基于图论的数学建模
- 格式:ppt
- 大小:397.50 KB
- 文档页数:35
图论一.最短路问题问题描述:寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
将问题抽象为赋权有向图或无向图G ,边上的权均非负 对每个顶点定义两个标记(()l v ,()z v ),其中:()l v :表示从顶点到v 的一条路的权 ()z v :v 的父亲点,用以确定最短路的路线S :具有永久标号的顶点集1.1Dijkstra 算法:即在每一步改进这两个标记,使最终()l v 为最短路的权 输入:G 的带权邻接矩阵(,)w u v 步骤:(1) 赋初值:令0()0l u =,对0v u ≠,令()l v =∞,0={u }S ,0i =。
(2) 对每个(\)i i i v S S V S ∈=(即不属于上面S 集合的点),用min{(),()()}iu S l v l u w uv ∈+代替()l v ,这里()w uv 表示顶点u 和v 之间边的权值。
计算min{()}iu S l v ∈,把达到这个最小值的一个顶点记为1i u +,令11{}i i i S S u ++=⋃。
(3) 若1i V =-,则停止;若1i V <-,则用1i +代替i ,转(2)算法结束时,从0u 到各顶点v 的距离由v 的最后一次编号()l v 给出。
在v 进入i S 之前的编号()l v 叫T 标号,v 进入i S 之后的编号()l v 叫P 标号。
算法就是不断修改各顶点的T 标号,直至获得P 标号。
若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各顶点的最短路也在图上标示出来了。
理解:贪心算法。
选定初始点放在一个集合里,此时权值为0初始点搜索下一个相连接点,将所有相连接的点中离初始点最近的点纳入初始点所在的集合,并更新权值。
然后以新纳入的点为起点继续搜索,直到所有的点遍历。
§9.2 循环比赛的排名问题问题:n 支球队参加循环比赛,两两交锋,一场决胜,不容平局,“0、1”打分。
如何排名?1.竞赛图:每对顶点之间有且只有一条有向边相连的有向图;有向边指向负方。
2.路径与完全路径:称有向图),(E V G 的一个顶点序列k i i i i v v v v 210为图),(E V G 的一条步长为k 的路径,若满足:对k j k ≤≤∀1,,均有E v v j j i i ∈-1;若还满足k i i v v =0,则称之为图),(E V G 的一条步长为k 的回(或闭)路径。
而若顶点集V 的一个全排列1210-n i i i i v v v v 构成图),(E V G 的一条路径,也称之为图),(E V G 的一条完全路径。
● 图1中:6431v v v v 、16431v v v v v 、1654321v v v v v v v 、654321v v v v v v ● 子路径、闭的完全路径3.定理:任一)2(≥∀n n 阶竞赛图),(E V G 都存在完全路径。
证明(数学归纳法):1:2=n 时,如图3-0,命题真;2:设k n =时命题真;3:当1+=k n 时,设{}121,,,+=k k v v v v V 为顶点集,记{}k v v v V ,,21~=,~G 为图),(E V G 关于{}k v v v V ,,21~=的生成子图;由归纳假设2,在~G 中存在完全路径,不失一般性,设k k v v v v 121...-为~G 中的一条完全路径,考虑顶点1+k v 与{}k v v v V ,,21~=的邻接关系,有如下三种情形:图3-1:k k k v v v v v 1211...-+为G 中的一条完全路径;图3-2:1121...+-k k k v v v v v 为G 中的一条完全路径图3-3:k k i k i v v v v v v v 11121......-+-为G 中的一条完全路径。
数学建模中的图论方法一、前言我们知道,数学建模比赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是失散系统中的问题。
因为我们在大学数学教育内容中,连续系统方面的知识的比率较大,而离散数学比率较小。
所以好多人有这样的感觉,A题下手快,而B题不好下手。
其他,在有限元素的失散系统中,相应的数学模型又可以区分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这种问题在MCM中特别少见,事实上,由于比赛是开卷的,参照有关文件,使用现成的算法解决一个P类问题,不可以显示参赛者的建模及解决实诘问题能力之大小;还有一类所谓的NP问题,这种问题每一个都还没有成立有效的算法,或许真的就不行能有有效算法来解决。
命题经常以这种NPC问题为数学背景,找一个详细的实质模型来考验参赛者。
这样增添了成立数学模型的难度。
但是这也其实不是说没法求解。
一般来说,因为问题是详细的实例,我们可以找到特其他解法,或许可以给出一个近似解。
图论作为失散数学的一个重要分支,在工程技术、自然科学和经济管理中的好多方面都能供给有力的数学模型来解决实诘问题,所以吸引了好多研究人员去研究图论中的方法和算法。
应当说,我们对图论中的经典例子或多或少仍是有一些认识的,比方,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
好多灾题因为归纳为图论问题被奇妙地解决。
并且,从历年的数学建模比赛看,出现图论模型的频次极大,比方:AMCM90B-扫雪问题;AMCM91B-找寻最优Steiner树;AMCM92B-紧迫修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特点向量法)CMCM94B-锁具装箱问题(最大独立极点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。