气相色谱分析
- 格式:doc
- 大小:89.00 KB
- 文档页数:27
气相色谱分析的常规步骤气相色谱(Gas chromatography, GC)是一种高效分离和定量分析的技术,广泛应用于石油化工、食品、环境、医药等领域。
本文将介绍气相色谱分析的常规步骤。
样品准备在分析前,样品应进行简单处理,通常包括溶解、提取、稀释等操作。
对于复杂样品,需要进一步净化和分离,以获得单一组分或特定分子。
样品处理的目的是使样品成为适合气相色谱分析的溶液或气体。
样品进样样品进样是气相色谱分析中重要的步骤,样品必须均匀地进入柱管进行分离。
进样技术包括液相进样和气相进样两种类型。
在液相进样中,样品通过注射器进入柱管;在气相进样中,样品气化后,通过进样口进入柱管。
进样技术不仅关系到分离效果,还影响灵敏度和分析时间。
色谱柱选择色谱柱是气相色谱分析的关键部件,它们的大小、形状、填充质量、填充物类型和材料都会影响柱的分离能力。
对于分析的物质,应选择具有合适填充物的柱,不同的填充物选择要根据物质的性质而定。
色谱条件设定在进行进样前,需要对柱管设定一定的操作参数,包括柱温、流量、载气种类和流速等。
这些参数也称为色谱条件。
不同的分析目的需要不同的色谱条件,需要根据样品性质及分析要求予以调整。
柱准备与平衡色谱柱进入进样前,需要进行一定的准备和平衡过程。
柱通常需要预热,以达到操作温度。
此外,还需要让柱管在色谱条件下进行平衡,以获得稳定的基线和分离效果。
检测器气相色谱分析中常用的检测器有火焰离子检测器、热导检测器、电子捕获检测器、质谱检测器等。
检测器选择要根据样品性质、分离效果和灵敏度要求进行选择。
数据处理分析获得的数据应进行分析和处理。
常用的处理方法包括峰面积计算、谱图分析、校正等。
对于比较复杂的分析,可采用色谱-质谱联用法,以获得更准确的分析结果。
总结气相色谱分析作为一种定量、定性分析手段,常用于检测环境、食品、药品等领域中的各种化合物。
本文介绍了气相色谱分析的常规步骤,包括样品准备、样品进样、色谱柱选择、色谱条件设定、柱准备与平衡、检测器和数据处理。
气相色谱分析法范文气相色谱分析法(GC)是一种常用的物质分离和定性定量分析方法,其基本原理是将待测样品通过气相色谱柱进行分离,然后利用检测器对物质进行检测和分析。
气相色谱分析法广泛应用于环境监测、食品安全、药物分析、环境毒理学等领域。
气相色谱分析法的另一个优点是分离效果好、精度高。
通过选择不同类型和柱内填料,可以实现对不同物质的高效分离。
柱内填料的选择根据样品的性质和分析目的进行,可以是非极性填料、极性填料或特定功能填料。
使用气相色谱分析法,可以实现对复合样品中多种组分的分离和定量。
气相色谱分析法还具有高灵敏度和高选择性。
通过选用合适的检测器,可以实现对微量物质的检测和分析。
常用的气相色谱检测器有火焰离子化检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
这些检测器具有不同的灵敏度和选择性,适用于不同类型的物质。
气相色谱分析法的一个重要应用领域是环境监测。
通过气相色谱分析法,可以对大气中的有机物、挥发性有机物(VOCs)、气体污染物等进行快速准确的分析和监测。
气相色谱分析法在环境监测中的应用还可以通过对食品和水样品中的有机污染物进行分析,确保环境的安全和卫生。
在药物分析领域,气相色谱分析法也具有广泛应用。
通过气相色谱分析法,可以进行对药物的纯度、成分分析和质量控制。
同时,气相色谱分析法还可以对药物代谢产物进行分析,对药物的代谢途径和体内过程进行研究。
气相色谱分析法还有许多其他的应用领域,如食品安全、环境毒理学、化学品分析等。
在食品安全领域,气相色谱分析法可以对食品中的农药残留、添加剂和污染物进行检测和分析,以确保食品质量和安全性。
在环境毒理学领域,气相色谱分析法可以对毒理物质的分布和迁移进行研究,对环境污染物的毒害机制进行分析。
在化学品分析中,气相色谱分析法可以对有机化合物、无机气体等进行分析,以满足工业品质量监控和工艺控制的需求。
总的来说,气相色谱分析法是一种重要的化学分析方法,具有制备简单、分离效果好、灵敏度高和应用广泛等优点。
气相色谱实验报告实验目的本次实验的主要目的是学习气相色谱的基本原理和操作方法,了解在色谱柱中常用的固定相和移动相,并通过实验验证不同条件对于色谱分离的影响。
实验原理气相色谱是一种在大气压力下使用气相载气流动的液态或固态样品进行分离的技术。
它通过多次进样和分离依据的分子小于分离栏的微孔的分子筛分法来分离化合物。
在此过程中,化合物会与固定相发生相互作用,而移动相则可以移动固定相,从而分离各种化合物。
固定相通常分为极性相和非极极相,而移动相通常为高纯惰性气体,例如氢气、氮气等。
实验步骤1. 准备样品:本次实验中使用了两种溶液样品,分别为苯酚与正己烷的混合物。
取2.5毫升的样品,加入5毫升的甲醇溶液中,并振荡均匀,以备后续进样使用。
2. 色谱柱的装配:在装配色谱柱时,先需将固定相的稳定性测试一次。
对于此次实验中使用的非极性柱,其流动性较好,未发现任何不良反应。
接下来,在柱底注入适量惰性气体,固定柱后,将高纯惰性气体通入。
3. 进样:开启进样器,等待数秒后,将样品进入色谱柱中。
一般情况下,进样量应尽可能的小。
4. 色谱分离:开启柱上的加热气源,调节增加温度,并适当调整色谱流量,以获得最佳分离效果。
5. 结果分析:收集分离产物,并使用质谱仪进行质谱分析,确定分离出来的化合物的质量。
6. 数据记录:记录分离产物的相关数据,例如每个时刻的记录温度、样品进样量、分离出来的化合物质量等等。
实验结果通过本次实验,成功的分离出来了苯酚和正己烷的混合物,并得到了其质量及对应的相对保留率等相关数据。
在实验中,采用不同流量和温度来控制色谱柱的分离效果,最终获得了最佳的分离效果。
此外,实验中还发现,使用极性相的分离效果优于使用非极性相,提示了固定相类型对于色谱分离效果的影响。
结论本次实验通过实验证明了气相色谱作为一种常规的分离技术在有机分析中的重要性。
在实验中,通过控制温度和流量,成功的分离出了苯酚和正己烷的混合物,并验证了固定相类型和柱温等因素对于色谱分离效果的影响。
怎样分析气相色谱图 The manuscript was revised on the evening of 2021在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤:1、样品的来源和预处理方法GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。
这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。
如果样品体系简单,试样组分可汽化则可直接分析。
如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。
2、确定仪器配置所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。
一般应首先确定检测器类型。
碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。
对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。
根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。
分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。
色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。
常用的载气有氢气、氮气、氦气等。
氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。
3、确定初始操作条件当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。
气相色谱分析的常规步骤气相色谱(Gas Chromatography,GC)是一种分离和定性分析挥发性有机物的常用技术。
下面是气相色谱分析的常规步骤:1.样品的准备:首先,需要选择适宜的样品进行分析。
样品可以是固体、液体或气体。
必要时,需要进行样品前处理,如样品的溶解、提取、浓缩等步骤。
2.样品的注入:将样品注入气相色谱仪中。
常用的样品注入方式包括进样器注射、固相微萃取等。
在进样器注射过程中,要保证样品量准确、进样均匀。
3.柱的选择:根据需要分离的物质性质选择合适的色谱柱。
气相色谱常用的柱材有硅胶、聚酯、聚醚、聚酰胺等。
柱的内径和长度也需要根据实验要求选择。
4.柱的条件设置:设置适宜的柱温、载气流速和柱头压力等条件。
柱温主要影响样品的分离效果和分析时间,载气流速和柱头压力则会影响分离效果和峰形。
5.柱温程序:通过设置温度程序来控制样品在柱中的保留时间。
常见的温度程序包括等温、线性升温、程序升温等。
6.检测器的选择与设置:根据分析要求选择适宜的检测器。
常见的气相色谱检测器有火焰离子化检测器(FID)、热导检测器(TCD)、质谱检测器(MS)等。
根据检测器的不同,需要进行相应的参数设置。
7. 数据采集和处理:通过连接计算机或数据采集仪器,记录样品的峰面积或峰高等数据。
常见的数据处理软件有Chromeleon、ChemStation 等,可以进行峰面积计算、色谱图解析、峰识别和峰定性等操作。
8.结果的分析和报告:根据实验目的,对分析结果进行解释和分析。
可以使用标准品比对或质谱库查询来进行物质的鉴定。
根据需要,可以撰写实验报告或生成分析结果的报告。
9.仪器的维护与清洁:使用完毕后,及时清洁色谱柱和进样器,保持仪器的干净和良好的性能。
同时,定期进行仪器的校验和维护,确保仪器的准确性和精度。
总结:气相色谱分析常规步骤包括样品准备、样品注入、柱的选择和条件设置、柱温程序设置、检测器选择与设置、数据采集和处理、结果分析和报告、仪器维护与清洁等方面。
气相色谱分析的基本原理气相色谱分析的基本原理1.气—固色谱分析:固定相是一种具有多孔及较大表面积的吸附剂颗粒。
试样由载气携带进入柱子时,立刻被吸附剂所吸附。
载气不断流过吸附剂时,吸附着的被测组分又被洗脱下来。
这种洗脱下来的现象称为脱附。
脱附的组分随着载气连续前进时,又可被前面的吸附剂所吸附。
随着载气的流动,被测组分在吸附剂表面进行反复的物理吸附、脱附过程。
由于被测物质中各个组分的性质不同,它们在吸附剂上的吸附本领就不一样,较难被吸附的组分就简单被脱附,较快地移向前面。
简单被吸附的组分就不易被脱附,向前移动得慢些。
经过肯定时间,即通过肯定量的载气后,试样中的各个组分就彼此分别而先后流杰出谱柱。
2.气—液色谱分析:固定相是在化学惰性的固体微粒(此固体是用来支持固定液的,称为担体)表面,涂上一层高沸点有机化合物的液膜。
这种高沸点有机化合物称为固定液。
在气—液色谱柱内,被测物质中各组分的分别是基于各组分在固定液中溶解度的不同。
当载气携带被测物质进入色谱柱,和固定液接触时,气相中的被测组分就溶解到固定液中去。
载气连续进入色谱柱,溶解在固定液中的被测组分会从固定液中挥发到气相中去。
随着载气的流动,挥发到气相中的被测组分分子又会溶解在前面的固定液中。
这样反复多次溶解、挥发、再溶解、再挥发。
由于各组分在固定液中溶解本领不同。
溶解度大的组分就较难挥发,停留在柱中的时间长些,往前移动得就慢些。
而溶解度小的组分,往前移动得快些,停留在柱中的时间就短些。
经过肯定时间后,各组分就彼此分别。
3.调配系数:在肯定温度下组分在两相之间调配达到平衡时的浓度比称为调配系数K。
肯定温度下,各物质在两相之间的调配系数是不同的。
气相色谱分析的分别原理是基于不同物质在两相间具有不同的调配系数,两相作相对运动时,试样中的各组分就在两相中进行反复多次的调配,使原来调配系数只有微小差异的各组分产生很大的分别效果,从而各组分彼此分别开来。
4.调配比(容量因子):以κ表示,是指在肯定温度、压力下,在两相间达到调配平衡时,组分在两相中的质量比:5.调配比к与调配系数K的关系:由式可见:(1)调配系数是组分在两相中浓度之比,调配比则是组分在两相中调配总量之比。
气相色谱实验报告实验目的,通过气相色谱仪对不同化合物进行分离和定性分析,掌握气相色谱仪的操作方法和原理,加深对气相色谱技术的理解。
实验仪器与试剂:1. 气相色谱仪。
2. 色谱柱。
3. 样品溶液。
4. 氮气罐。
5. 注射器。
实验原理:气相色谱是一种高效分离和分析技术,其原理是利用气相色谱柱对样品中的化合物进行分离,然后通过检测器对分离后的化合物进行定性和定量分析。
在气相色谱仪中,样品溶液通过注射器注入色谱柱,利用气相色谱柱对化合物进行分离,然后通过检测器对分离后的化合物进行检测和分析。
实验步骤:1. 打开气相色谱仪的电源,进行预热。
2. 调节色谱柱的温度和流速,使其达到稳定状态。
3. 将样品溶液用注射器注入色谱柱。
4. 通过检测器对分离后的化合物进行检测和分析。
5. 记录实验数据,分析样品中的化合物成分。
实验结果与分析:通过气相色谱实验,我们成功分离和定性分析了样品中的化合物成分。
实验结果显示,样品中含有甲苯、乙醇和甲醇三种化合物。
通过比对标准物质的色谱图谱,我们成功对样品中的化合物进行了定性分析,结果准确可靠。
实验总结:通过本次实验,我们深入了解了气相色谱技术的操作方法和原理,掌握了气相色谱仪的使用技巧。
同时,通过实验结果的分析,加深了对气相色谱技术的理解,为今后的科研工作奠定了基础。
实验中遇到的问题与解决方法:在实验过程中,我们遇到了色谱柱温度不稳定的问题,影响了实验结果的准确性。
通过调节色谱柱的温度和流速,最终解决了这一问题,保证了实验结果的可靠性。
实验的局限性与展望:本次实验虽然取得了一定的成果,但在实验过程中还存在一些不足之处,如对色谱柱温度的控制不够精确等。
在今后的实验中,我们将进一步改进实验方法,提高实验数据的准确性和可靠性。
通过本次实验,我们对气相色谱技术有了更深入的了解,掌握了气相色谱仪的操作方法和原理,为今后的科研工作打下了坚实的基础。
希望通过不断的实践和学习,能够更好地运用气相色谱技术,为科学研究和实际应用做出更大的贡献。
特点:
1、分离效率高
通常一根长为1~2米的色谱柱,具有几千个理论搭板的分离效率,有的
长色谱柱具有几十万甚至上百万的理论搭板分离效率,可以分配系数很接近或极为复杂、难以分离的物质,经过反复分配平衡,最后可达到精确分离。
2、选择性高
气相色谱分析具有选择性高的特点,对性质极为相似的烃类异构体、旋光异构体、同位素等具有很强的分析能力。
3、应用范围广
气相色谱分析不仅可以分析气体样品,还可以分析气化成气体的液体品样
和固体品样,不仅可以分析有机物,还可以分析无机物,因此,应用范围广是它的一个特点,在化工、医药、环境监测、农药、食品、水质监测和自然科学研究都具有普遍的应用。
4、分析速度快
气相色谱分析法具有分析速度快的特点,通常一个试样分析可在几分钟到
几十分钟内完成,快速的可在几秒内完成,在一些性质很相似的试样分析,可以一次进样。
目前,随着色谱分析技术不断改进和完善,色谱分析速度逐渐加快,一些先进的色谱仪通常都带有微处理机和自动进样系统,实现色谱操作和数据处理高速度化。
5、灵敏度高
气相色谱分析中具有高敏度检测器,在各个领域的分析中都具有灵敏度高的特点,比如:在水质分析中可检测出质量分数为高数量级的卤素、硫、磷化物;在集中式生活饮用地表水检测中,可最低检出限为0.05~0.00002mg/L,相应的标准限值0.5~0.00012mg/L,达到分析评价要求。
简单说明气相色谱分析的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!气相色谱分析是一种常用的分离和分析技术,广泛应用于化学、生物、医药、环境等领域。
气相色谱分析思 考 题1. 什么叫保留时间?相对保留值?答: 保留时间是被测组分从进样开始到出现最大电信号-色谱峰最高点时所需的时间。
相对保留值是两个组分的调整保留值之比。
(1)(1)21(2)(2)R R RRt V r t V ''==''2. 简要说明气相色谱分析法的分离原理。
答: 气相色谱法的分离原理是基于不同物质组分在流动相(气相)和固定相两相间的作用力不同,当试样通过色谱柱时,试样中的各组分在两相中进行反复多次的分配,最终可使作用力不同的各个组分彼此得以分离。
3. 从给定的色谱图上可以得到哪些信息? 答: 从流出曲线上可以得到如下的信息:(1) 根据色谱峰的数目,得知该试样中至少含有多少组分; (2) 根据色谱峰的位置,即利用保留值可以进行定性鉴定; (3) 根据峰面积或峰高,可以进行定量分析;(4) 根据峰的保留值和峰宽,可对色谱柱的分离效能作出评价。
4. 气相色谱仪的基本组成包括哪些部分?各有什么作用? 答: 载气系统、进样系统、色谱柱、检测系统、记录系统(1) 载气系统的作用是提供一定流量的流动相-载气,载气携带样品通过色谱柱,组分得到分离;(2)进样系统的作用是将试样以气态形式加到流动相中,与载气一同进入色谱柱在柱内达到分离的目的;(3) 色谱柱的作用是分离试样中的各个组分;(4) 检测器是将流出色谱柱的组分的量转变成电信号;(5) 记录系统将检测器给出的电信号记录成流出曲线-色谱图。
5. 能否根据理论塔板数来判断分离的可能性?为什么?答:因为理论塔板数的大小只能说明色谱柱对某一组分分离效能的好坏,所以不能作为两个组分能否分离的依据。
6. 试述速率方程式中A ,B ,C 三项的物理意义。
答:速率方程 H = A + B/u + Cu 中A 项为涡流扩散项,它与柱内填充物颗粒大小和填充均匀程度有关;B 项为分子扩散系数,它与柱内扩散路径的弯曲程度和组分在气相中的扩散系数有关;C 项为传质阻力项系数,包括气相传质阻力和液相传质阻力两部分,气相传质阻力是指组分从气相移动到固定相表面,再从固定相表面移动到气相时所受的阻力,液相传质阻力是指组分从固定相的气液界面移动到固定相内部,又返回到气液界面时所受的阻力。
实验十气相色谱归一化定量分析一、实验目的1、进一步掌握气相色谱仪的操作要点2、了解气相色谱各种定量方法的优缺点3、进一步熟练掌握根据保留值,用已知物对照定性的分析方法4、掌握用归一化法测定混合物中各组分的含量二、实验原理气相色谱的定量分析:峰面积百分比法、归一化法、内标法和外标法等。
峰面积百分比法适用于分析响应因子十分接近的组分的含量,要求样品中所有组分均出峰。
归一化法定量准确,但它不仅要求样品中所有组分均出峰,而且要求具备所有组分的标准品,以便于测定校正因子。
内标法是精密度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品前必须将内标物加入样品中。
外标法简便易行,定量精密度相对较低,而且对操作条件的重现性要求较严。
本实验采用归一化法。
定量分析的依据:被测组分的质量与其色谱峰面积成正比。
即峰面积A的测量:;f i为比例常数,是定量校正因子,一般色谱手册中提供有许多物质的相对校正因子,可直接使用。
定量分析的步骤:第一步,先进行定性分析:化合物在一定的色谱操作条件下,每种物质都有一确定的保留值,故作为定性分析的依据;在相同的色谱条件下对已知样品和待测试样进行色谱分析,分别测量各组分峰的保留值,若某组分峰与已知样品相同,则可认为二者是同一物质。
从而确定各个色谱峰代表的组分。
第二步,归一化法测定含量:若试样中含有n个组分,且各组分均能洗出色谱峰,则其中某个组分i的质量分数为W i可按照下式计算:归一化法的优点是简便、准确,定量结果与进样量无关,操作条件对结果影响较小;缺点是试样中所有组分必须全部出峰,某些不需要定量的组分也要测出其校正因子和峰面积。
三、仪器和试剂1、仪器:GC-9790气相色谱仪(温岭福立分析仪器有限公司);FID;毛细管柱,微量进样器2、试剂:己烷,庚烷,辛烷,壬烷四、实验步骤1、气相色谱仪的基本操作流程(1)开启:a、开启载气N2钢瓶的阀门;b、将气体净化器打到“开”的位置;c、打开色谱仪的电源;d、打开色谱工作站;(2)实验条件如下:柱温100℃,汽化室温度:150℃,检测器温度:180℃;N2流速:45mL/min;H2 40mL/min;空气:450mL/min;纸速:10cm/min(3)待检测器FID温度达到的时候,开启H2钢瓶的阀门及打开空气源的电源,点燃FID;(4)运行程序一次并用丙酮进样清洗色谱柱;(5)进样,运行;(6)结束时,再用丙酮进样清洗色谱柱,设置程序。
气相色谱质谱分析气相色谱质谱(GC-MS)联用技术的基本原理是将气相色谱用于样品的分离,然后通过质谱用于样品的分析和鉴定。
气相色谱是一种在高温下将样品中的化合物分离出来的方法,通过一系列化学条件的调整,不同化合物会在气相色谱柱上有不同的保留时间,从而实现对样品的分离。
而质谱则是通过将化合物分子打碎,测量分子碎片的质谱图,从而确定化合物的成分和结构。
气相色谱质谱仪的配置通常包括气相色谱仪、质谱仪和数据系统。
气相色谱仪一般由进样系统、色谱柱、温控系统和检测器组成。
进样系统可用于将样品引入到气相色谱柱中,色谱柱则是用于样品的分离。
温控系统用于控制色谱柱的温度,以实现样品的分离。
检测器则用于检测样品分离后的化合物,并将其转化为电信号。
质谱仪则由离子化室、扇形扫描器、质谱检测器和数据系统等组成。
气相色谱质谱联用技术在许多领域都有重要的应用,比如环境分析、食品安全、药物分析等。
在环境分析中,气相色谱质谱联用技术可用于检测空气、水和土壤中的有机污染物。
在食品安全方面,可用于检测农产品中的农药残留和食品添加剂。
在药物分析中,可用于药物代谢产物的研究、药物的检测和定量分析等。
气相色谱质谱分析的步骤包括样品的前处理、进样和分离、质谱测量及数据处理等。
首先,样品需要进行前处理,例如提取、浓缩等,以提高分析的灵敏度和准确性。
然后,样品可通过进样系统引入气相色谱仪中,进行分离。
在分离过程中,需要确定最佳的色谱柱和色谱条件,以实现样品的分离和分析。
分离完成后,化合物将进入质谱仪中,通过碰撞诱导解离(CID)或电离法进行离子化和打碎,然后测量分子碎片的质谱图,从而确定样品中化合物的成分和结构。
最后,通过数据系统对质谱图进行解析和处理,以提取有用的信息。
在实际应用中,为了提高GC-MS分析的灵敏度和准确性,还可以采用一些增强技术,例如固相微萃取(SPME)、衍生化反应等。
同时,对于复杂样品的分析,也可以采用多级质谱(MS/MS)技术,以进一步提高分析的特异性和灵敏度。
第五章 分子发光分析法 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。光致发光按激发态的类型又可分为荧光和磷光两种。本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法 。 第一节 荧光分析法 一、概述 分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。 早在16世纪,人们观察到当紫外和可见光照射到某些物质时。这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。 荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。 二、基本原理
(一)分子荧光的产生 大多数分子含有偶数电子。根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。处于电子激发态的分子是不稳定的,它会很快地通过无辐射跃迁和辐射跃迁释放能量而返回基态。辐射跃迁发生光子的发射,产生分子荧光和分子磷光;无辐射跃迁则以热的形式释放能量,包括振动弛豫(VR)、内转化(ic)和体系间窜跃(isc)等。图5-1为分子内所发生的各种光物理过程的示意图。 图5-01 分子内的光物理过程.doc图5-01 分子内的光物理过程.JPG 图5-1 分子内的光物理过程A1,A2-吸收 F-荧光 P-磷光 ic-内转化isc-体系间窜跃 VR-振动弛豫 振动弛豫是在同一电子能级中,分子由较高振动能级向该
电子态的最低振动能级的非辐射跃迁。振动弛豫过程的速率极大,在10-14~10-12s内即可完成。 内转化是相同多重态的两个电子态之间(如S2→S1,S1→S0)的非辐射跃迁。内转化过程的速率在很大程度上决定于相关能级之间的能量差。相邻单重激发态之间能级较近,其振动能级常发生重叠,内转化很快。因此,通常不论分子被激发到哪一个电子激发态,在10-13~10-11s内经内转化和振动弛豫都会跃迁到最低电子激发态的最低振动能级上。基态(S0)和第一电子激发单重态(S1)之间的能量差较大,因而S1→S0内转化的速率相对要小得多,使得第一电子激发态有相对较长的寿命。 处于第一电子激发单重态最低振动能级的分子,以辐射跃迁的形式返回基态各振动能级时,就产生了分子荧光。由于激发态中存在有振动弛豫和内转化现象。使得荧光的光子能量比其分子受激发所吸收的光子能量低。因此,荧光波长λ3总比激发波长λ1或λ2要长。而且,不论电子开始被激发至哪个能级,都将只发射波长为λ3的荧光。荧光的产生在10-9~10-6s内完成。 体系间窜跃是指不同多重态的两个电子态间的非辐射跃迁。当分子的第一、二电子处于激发三重态(2S+1=3)时,以Tl、T2表示。单重激发态Sl的最低振动能级同三重态T1的较高振动能级重叠。因而S1→T1的体系间窜跃就有了较大的可能性。第一电子激发单重态的分子经体系间窜跃到达三重态后,快速振动弛豫至最低振动能级v=0上。此时有两种途径返回基态,一是辐射跃迁发出磷光,二是体系间窜跃。由于改变电子自旋的跃迁属禁阻跃迁,因而跃迁速率小得多,使得三重态有较长的寿命,约为10-3~10 s
(二)荧光效率及其影响因素 1.荧光效率 物质在吸收了紫外和可见光后,激发态分子是以辐射跃迁还是以非辐射跃迁回到基态,决定了物质是否能发荧光。通常以荧光效率(或荧光量子产率)来描述辐射跃迁概率的大小。荧光效率定义为发荧光的分子数目与激发态分子总数的比值,即 激发态分子总数发荧光的分子数
荧光效率f
(5—1)
荧光效率越高,辐射跃迁概率就越大,物质发射的荧光也就越强,若以各种跃迁的速率常数来表示,则
iKKKfff
(5—2)
式中:Kf为荧光发射过程的速率常数,∑Ki为非辐射跃迁的速率常数之和。一般来说,Kf主要取决于物质的化学结构。而∑Ki则主要取决于化学环境,同时也与化学结构有关。具有分析应用价值的荧光化合物,其荧光效率在0.1~1之间。 2.荧光与分子结构的关系 首先,物质只有能够吸收紫外—可见光。才有可能发荧光。因此,发荧光的物质分子中必须含有共轭双键这样的强吸收基团,且共轭体系越大,π电子的离域性越强,越易被激发而产生荧光。大部分能发荧光的物质都含有一个以上的芳环,随共轭芳环增大,荧光效率提高,荧光峰向长波长方向移动。如萘的荧光效率为0.29,荧光波长为310 nm,而蒽的荧光效率为0.46,荧光波长为400 nm。 其次,分子的刚性平面结构有利于荧光的产生。以荧光黄和酚酞为例,二者结构十分相似,但荧光黄在0.1mol·L-1NaOH溶液中的荧光效率高达0.92。而酚酞由于没有氧桥,分子不易保持刚性平面,不易产生荧光。刚性平面结构可以减少分子的振动相碰撞去活的可能性。 一些有机配位剂与金属离子形成螯合物后荧光大大增强,这也可用刚性结构的影响来解释。例如,8—羟基喹啉本身荧光较弱,与Mg2+形成螯合物后则是强荧光化合物。再如,滂铬BBR本身不发荧光,与Al3+在pH=4.5时形成的螯合物发红色荧光。 Al3+-滂铬BBR螯合物.JPG 取代基对荧光物质的荧光特征和强度也有很大影响。给电
子取代基如―OH、―NH2、―NR2和―OR等可使共轭体系增大,导致荧光增强;吸电子取代基如―COOH、―NO和―NO2
等使荧光减弱,例如,苯胺和苯酚的荧光较苯强,而硝基苯为
非荧光物质。 随着卤素取代基中卤素原子序数的增加,物质的荧光减弱,而磷光增强。这种所谓的“重原子效应”是由于重原子中能级交叉现象严重,容易发生自旋轨道偶合作用,使S1→T1的体系间窜跃显著增加所致。 3.环境因素对荧光的影响 同一荧光物质在不同的溶剂中可能表现出不同的荧光性质。一般来说,电子激发态比基态具有更大的极性。溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大。例如,奎宁在苯、乙醇和水中荧光效率的相对大小为1、30和1000。 温度对于溶液荧光强度的影响非常显著。通常认为,辐射跃迁的速率基本不随温度而变,而非辐射跃迁的速率随温度升高而显著地增大。因此,对于大多数荧光物质,升高温度会使非辐射跃迁概率增大,荧光效率降低。由于三重态的寿命比单重激发态寿命更长,温度对于磷光影响比荧光更大。 大多数含有酸性或碱性取代基团的芳香族化合物的荧光性质受溶液pH的影响很大。共轭酸碱两种型体具有不同的电子氛围,往往表现为具有不同荧光性质的两种型体,各具有自己特殊的荧光效率和荧光波长,例如: 不同共轭体系的荧光.JPG不同共轭体系的荧光.doc 溶液中表面活性剂的存在,可以使荧光物质处于更有序的
胶束微环境中,对处于激发单重态的荧光物质分子起保护作用,减小非辐射跃迁的概率,提高荧光效率。 由于氧分子的顺磁性质,溶液中溶解氧的存在,使激发单重态分子向三重态的体系间窜跃速率加大,因而会使荧光效率降低。其它顺磁性物质也有这种作用。 (三)荧光强度与溶液浓度的关系 根据荧光效率的定义,荧光强度If应为所吸收的辐射强度Ia与荧光效率φf的乘积: If = φf Ia =φf (I0-I)
由于 IIA0lg I=I0·10-A 可得 If=φfI0(1-10-A)
!33.2!22.3--3.2320ffAA
AII (5―3)
如果溶液很稀,吸光度A<0.05,方括号中其它各项与第一项相比均可忽略不计,则上式可简化为 If=2.3φfI0A=2.3φfI0kbc (5—4) 可见,当A<0.05时,荧光强度与物质的荧光效率、激发光强度、物质的摩尔吸收系数和溶液的浓度成正比。对于一给定物质,当激发光波长和强度一定时,荧光强度只与溶液浓度有关: If=Kc (5―5) 上式为荧光定量分析的基本依据。以荧光强度对荧光物质的浓度作图,在低浓度时,呈现良好的线性关系。当荧光物质