等式基本性质
(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
3.一元一次不等式
(1)一元一次不等式的概念
一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.
(2)一元一次不等式的解法
解一元一次不等式的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.
4.一元一次不等式组
(1)一元一次不等式组的概念
几个一元一次不等式合在一起,就组成了一个一元一次不等式组.
几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.
求不等式组的解集的过程,叫做解不等式组.
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.
(2)一元一次不等式组的解法
①分别求出不等式组中各个不等式的解集;
王老师方程(组)与不等式(组)思维导图用心整理,利人利己
②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
要点诠释:
用符号“<”“>”“≤”“≥”“≠”表示不等关系的式子,叫做不等式.。