数控加工变形控制
- 格式:ppt
- 大小:2.47 MB
- 文档页数:57
数控加工过程中的质量控制与管理数控技术对于我们国家现阶段机械制造来说是特别重要的,当然对于我们国家的机械制造质量的把控来说也是特别重要的。
文章着重分析了数控加工过程,并且也研究了我们国家现阶段的数控工作的实际情况,进而明确数控技术在我们国家制造业中的发展情况,接着就是根据现阶段的数控工作的实际情况,提出对于所存在的问题的解决措施,进而可以确保数控加工能够把控好制造的质量,这个时候也可以控制好我们国家机械制造行业的制造质量。
标签:数控加工;质量控制;管理体系引言数控技术对于现阶段的装备制造业来说是特别重要的,可以给装备制造业提供可靠的保障,并且需要解除数控加工所存在的不足,其中问题主要包括复杂的加工工艺、复杂的工装夹具等,当然也可以保障零件的加工质量,这样可以减少建设所使用的费用,增加生产效率,进而促进对于新产品的研发以及促进企业的进步,这样也就可以增加企业的适应能力以及企业的经济效益。
现阶段,产品的质量水平直接影响到了企业的竞争力以及企业的经济效益,当形成产品质量的时候,产生产品质量的关键就是工序的质量,当进行制造的时候要想增强对于质量的把控就需要及时地控制好施工过程,所以现阶段需要增加对于数控加工过程质量控制问题的研究力度,这样可以有效的增加企业的竞争力。
1 明确数控加工过程的重要程度数控加工的过程所使用的操作方法以及操作顺序会直接影响到所制造的产品的产品质量,并且直接决定了我们国家的数控加工制品能不能在市场竞争里面占据有利的地位。
这个时候数控加工过程是否合理以及有效直接决定了制造过程中是否存在不足之处,这样也就可以确保我们国家的数控制造的产品质量。
现阶段我们国家的建筑制造业里面,数控所起到的作用越来越多,这个时候并且也直接影响到了我们国家的制造行业的发展,不过我们国家现阶段的数控生产还是会存在一定的不足,这样也就造成了我们国家现阶段的数控技术还是处在一个落后的状态。
所以,通俗的来说,完善我们国家的数控生产过程可以增加我们国家机械制造产品的质量,不仅如此,最主要的就是可以使得我们国家的数控技术能够及时的追赶上先进的标准,这样可以让我们国家的数控技术在社会竞争里面处于一个优势的状态,这样可以促进我们国家数控技术的发展,并且也可以使得数控技术可以在国际竞争中占据主导地位。
数控车加工中外圆尺寸的控制方法摘要:在我们现在使用的大多数数控车理论教材中都没有涉及到如何控制零件的加工尺寸,都认为只要对刀精确,加工好的零件尺寸就应该是准确的,而实际上机床、工件、刀具的变形、受热、刀具的角度等因素都会影响加工尺寸,我们可以采用修改刀补法和修改程序法来控制零件尺寸。
关键词:数控车外圆尺寸控制修改刀补法修改程序法在数控车加工的理论教学中,大多数的教材都认为:只要对刀精确,加工好的零件尺寸就应该是准确的,而实际上,这样加工的零件尺寸都是得不到保证的,很难达到零件图纸的要求,主要是因为理论教材中没有考虑机床、工件、刀具的变形、受热、刀具的角度等因素对加工尺寸的影响。
本人通过多年的教学实践和技能大赛总结出了在数控车加工中保证零件尺寸精度的几点方法和大家共同探讨。
一、修改刀补法1.一次刀补法这种方法是我们在实际加工生产中通常采用的方法,具体的操作:在粗加工结束后停车测量工件,在刀补中输入需要补偿的数值,输入值=理想值-实际测量值(理想值=零件图纸尺寸+精加工余量),例如:直径40毫米的外圆粗加工结束后理想值应为40.5mm—40.48mm(以精加工余量0.5mm为例),然后进行精加工,达到零件图纸的要求。
这种方法适用于精度要求不高,加工余量少,粗精加工的切削深度相差不大,冷却充分,机床、刀具工件刚性较好的场合。
2.两次刀补法对于加工精度要求较高,切削余量较大,机床、刀具和工件的刚性不好,粗精车产生的切削力相差较大的情况下,采用一次刀补法往往还不能保证零件的加工要求,这时我们通常采用两次修改刀补的方法。
通过第一次修改刀补,消除了由于粗加工切深较大而引起的变形,从而保证第二次精加工的尺寸。
具体操作如下:在粗加工结束后停车,直接在刀补中输入0.3(以精加工余量0.5mm为例,要求对刀误差不大于0.1mm),进行精加工,精加工结束后停车测量工件,在刀补中输入需要补偿的数值,输入值=零件图纸尺寸-实际测量值(以外圆直径为40mm为例,第一次精加工结束后直径40mm处的理想值应为40.3mm),此时如测量值为40.2mm,说明此时误差0.1mm,需输入40-40.2=0.2mm,然后再进行精加工,达到零件图纸的要求。
数控弯曲机中心操作方法数控弯曲机是一种常用于金属板材弯曲加工的机床设备,具有高精度、高效率、高稳定性的特点。
数控弯曲机的操作方法通常包括以下几个步骤:1. 设定机床参数:在进行数控弯曲加工之前,首先需要设定机床参数,包括加工件的尺寸、材料的厚度、弯曲角度等。
这些参数通常通过数控系统进行设定,操作人员需要熟悉数控系统的操作界面和功能,以便正确地输入相关参数。
2. 装夹工件:在进行数控弯曲加工之前,需要将待加工的金属板材装夹在机床的工作台上。
装夹时应尽量保证工件的平整度和稳固性,以免在加工过程中出现位移或变形。
3. 调整上模和底模:上模和底模是数控弯曲机中用于施加压力的部件。
在进行加工之前,需要根据工件的尺寸和弯曲角度,调整上模和底模的位置和夹持力,以确保加工结果的精度和一致性。
4. 编写加工程序:数控弯曲机通常通过数控系统控制加工过程。
在开始加工之前,需要编写加工程序,将相关参数和加工路径输入到数控系统中。
加工程序的编写通常需要借助专业的数控编程软件,操作人员需要具备一定的数控编程能力。
5. 加工过程监控:在进行数控弯曲加工过程中,操作人员需要监控加工状态,确保加工过程的稳定性和安全性。
同时,还需留意加工过程中的异常情况,如工件位移、变形、机床故障等,并及时采取相应的措施加以解决。
6. 加工品质检查:在数控弯曲加工完成后,需要对加工件的品质进行检查。
通常可以采用直尺、卡尺、角度尺等测量工具对加工件的尺寸和角度进行检测。
同时,还可以对加工件的外观质量进行目测和手感检查,以确保加工结果的符合要求。
7. 加工结束及清洁:在数控弯曲加工完成后,需要对机床进行清洁和维护,以保证机床的正常运行。
同时还需注意保持加工现场的整洁和安全,将废料和刃具等放置到指定位置,以免造成操作人员的伤害或机床的损坏。
总之,数控弯曲机的操作方法包括设定机床参数、装夹工件、调整模具、编写加工程序、监控加工过程、检查加工品质以及结束加工和清洁等多个步骤。
浅谈薄壁零件的铣削加工技术要点Hessen was revised in January 2021浅谈薄壁零件的铣削加工技术要点摘要:薄壁零件的数控铣削加工因薄壁件自身的特点决定了其加工难度极大,制造工艺复杂。
本文就薄壁件的特点及加工方法理论进行分析,提出薄壁零件的数控铣削加工中变形控制的相应措施及改善方法。
关键词:薄壁零件加工;数控铣;加工变形薄壁零件在工程上应用广泛,具有重量轻、强度高、造型美观等突出特点,薄壁零件按照空间几何形态通常可分为以细长轴为代表的二维薄壁构件和以薄壁件为代表的三维薄壁零件。
此类零件的共同特点是受力形式复杂,刚度低,加工时极易引起误差变形或工件颤振,从而降低工件的加工精度。
特别是当零件的形状和加工精度要求较高时,对振动、切削力大小及波动、切削温度、装夹方式均十分敏感,往往未加工到规定的尺寸,零件已经超出了精度要求,因此,薄壁零件的加工制造难度极大,成为国际上公认的复杂制造工艺问题。
1 薄壁零件加工技术发展的现状薄壁零件在现代工业技术中占有很重要的战略意义,国内外的学者专家都做了很深入的研究。
欧美等制造业比较发达的国家针对薄壁零件的结构特点,应用的技术主要有:(1)从加工工艺系统的整体刚度考虑,提出充分利用零件的整体刚性变形控制方案;(2)在机床方面,提出了平行双主轴联动精度控制方案;(3)在装夹方面,提出了用低熔点合金填充或使用真空夹具精加工零件的方案;(4)在切削用量方面,提出了变进给速度加工方法,通过工艺方法实验与计算机模拟仿真相结合,提高效率和可靠性;(5)采用有限元仿真预测加工变形,再利用数控补偿技术进行适当主动误差补偿,从而提高薄壁零件的加工精度。
而在我国,由于缺少高精的理论计算和相关的试验数据,在这方面的研究还处于起步阶段,无论是振动加工技术还是高速切削技术都是处于摸索阶段,缺少必要的工艺技术数据,在实践中应用还不深入精准。
在实际生产加工中,大多采用低转速、小进给、多次空走刀等方法控制加工变形,应用手工或三坐标检验。
XK714数控铣床控制操作教程1.机床开机步骤1打开电箱上的总电源控制开关;2合上总电源开关空气开关,这时操作面板上的POWER发光二极管点亮,表示电源接通;3按下操作面板上的CNC POWER ON按钮,这时CNC通电,面板上CNC POWER电源指示发光二极管点亮.4释放急停按钮5按下变频器复位按钮RESET键,使主轴报警灯熄灭;2、数控铣床手动控制操作一、主轴控制1、点动在手动模式下JOG,按下主轴点动键,则可使主轴正转点动; 必须先上档2、连续运转在手动模式下JOG,按下主轴正、反转键,主轴按设定的速度旋转,按停止键主轴则停止,也可以按复位键停止主轴;在自动和 MDI 方式下编入 M03 、 M04和 M05 可实现如上的连续控制;二、坐标轴的运动控制1、微调操作1 首先进入微调操作模式,再选择移动量和要移动的坐标轴;2 然后按正确的方向摇动手动脉冲发生器手轮;3 根据坐标显示确定是否达到目标位置;2、连续进给选择手动模式,则按下任意坐标轴运动键即可实现该轴的连续进给进给速度可以设定,释放该键,运动停止;3、快速移动同时按下坐标轴和快速移动键,则可实现该轴的快速移动,运动速度为G00 ;三、常见故障及处理在手动控制机床移动或自动加工时,若机床移动部件超出其运动的极限位置软件行程限位或机械限位 ,则系统出现超程报警,蜂鸣器尖叫或报警灯亮,机床锁住;处理方法一般为:1、手动将超程部件移至安全行程内;2、解除报警;3、手动回机床原点参考点:开机后首先应回机床原点;1、将模式选择开关选到回原点模式REF键上;2、再选择快速移动倍率开关到合适倍率上;3、选择各轴依次回原点;1按下手动操作面板上的操作方式开关,2先将手动轴选择为Z轴,再按下“+”移动方向键,则Z轴将向参考点方向移动,一直至回零指示灯亮;根据自己的需要选择适合的速度;3然后分别选择Y、X轴进行同样的操作;4此时LED上指示机床坐标X、Y、Z、均为零注意事项1、在开机之前要先检查机床状况有无异常,润滑油是否足够等,如一切正常,方可开机;2、回原点前要确保各轴在运动时不与工作台上的夹具或工件发生干涉;3、回原点时一定要注意各轴运动的先后顺序;4.工作台的手动调整工作台拖板的手动调整是采用方向按键通过产生触发脉冲的形式或使用手轮通过产生手摇脉冲的方式来实施的;和手柄的粗调、微调一样,其手动调整也有两种方式;1粗调:A:按下手动操作面板上的操作方式开关,JOG键B:先选择要移动的轴,再按坐标轴移动方向按钮,则刀具主轴相对于工作台向相应的方向连续移动,C:移动速度受快速倍率旋钮的控制,移动距离受按压轴方向选择钮的时间的控制,即按即动,即松即停;采用该方式无法进行精确的尺寸调整,当移动量大时可采用此方法;2微调:本机床系统的微调需使用手轮来操作;A:将方式开关置为;B:再在手轮中选择移动轴和进给增量,按“逆正顺负”方向旋动手轮手柄,则刀具主轴相对于工作台向相应的方向移动,移动距离视进给增量档值和手轮刻度而定,手轮旋转360º,相当于100个刻度的对应值;4.MDI程序运行所谓MDI方式是指临时从数控面板上输入一个或几个程序段的指令并立即实施的运行方式;其基本操作方法如下:1置手动操作面板上的方式开关于MDI运行方式;2按数控面板上的“PROG”功能键;3在输入缓冲区输入一段程序指令,并以分号EOB结束,然后按INSERT插入键,程序内容即被加到番号为O0000的程序中;本系统中MDI方式可输入执行最多6行程序指令,而且在MDI程序指令中可调用已经存储的子程序或宏程序;MDI程序在运行以前可编辑修改,但不能存储,运行完后程序内容即被清空;若用M99作结束,则可重新运行该MDI程序;4程序输入完成后,按RESET复位键,光标回到程序头,按“循环启动”键即可实施MDI运行方式;若光标处于某程序行行首时,按了“循环启动”键,则程序将从当前光标所在行开始执行;5.MDI转速初定1置手动操作面板上的方式开关于MDI运行方式;2按数控面板上的“PROG”功能键;3在输入缓冲区输入一段程序指令,M03S200;按INSERT插入键,4程序输入完成后,按“循环启动”键即可实施MDI运行方式;6.安装工件操作根据不同的工件要选用不同的夹具,选用夹具的原则:1、定位可靠;2、夹紧力要足够;安装夹具前,一定要先将工作台和夹具清理干净;夹具装在工作台上,要先将夹具通过量表找正找平后,再用螺钉或压板将夹具压紧在工作台上;安装工件时,也要通过量表找正找平工件;一、虎钳找正步骤:1将工作台与虎钳地面擦拭干净;2将虎钳放到工作台上;3用百分表拉虎钳固定钳口与机床Y轴或X轴平行度,用木榔头敲击调整,平行度误差为内合格;4拧紧螺栓使虎钳紧固在工作台上;5再用百分表效验一下平行度是否有变化;二、装夹工件步骤:1根据所夹工件尺寸,调整钳口夹紧范围;2根据工件厚度选择合适尺寸垫铁,垫在工件下面;3工件被加工部分要高出钳口,避免刀具与钳口发生干涉;4圆形工件需用V型铁装夹;5旋紧手柄后,用木榔头敲击工件上表面,使之工件地面与垫铁贴合;7.刀具安装及原点确定数控铣床刀具安装操作使用刀具时,首先应确定数控铣床要求配备的刀柄及拉钉的标准和尺寸这一点很重要,一般规格不同无法安装,根据加工工艺选择刀柄、拉钉和刀具,并将它们装配好,然后装夹在数控铣床的主轴上;一、手动换刀过程手动在主轴上装卸刀柄的方法如下:1、确认刀具和刀柄的重量不超过机床规定的许用最大重量;2、清洁刀柄锥面和主轴锥孔;3、左手握住刀柄,将刀柄的键槽对准主轴端面键垂直伸入到主轴内,不可倾斜;4、右手按下换刀按钮,压缩空气从主轴内吹出以清洁主轴和刀柄,按住此按钮,直到刀柄锥面与主轴锥孔完全贴合后,松开按钮,刀柄即被自动夹紧,确认夹紧后方可松手;5、刀柄装上后,用手转动主轴检查刀柄是否正确装夹;6、卸刀柄时,先用左手握住刀柄,再用右手按换刀按钮否则刀具从主轴内掉下,可能会损坏刀具、工件和夹具等,取下刀柄;二、注意事项在手动换刀过程中应注意以下问题:1、应选择有足够刚度的刀具及刀柄,同时在装配刀具时保持合理的悬伸长度,以避免刀具在加工过程中产生变形;2、卸刀柄时,必须要有足够的动作空间,刀柄不能与工作台上的工件、夹具发生干涉;3、换刀过程中严禁主轴运转;三、换刀的步骤1、刀具准备及安装:2、刀具长、刀具半径的测量;3、刀具装入刀库;4、刀具登录;5、刀具补偿的输入;6、加工中心G54Z轴原点的确定步骤:1将刀具调入主轴;进入手动模式用量块测量,把屏幕切换到机床坐标显示状态; 2用100mm量块测量工件上表面与刀尖之间的距离,使刀刃和量块微微接触注意量块的插入与Z轴的移动两者要分步进行,否则量块在工件与刀具之间时移动Z 轴刀具易被撞坏;3测得机床坐标系Z轴的值后,在G54坐标系中Z轴输入数值公式为:G54Z=机械Z-量块Z-当前刀具长度H;警告:用此方法确定G54Z轴时,程序中调刀后一定要有长度补偿语句:;否则刀具会扎入工件,出现撞车事故8.工作坐标系Z轴长度补偿效验:1将刀具提高工件上表面200mm以上;2在MDI模式下输入:T1;;3执行后效验Z轴长度补偿位置是否正确;执行时要小心刀具距离工件100mm处如不停止应立即按下停止键9.对刀与刀补1概念:把刀具的“刀位点”移到“起刀点”的过程叫对刀;2对刀方法根据现有条件和加工精度要求选择对刀方法,可采用试切法、寻边器对刀、机内对刀仪对刀、自动对刀等;其中试切法对刀精度较低,加工中常用寻边器和Z 向设定器对刀,效率高,能保证对刀精度;3 对刀工具1寻边器2Z 轴设定器寻边器偏心式寻边器光电式寻边器Z轴设定器寻边器对刀Z轴设定器与刀具和工件的关系4采用试切法对刀及刀具补偿实例A、对刀对刀的目的是通过刀具或对刀工具确定工件坐标系与机床坐标系之间的空间位置关系,并将对刀数据输入到相应的存储位置;它是数控加工中最重要的操作内容,其准确性将直接影响零件的加工精度;对刀操作分为 X 、 Y 向对刀和 Z 向对刀;1、对刀方法根据现有条件和加工精度要求选择对刀方法,可采用试切法、寻边器对刀、机内对刀仪对刀、自动对刀等;其中试切法对刀精度较低,加工中常用寻边器和 Z 向设定器对刀,效率高,能保证对刀精度;2、对刀工具1 寻边器寻边器主要用于确定工件坐标系原点在机床坐标系中的 X 、 Y 值,也可以测量工件的简单尺寸;寻边器有偏心式和光电式等类型,其中以光电式较为常用;光电式寻边器的测头一般为 10mm 的钢球 ,用弹簧拉紧在光电式寻边器的测杆上,碰到工件时可以退让,并将电路导通,发出光讯号,通过光电式寻边器的指示和机床坐标位置即可得到被测表面的坐标位置,具体使用方法见下述对刀实例;2 Z轴设定器Z 轴设定器主要用于确定工件坐标系原点在机床坐标系的 Z 轴坐标,或者说是确定刀具在机床坐标系中的高度;Z 轴设定器有光电式和指针式等类型,通过光电指示或指针判断刀具与对刀器是否接触,对刀精度一般可达 ;Z轴设定器带有磁性表座,可以牢固地附着在工件或夹具上,其高度一般为 50mm 或 100mm, 如图 4-11 所示;3、对刀实例一:如图所示零件,采用寻边器对刀,其详细步骤如下:1 X 、 Y 向对刀①将工件通过夹具装在机床工作台上,装夹时,工件的四个侧面都应留出寻边器的测量位置;②快速移动工作台和主轴,让寻边器测头靠近工件的左侧;③改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机床坐标系中的 X 坐标值, 如;④抬起寻边器至工件上表面之上,快速移动工作台和主轴,让测头靠近工件右侧;⑤改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机械坐标系中的 X 坐标值,如;⑥若测头直径为 10mm ,则工件长度为 -10=100,据此可得工件坐标系原点 W 在机床坐标系中的 X 坐标值为 +100/2+5= ;⑦同理可测得工件坐标系原点 W 在机械坐标系中的 Y 坐标值;2 Z 向对刀①卸下寻边器,将加工所用刀具装上主轴;②将 Z 轴设定器或固定高度的对刀块,以下同放置在工件上平面上;③快速移动主轴,让刀具端面靠近 Z 轴设定器上表面;④改用微调操作,让刀具端面慢慢接触到 Z 轴设定器上表面,直到其指针指示到零位;⑤记下此时机床坐标系中的 Z 值,如;⑥若 Z 轴设定器的高度为 50mm ,则工件坐标系原点 W 在机械坐标系中的 Z 坐标值为 30-20=;3 将测得的 X 、 Y 、 Z 值输入到机床工件坐标系存储地址中一般使用G54-G59 代码存储对刀参数 ;4、注意事项在对刀操作过程中需注意以下问题:1 根据加工要求采用正确的对刀工具,控制对刀误差;2 在对刀过程中,可通过改变微调进给量来提高对刀精度;3 对刀时需小心谨慎操作,尤其要注意移动方向,避免发生碰撞危险;4 对刀数据一定要存入与程序对应的存储地址,防止因调用错误而产生严重后果;对刀实例二:G92对刀1选择工作方式为“手动”JOG;2按POS 键,使屏幕显示为相对坐标;3手动向左移动刀具,让刀具侧面与工件左侧的中部轻碰,按X键,使之闪烁,按CAN 键,使屏幕X=0;4抬起刀具,并且向右移动刀具,使刀具与工件右侧面的中部轻碰,记下此时X 向的相对坐标值,记为X2;根据坐标公式:中点X =22x 把刀具移到22x ,把方式选择开关调到“MDI”位置,输入指令G92 X0,按循环起动键5同理可求得工件在Y 轴方向的中点坐标;6先抬起刀具,然后让铣刀下降与工件表面轻碰;7把方式选择开关调到“MDI”位置;8输入指令G90 G00 Z100,按循环起动键,再输入指令 G92 Z100,再按循环起动键;则刀具可到达起刀点;对刀完成;5刀具半径的设定输入步骤:1按OFSET SETTINGAL 功能键,按软键刀补,进入了刀具半径设置画面; 2找到需要设定半径量的刀具号行,使光标移向该行的形状D 列位置上; 3输入刀具半径值,按INPUT 功能键;对刀实例三:G54在工件的几何中心毛坯件1、将工件通过夹具装在机床工作台上,找正;2、快速移动工作台,让直径为 10mm 铣刀靠近工件的左侧;3、改用微调操作,让直径为 10mm 铣刀慢慢接触到工件左侧;4、抬起直径为 10mm 铣刀至工件上表面之上;5、按‘POS ’键,再按‘相对坐标’,按‘X ’,按‘置零’,快速移动工作台,让直径为 10mm 铣刀靠近工件右侧;6、改用微调操作,让直径为 10mm 铣刀慢慢接触到工件右侧;7、抬起直径为 10mm 铣刀至工件上表面之上;8、记下刀具的X 相对坐标;移动工作台,让直径为 10mm 铣刀移到X/2处;9、按‘OFFSET ’再按‘工件坐标系’把光标移到G54的X 处;10、按 ‘X0’再按‘测量’X 向对刀完成;11、快速移动工作台,让直径为 10mm 铣刀靠近工件的前侧;12、改用微调操作,让直径为 10mm 铣刀慢慢接触到工件前侧;13、抬起直径为 10mm 铣刀至工件上表面之上;14、按‘POS ’键,再按‘相对坐标’,按‘Y ’,按‘置零’,快速移动工作台,让直径为 10mm 铣刀靠近工件后侧;15、改用微调操作,让直径为 10mm 铣刀慢慢接触到工件后侧;16、抬起直径为 10mm 铣刀至工件上表面之上;17、记下刀具的Y 相对坐标;移动工作台,让直径为 10mm 铣刀移到Y/2处;18、按‘OFFSET ’再按‘工件坐标系’把光标移到G54的Y 处;19、按 ‘Y0’再按‘测量’Y 向对刀完成;20、快速移动主轴,让刀具端面靠近上表面;21、改用微调操作,让刀具端面慢慢接触到上表面,直到切到工件;22、按‘OFFSET’再按‘工件坐标系’把光标移到G54的Z处;23、按‘Z0’再按‘测量’Z向对刀完成;G54在工件的几何边角毛坯件1、将工件通过夹具装在机床工作台上,找正;2、快速移动工作台,让直径为 10mm铣刀靠近工件的左侧;3、改用微调操作,让直径为 10mm铣刀慢慢接触到工件左侧;4、抬起直径为 10mm铣刀至工件上表面之上;5、按‘POS’键,再按‘相对坐标’,按‘X’,按‘置零’,移动工作台,让直径为10mm铣刀向工件内移动5mm;6、按‘OFFSET’再按‘工件坐标系’把光标移到G54的X处7、同理对Y方向的刀;8、快速移动,让刀具端面靠近上表面;12、改用微调操作,让刀具端面慢慢接触到上表面,直到切到工件;13、按‘OFFSET’再按‘工件坐标系’把光标移到G54的Z处;14、按‘Z0’再按‘测量’Z向对刀完成;刀具补偿值的输入和修改根据刀具的实际尺寸和位置,将刀具半径补偿值和刀具长度补偿值输入到与程序对应的存储位置;需注意的是,补偿的数据正确性、符号正确性及数据所在地址正确性都将威胁到加工,从而导致撞车危险或加工报废;10、程序输入与编辑选择EDIT 编辑模式;在系统操作面板上,按PRGRM键,CRT出现编程界面,系统处于程序编辑状态,按程序编制格式进行程序的输入和修改,然后将程序保存在系统中;也可以通过系统软键的操作,对程序进行程序选择、程序拷贝、程序改名、程序删除、通信、取消等操作;A自动运转1 存储器方式下的自动运转自动运行前必须正确安装工件及相应刀具,并进行对刀操作;其操作步骤如下:1 预先将程序存入存储器中;2 选择要运转的程序;3 选择自动模式;4 按循环启动键,开始自动运转,“循环启动指示灯”点亮;2 MDI方式下的自动运转1 选择MDI模式;2 按主功能的PRGRM键;3 按PAGE键,使画面的左上角显示MDI,4 由地址键、数字键输入指令或数据,按INPUT键确认;5 按操作面板上的循环启动键执行;3 自动运转停止1 程序停止M00;执行M00指令之后,自动运转停止;与单程序段停止相同,到此为止的模态信息全部被保存,按循环启动键,可使其再开始自动运转;2 任选停止M01;与M00相同,执行含有M01指令的程序段之后,自动运转停止,但仅限于机床操作面板上的选择停开关接通时的状态;3 程序结束M02、M30;自动运转停止,呈复位状态;4 进给保持;在程序运转中,按机床操作面板上的进给保持按钮,可使自动运转暂时停止;5 复位;由CRT/MDI的复位按钮、外部复位信号可使自动运转停止,呈复位状态;若在移动中复位,机床减速后将停止;B试运转1 全轴机床锁住;若按下机床操作面板上的锁定键,机床停止移动,但位置坐标的显示和机床移动时一样;此外,M、S、T功能也可以执行;此开关用于程序的检测;2 Z轴指令取消;若接通Z轴指令取消开关,则手动、自动运转中的Z轴停止移动,位置显示却同其轴实际移动一样被更新;3 辅助功能锁住;机床操作面板上的辅助功能锁定开关一接通,M、S、T 代码的指令被锁住不能执行,M00、M01、M02、M30、M98、M99可以正常执行;辅助功能锁住与机床锁住一样用于程序检测;4 进给速度倍率;用进给速度倍率开关选择程序指定的进给速度百分数,以改变进给速度倍率,按照刻度可实现0%~150%的倍率修调;5 快速进给倍率;可以将以下的快速进给速度变为100%、50%、25%或F0由机床决定;①由G00指令的快速进给;②固定循环中的快速进给;③执行指令G27、G28时的快速进给;④手动快速进给;6 单程序段;若选择单段模式,则执行一个程序段后,机床停止;①使用指令G28、G29、G30时,即使在中间点,也能进行单程序段停止;②固定循环的单程序段停止时,进给保持灯亮;③M98P××;M99;的程序段不能单程序段停止;但是,M98、M99的程序中有O、N、P以外的地址时,可以单程序段停止;C数据的显示与设定偏置量设置;操作步骤如下:①按MENU OFFSET主功能键;②按PAGE键,显示所需要的页面;③使光标移向需要变更的偏置号位置;④由数据输入键输入补偿量;⑤按INPUT键,确认并显示补偿值D机床的急停1 使用急停按钮;如果在机床运行时按下急停按钮,机床进给运动和主轴运动会立即停止工作;待排除故障,重新执行程序恢复机床的工作时,顺时针旋转该按钮,按下机床复位按钮复位后,进行手动返回机床参考点的操作;2 使用进给保持按钮;如果在机床运行时按下进给保持按钮,则机床处于保持状态;待急停解除之后,按下循环启动按钮恢复机床运行状态,无需进行返回参考点的操作;11、数控铣床零件加工实例操作一、加工要求加工如图所示零件;零件材料为 LY12 ,单件生产;零件毛坯已加工到尺寸;选用设备: XK714B 数控铣床二、准备工作加工以前完成相关准备工作,包括工艺分析及工艺路线设计、刀具及夹具的选择、程序编制等;三、操作步骤及内容1、开机,各坐标轴手动回机床原点2、刀具安装根据加工要求选择Φ10 高速钢立铣刀,用弹簧夹头刀柄装夹后将其装上主轴;3、清洁工作台,安装夹具和工件将平口虎钳清理干净装在干净的工作台上,通过百分表找正、找平虎钳,再将工件装正在虎钳上;4、对刀设定工件坐标系1 用寻边器对刀,确定 X 、 Y 向的零偏值,将 X 、 Y 向的零偏值输入到工件坐标系 G54 中;2 将加工所用刀具装上主轴,再将 Z 轴设定器安放在工件的上表面上,确定 Z 向的零偏值,输入到工件坐标系 G54 中 ;5、设置刀具补偿值将刀具半径补偿值 5 输入到刀具补偿地址 D01 ;6、输入加工程序将计算机生成好的加工程序通过数据线传输到机床数控系统的内存中;7、调试加工程序把工件坐标系的 Z 值沿 +Z 向平移 100mm ,按下数控启动键,适当降低进给速度,检查刀具运动是否正确;8、自动加工把工件坐标系的 Z 值恢复原值,将进给倍率开关打到低档,按下数控启动键运行程序,开始加工;机床加工时,适当调整主轴转速和进给速度,并注意监控加工状态,保证加工正常;9、取下工件,用游标卡尺进行尺寸检测10、清理加工现场11、关机。