水声学原理 (2)

  • 格式:doc
  • 大小:566.00 KB
  • 文档页数:20

下载文档原格式

  / 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水声学

underwater acoustics

简史

水声换能器和参量阵

水声换能器

水声换能器的进展

水声参量阵

声波在海洋中的传播和声场数值预报

传播损失

水下声道

理论方法

深海中的声传播

浅海中的声传播

声场数值预报

水声场的背景干扰

噪声

海洋中的混响

信号场的起伏和散射

海面波浪引起的声起伏

湍流引起的声起伏

内波引起的声起伏

目标反射和舰船辐射噪声

水下目标反射

舰船辐射噪声

水声信号处理-声学的一个分支学科。它主要研究声波在水下的产生、传播和接收,用以解决与水下目标探测和信息传输过程有关的声学问题。声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。

简史1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。1912年“巨人”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。美国的R.A.费森登设计制造了电动式水声换能器(500~1000Hz),1914年就能探测到2海里远的冰山。1918年,P.朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。

第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷,主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅海底地层剖面仪,水声释放器以及水声遥测、控制器等。水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。随着海洋的开发,水声学在海洋资源的调查开发、对海洋动力学过程和环境监测、增进人类对海洋环境的认识等方面的应用还将不断地扩展。

现代水声学的研究课题涉及面很广,主要有:①新型水声换能器;②水中非线性声学;③水声场的时空结构(例如:信号场的相关,简正波场的分离和应用,数值声场预报和信道匹配等);④水声信号处理技术(例如:最佳时空处理、水声信号的参量估计等);⑤海洋中的噪声和混响、散射和起伏,目标反射和舰船辐射噪声;⑥海洋媒质的声学特性(例如:沉积层和海底、海面、内波及湍流的声学特性)等。特别是水声学正在与海洋、地质、水生物等学科互相渗透,而形成海洋声学等研究领域。下面就六个方面分别叙述水声学的主要学科内容。

水声换能器和参量阵水声换能器是发射和接收水中声信号的装置,应用最广泛的是电声转换的水声换能器,即转换电能为水中声能的水声发射器以及转换水中声能为电能的水声接收器(即水听器)。水是声阻抗率较高的媒质,因此要发射较大声功率就必须有较大的力。常用的水声换能器按其基本换能机理分为可逆式和不可逆式两大类。可逆式(可作接收器)的有:电动、静电、可变磁阻(电

磁)、磁致伸缩和压电水声换能器。不可逆式(不可作接收器)的有:调制流体(流体动力)、气动(如气枪)、化学能(如信号弹)、机声(如扫水雷声源)等(见电声换能器)。

水声换能器的进展20世纪60年代以来,为了实现声呐的远程探测,发展了不少新的换能材料、结构振动方式和换能机理;发展了工作在低频、宽带、大功率和深水中的发射器,具有高灵敏度、宽带、低噪声等性能的水听器;出现了新型的水声换能器,如PVDF水听器、复合压电陶瓷水听器、凹型弯张换能器、利用亥姆霍兹共鸣器原理制成的低频水听器、应用射流开关技术的调制流体式换能器、声光换能器等。

水声参量阵分为参量发射阵和参量接收阵两类。它利用声波在水内传播时产

生的非线性相互作用。如发射器同时发出两个频率相近的(分别为、)高频

波(又称原波),由于非线性相互作用,则还产生频率为(-)和(+)的差频波及和频波,这也可看作为一种新的转换概念,参量发射阵利用的是差频波(见换能器阵)。

参量发射阵(又简称参量阵)可分为原波饱和与无饱和两种情况(饱和是当声波的振幅足够大时产生的,这时,近场原波的振幅趋于饱和,不随声源振幅的增大而增大),有四种典型模式(或称极限情况):无饱和近场吸收限制、无饱和远场球面扩展限制、饱和近场限制、饱和远场限制。对这四种典型模式的理论研究结果与实验符合得很好。对无饱和的两种模式,差频波的声压都正比于两原波声压的乘积。对第一种模式,差频波声压正比于频率下移比的二次方,下移比是原波与差频波的频率之比;对第二种模式,则正比于下移比的一次方。

参量阵的主要缺点是效率很低,它的独特优点是可以利用小尺寸换能器获得低频、宽频带、低旁瓣或无旁瓣、探照灯式的尖锐波束,应用于需要低频高分辨率探测中。参量阵已进入实用阶段,特别适用于海底浅层地质的勘探、水下埋藏物的探测、浅海特定简正波的激励等。

参量接收阵近来也受到注意,其工作原理与参量发射阵相同,非线性相互作用在高声强的泵波和待接收的声波之间发生,在泵波的声轴上接收差频或和频信号。不过,参量接收阵的技术实现难度更大,实际应用为时尚早。

声波在海洋中的传播和声场数值预报海洋及其边界(海面和海底)组成复杂

多变的水声传播媒质,它的复杂多变性主要表现在随海区和季节而变化,从而有不同的传播规律。

传播损失从声源发出的声信号在传播过程中逐渐损失能量,这种传播损失分为扩展和衰减。扩展损失表示声波的波阵面从声源向外不断扩展的简单几何效应。但实际上声波经常是在类似于波导中的传播,可以在这种波导(称为声道)中定向性地传播很长距离。衰减损失包括吸收、散射和声能漏出声道的效应。造成吸收的原因是海水的粘滞性、热传导性、海水中硫酸镁和硼酸-硼酸盐离子的弛豫机构。吸收使声强以指数形式随距离下降,吸收系数一般正比于频率二次方(见声吸收),因此远程声呐都选用较低频率。造成散射的原因包括海中气泡、悬浮粒子、不均匀水团、浮游生物以及边界的不平整性,散射一般远小于吸收所引起的衰减。声能漏出声道的效应则因具体声道而异。

水下声道产生海洋传播声道的条件是海洋边界及特定声速剖面。声速剖面就是海洋的声速分层结构。海水中的声速是温度、盐度和静压力 (深度)的函数。图1[典型深海声速剖

面]