例6. 圆台下底直径为10, 高为3 3, 母线 与底面成600角. ①求侧面积和体积 解: AC=BCtan600 r o' A 3 3 =(5 -r)·3 , r=2 L 3 3 L=2BC =6 5 o B C 600 2+R2+rR)h V= 1 (r 3 =1 3 3 =39 3 3 (4+25+10)· S侧= (r+R)L= (2+5)· 6=42 ②求轴截面面积, 侧面展开图扇环中心角 3 3 解: S轴截面= 4+10 2 ×3 =21 R-r ×3600= 5-2 ×3600 =1800 = L 6
例7. 正四棱台上底边长2 2, 下底边长4 2, 侧棱长为4, 求体积, 侧面与底面 所成角的余弦值. D' o'2 2 C' E' 4 解: 如图E'为B'C'中点 , A' B' D E为BC中点. C 作E'M⊥OE, o M E F 4 2 B C'F⊥BC. A C'E'= 2, CE=2 2, CF= 2 h'=C'F= C'C2- CF2 = 14 h=E'M= E'E2 -ME2 =2 3 1 1 V= 3 (S1+S2+ S1S2 )h = 3 (8+ 32 +16 )· 2 3 =112 3/3 侧成与底面所成角为∠E'EO 2 = 7/7 = cos∠E'EO= ME E'E 14
例8. Rt△ABC中, AB=4, BC=3, AC =5, 求旋转体的体积和表面积: ①以AB为轴旋转一周 1 ×32×4 =12 Sh= 解: V1= 1 A 3 3 S1表 =S侧+S底 B' 5 4 o = RL+ R2 =15 +9 =24 C' B 3 C ②以AC为轴旋转一周 12 AC=AB· BC, OB= 5 解: OB· V2=V圆锥A+V圆锥C = 1 3 SBB'(OA+OC) 12 48 =1 × ( )2× 5 = 3 5 5 S2表= S圆锥A侧+S圆锥C侧 12 84 = ×12 ×4 + × ×3 = 5 5 5