全光网络的发展历程与发展趋势
- 格式:docx
- 大小:281.95 KB
- 文档页数:22
光纤通信技术的发展及趋势关键词:光纤通信技术发展历史现状发展趋势摘要:本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。
1、导言目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。
作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。
自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。
2、光纤通信技术的发展历史总结近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。
光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。
光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。
光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。
上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。
光纤通信技术的发展与应用光纤通信技术的发展与应用一、光纤通信的应用背景通信产业是伴随着人类社会的发展而发展的。
追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。
随后,在贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。
之后伴随着激光的发现,英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。
从此,开创了光纤通信领域的研究工作。
二、光纤通信的技术原理光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。
其中,光纤由纤芯、包层和涂层组成。
纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。
由多根光纤组成组成的称之为光缆。
中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。
涂层就是保护层,可以增加光纤的韧性以保护光纤。
光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。
光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。
中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。
无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。
其原理图如图1所示:通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。
此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。
光纤通信技术发展的现状与前景【摘要】文章针对光纤通信的发展现状作一简要总结与分析,并对未来的可能发展趋势作了展望,显示了光纤通信技术良好的发展趋势。
【关键词】光纤通信;全光网络;波分复用技术光纤通信技术是指通过光学纤维传输信息的技术。
在发信端,信息被转换成电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电一光转换。
发信端发出的信号,通过光纤传输到远方的收信端,经光一电转换成电信号,再经过处理和转换而恢复为与原发信端相同的信息,光纤通信技术尚有很大的发展空间。
1.光纤通信系统简介光纤通信是一种利用光波作为载波来传送信息,用光纤作为传输介质的通信方式,其工作频段属于近红外光段,常用的通信窗口有0.85um,1.31um,1.55um。
光纤多采用石英,而常用的光源有半导体激光器和发光二级管等。
1.1基本的光纤通信系统组成包括三大部分:光发射、光纤传输和光接收光纤通信系统既可以传输数字信号,也可以传输模拟信号,并且可以将多种不同类型的信号在一起传输,如话音,图像,数据,多媒体信息等。
1.2光纤通信的优点例如光纤所采用的石英材料是一种电绝缘体,因此不受各种电磁z因此不受各种电磁场的干扰和闪电雷击的损坏,并且适合在易燃易爆环境中使用,光纤的重量很轻,中心折射率略高的纤芯和外围折射率稍低的包层组成同轴圆柱形的结构,直径一般只有125um,即使外层经过环氧树脂或硅橡胶的涂敷,并制作成8芯的光缆,也只占同样芯数的电缆重量的1/15;此外光纤的损耗很小,容许频带宽,因此可以进行大容量长距离的传输。
2.光纤通信系统中的新技术目前,光纤通信技术在通信网,广播电视网与计算机网,以及其他数据传输系统中,都已经得到广泛应用,新技术也不断涌现,提高了通信能力,拥有很大的需求和市场。
2.1光纤通信的发展趋势光纤到家庭(ftth)的发展。
ftth可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。
光通信技术论文15篇光通信技术现状及其发展趋势探讨光通信技术论文摘要:光通信技术能够促进社会的进步和国家的发展,并且在人民生活方面也起着至关重要的作用。
虽然现在光通信技术在电力通信系统中存在一定的问题,但是电力工作人员要完善地处理,对业务规划进行透彻的分析,选择合理的设备,制定有效地组网方案,只有这样,才能提高网络的安全性和稳定性,降低电力企业的成本,才能够在电力通信系统甚至国家的发展中起到促进作用,进而促进国民经济不断增长。
关键词光通信技术通信技术论文通信技术光通信技术论文:光通信技术现状及其发展趋势探讨【摘要】随着科学技术的不断发展,通信技术的发展在一定的程度上满足了人们工作、生活和学习的需求。
尤其是光通信技术的发展,使得长距离、大容量传输成为可能。
基于这样的状况,本文对光通信技术的发展现状,以及未来的发展趋势进行了简要的分析与研究。
【关键词】光通信光网络全光通信前言:光通信是以光导纤维(即光纤)为传输媒质,以光波作为载波的一种通信方式。
光通信涉及的技术领域包括光器件、光传输、光信号处理、光交换技术、光网络技术以及光网络的融合技术等等。
光通信正朝着高速率、大容量。
长距离、网络化、智能化的方向发展。
本文主要对光通信技术现今的发展状况,以及在今后的发展趋势进行了简要的阐述。
一、目前光通信技术的发展现状1.1密集播分复用技术密集波分复用技术简称DWDM,是光纤数据的一种传输技术,该种技术是利用激光的波长,按照比特位并行传输或字符串行传输方式在光纤内传送数据。
DWDM是光网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络、同步数字序列协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。
在被开发后,基于其能在很大的程度上提高了光纤系统对于信息数据的传输量,而被广泛关注与应用。
1.2光纤接入网技术光纤接入网,指的是在接入网过程中,利用光纤为核心的传输媒质,以此来实现用户数据信息传递的形式。
全光网运营方案一、问题背景分析随着科技的进步和社会的发展,全光网已经成为了未来网络发展的主流趋势。
全光网是指利用光纤技术实现终端到终端的全光传输,不仅可以满足高速宽带接入需求,还可以支持大规模的智能终端接入。
在这种背景下,运营商如何有效地进行全光网的规划和运营成为了一个重要的课题。
1.发展趋势光网络是未来网络的发展方向,其优势在于大带宽、低时延和高可靠性,具有很强的竞争力。
全光网将极大地提高网络的容量和速度,为各种新兴业务提供了更加广阔的发展空间,因此受到了广泛的关注。
2.问题分析目前,虽然我国的光网络建设已经取得了一定的成绩,但是与发达国家相比还存在着一定的差距。
中国的光网络建设主要集中在城市,而农村地区和偏远地区的光网络建设相对滞后。
另外,也存在着网络运营效率低、服务质量差、成本高等问题。
3.全光网运营的重要性全光网具有不可替代的重要性,它不仅可以提高网络的容量和速度,还可以支持各种新兴业务的发展,如4K/8K视频、VR/AR、大数据等。
因此,全光网的规划和运营对于推动我国信息产业的发展和提高国民生活质量具有重要意义。
二、总体目标和策略1.总体目标全光网运营的总体目标是构建一个高速、智能、绿色、开放的全光网络,提供更加可靠、高效、优质的网络服务,满足用户多样化的需求。
2.战略将光网络作为未来网络的发展方向,提高运营效率和服务质量,探索新的商业模式和服务方式,加快全光网建设和运营,推动网络的智能化和信息化。
三、运营规划1.光网建设(1)加快城乡光纤网络覆盖,提高网络的可用性和覆盖范围。
(2)加大网络升级和扩容投入,提高网络的带宽和承载能力。
(3)推进光纤网络国际互联,提高网络的国际传输能力。
(4)积极发展新一代光通信技术,提高网络的速度和稳定性。
2.智能化管理(1)引入智能化运维系统,提高网络的运营效率和稳定性。
(2)推动网络的自动化管理,减少人工干预,提高运维效率。
(3)建设智能化数据中心,提高网络的数据处理能力和安全性。
引言随着信息化和互联网的快速发展,光纤通信宽带行业的重要性与日俱增。
光纤通信宽带技术具有传输速度快、带宽大、信号质量高等优点,成为了现代通信领域的重要技术手段。
本报告将对2024年光纤通信宽带行业进行分析,包括行业发展现状、市场规模、关键技术以及未来发展趋势等方面。
一、行业发展现状1.市场规模2024年光纤通信宽带行业市场规模持续扩大,全球光纤通信宽带用户数达到了数十亿。
尤其是在发展中国家,光纤通信宽带的普及程度逐渐提高,用户规模呈几何级增长。
2.运营商竞争光纤通信宽带市场存在着大型运营商和小型运营商之间的竞争。
大型运营商凭借其强大的资源和品牌优势,占据了市场主导地位。
小型运营商则致力于特色化服务,寻找利润空间,与大型运营商进行竞争。
3.政策支持政府对光纤通信宽带行业给予了大力支持,通过投资建设光纤网络、制定相关政策和规定,推动光纤通信宽带的发展。
政策的支持为光纤通信宽带行业提供了良好的发展环境。
二、市场规模分析1.全球市场2024年,全球光纤通信宽带市场规模达到了数千亿美元。
亚太地区成为全球最大的光纤通信宽带市场,占据了市场份额的40%以上。
欧洲和北美市场也保持了良好的增长势头,其市场份额分别为30%和20%左右。
而中东、非洲和拉丁美洲等发展中国家市场规模相对较小。
2.国内市场中国光纤通信宽带市场在2024年继续维持快速增长的态势,市场规模超过了2000亿人民币。
国内运营商在网络建设和服务质量上争相提升,用户需求也日益增长。
其中,中国联通、中国移动和中国电信是市场的主要参与者,共同促进了市场规模的增长。
三、关键技术分析1.光纤传输技术光纤通信宽带的核心技术是光纤传输技术,其通过光信号的传输实现了信息的高速传输。
随着技术的进步,传输速率不断提高,传输距离也不断延伸,可以满足用户对高速、稳定、远距离传输的需求。
2.数据压缩技术为了提高数据传输的效率和速度,光纤通信宽带行业采用了数据压缩技术。
通过对数据进行压缩和解压缩,可以减少传输的数据量,提高传输速度和带宽利用率。
2024年光网络市场调研报告一、背景介绍光网络是指利用光纤作为信号传输介质的网络技术。
近年来,随着互联网的快速发展,光网络在传输速率、带宽和稳定性等方面都有巨大优势,逐渐成为新一代通信网络的核心技术。
随着我国信息化建设的不断推进和互联网用户数量的持续增长,光网络市场前景广阔。
本报告旨在对光网络市场进行调研分析,了解市场规模、发展趋势、主要参与者及竞争态势等信息,为相关企业提供参考和决策依据。
二、市场规模及发展趋势据统计数据显示,2019年我国光网络市场规模达到XX亿元,同比增长XX%。
市场规模呈现出稳步增长的趋势。
预计未来几年,光网络市场将保持较高的增长速度,预计到2025年市场规模将达到XX亿元。
市场发展趋势主要表现在以下几个方面:2.1 高速光纤需求增长随着互联网用户数量的增加,用户对高速稳定的网络需求也越来越高。
高速光纤作为支撑光网络的基础设施,将成为市场的核心需求。
2.2 光纤网络覆盖范围扩大目前,我国光纤网络在一、二线城市较为普及,但三、四线城市及农村地区的覆盖率仍然较低。
未来,光纤网络将不断扩大覆盖范围,满足更多居民和企业的网络需求。
2.3 光网络与5G融合应用光网络与5G技术的融合应用将推动光网络市场的进一步发展。
5G技术将对光网络提出更高的要求,而光网络的高速和低延迟特性也将为5G提供强有力的支持。
三、主要参与者及竞争态势目前,光网络市场的参与者主要包括以下几个方面:3.1 运营商各大通信运营商在光网络市场占据主导地位。
它们拥有雄厚的资金实力和优质的资源,可以通过扩大光网络建设和提供高品质的网络服务,满足用户需求。
3.2 设备供应商光网络设备供应商是光网络市场的核心参与者之一。
它们负责设计、制造和提供光纤设备和技术解决方案,为运营商和企业用户提供全面的支持。
3.3 解决方案提供商光网络解决方案提供商为用户提供全套的光网络解决方案,包括网络规划、设计、施工等环节。
它们依托自身的技术实力和经验,为用户提供定制化的服务。
浅谈光纤通信技术的发展史摘要:文章介绍了光纤通信的发展历程、发展现状,并对光纤通信技术的发展趋势进行了展望。
关键词:光纤通信,波分复用,光接入网,全光网Abstract:The paper summaries the development history and current situation of optical fiber communication,and then outlines the development trend of communication in the future.Key words:Optical Fiber Communication,WDM Optical Access Network,All-Optical Network前言:1966年7月,出生于上海的英籍华人高锟(C.K.KA)博士提出:“只要设法降低玻璃纤维中的杂质,就能够获得能用于通信的传输损耗较低的光导纤维。
”2009年这一成就获诺贝尔奖。
光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。
1.光纤通信的主要特点①频带极宽,通信容量大在光纤技术中,光纤可以容纳50000GHz 传输带宽,光纤通信系统的容许频带(带宽)是由光源的调制特性、调制方式和光纤的色散特性决定的。
例如:单波长光纤通信系统一般是使用密集波分复用等一些复杂的技术,以便解决通信设备的电子瓶颈效应的问题,保证光纤宽带可以发挥更积极的作用,从而增加光纤的信息传输量。
目前,单波长光纤通信系统的传输率已经得到了2.5Gbps到10Gbps。
②抗电磁干扰能力强光纤的制作材料主要是石英,其绝缘性好,抗腐蚀能力强。
因此,光纤有较强的抗电磁干扰能力,且不受雷电、电离层的变化和太阳黑子活动等电磁影响,也不会被人为释放的电磁所干扰,这就是石英这种通信材料的最大优势。
除以上有点之外,光纤体积小、质量轻,不仅可以节省空间,还便于安装;光纤的制作材料资源丰富,成本低;光纤的温度稳定性好,使用寿命长。
光纤通信的发展现状和未来光纤通信是一种以光纤为传输介质的通信方式,具有高速率、大带宽、抗干扰等特点,是现代通信网络的重要组成部分。
随着互联网的飞速发展,光纤通信在信息传输和通信领域的地位越来越重要。
本文将从光纤通信的发展、现状和未来进行分析。
1. 光纤通信产生的背景与历史:20世纪60年代末期,激光器技术的发展让人们在光纤中传输信息的想法成为可能,随后在20世纪70年代,激光器技术、光纤材料技术以及光电子元件技术的逐步成熟,使得光纤通信逐步步入实用阶段,随着数字通信技术的发展,光纤通信技术迅速壮大与发展。
2. 光纤通信的技术发展进程:光的传输速度非常快,经过多年的探索和研究,科学家们逐渐掌握了光传输的核心技术,如波分复用技术、光放大器及其控制技术、光纤传输技术、解调技术等。
这些技术的广泛应用和应用前景的广阔,让光纤通信成为了一种主流的信息技术。
3. 光纤通信的应用领域:光纤通信已广泛应用于电信、电视、计算机等领域。
在电信领域,光纤通信被用于长距离传输电话、移动通信、数据传输等;在电视领域,由于光纤通信传输的信号质量更好,每个用户的信号不再干扰,使得高清电视内容得以传输;在计算机领域,光纤通信可以实现大数据传输、云计算和远程存储等功能。
1. 技术成熟度:通过不断的技术创新和扩容升级,目前光纤通信的技术成熟度已经达到了极高的水平,发展速度依然处于快速增长状态。
在大规模应用时,光纤通信表现出出色的抗干扰性和稳定性,因此它被广泛使用于各行各业。
2. 发展速度:随着互联网、大数据、物联网等产业的不断发展,光纤通信的应用需求不断增加,其发展速度十分迅猛。
目前,全球光纤通信的市场规模正在以高速度增长,预计2025年全球光纤通信市场规模将超过5万亿美元。
3. 未来应用前景:未来,随着各个领域的智能化发展,对于网络传输的快速数据传输和高质量传输的要求也会越来越高,而光纤通信在这方面是十分优秀的选择。
光纤通信的未来应用前景十分广阔,将在各行各业中发挥着越来越重要的角色。
光纤通信与光网络光纤通信与光网络的出现与发展,标志着信息与通信技术进入了一个崭新的时代。
作为一种高速、高容量、低损耗的传输媒介,光纤通信与光网络在数据传输、通信、互联网等方面起着重要的作用。
本文将探讨光纤通信与光网络的基本原理、应用领域以及未来发展趋势。
一、基本原理光纤通信是利用光纤作为传输媒介,通过光的全反射原理将光信号传输到目标地点的通信方式。
在光纤通信中,光信号被转换成光脉冲,通过光纤中的光纤芯层进行传输,到达目标地点后再进行光信号的接收和解码。
光纤通信具有高带宽、低传输损耗、抗干扰能力强等优点,因此被广泛应用于长距离通信和高速宽带传输领域。
光网络是建立在光纤通信基础上的网络系统,通过光纤传输设备和光网络控制设备进行信息传递和处理。
光网络采用光纤传输技术,具有高速、大容量、低延迟等特点,能够满足日益增长的数据传输需求。
光网络可以分为光分布式网络和光分组网络两种形式,灵活性高、传输效率高,成为现代通信网络的重要组成部分。
二、应用领域光纤通信与光网络广泛应用于各个领域,为我们提供了高效的通信和数据传输服务。
以下是光纤通信与光网络在几个主要领域的应用:1. 电信领域:光纤通信和光网络在电信领域起着至关重要的作用,用于实现电话、宽带、移动通信等服务。
光纤通信的高带宽和低延迟特性,为用户提供了更快速、更稳定的通信体验。
2. 数据中心:在大型数据中心中,光纤通信和光网络被广泛应用于服务器之间的高速数据传输。
光纤通信的高速率和大容量特性,能够满足数据中心对高速互联和大容量数据传输的需求。
3. 科学研究:光纤通信和光网络在科学研究领域中扮演着重要角色。
科学家们利用光纤传输设备进行大规模数据收集和传输,加速了科学研究的进程,提高了实验数据的可靠性和准确性。
4. 医疗行业:光纤通信和光网络在医疗行业中广泛应用于医院的信息化建设和远程医疗。
通过光纤传输技术,医生和患者能够实现视频会诊、远程手术等医疗服务,提高了医疗资源的利用效率和医疗水平。
光纤通信技术的发展历程及广泛应用提纲:1. 光纤通信技术的发展历程2. 光纤通信技术广泛应用的领域3. 光纤通信技术对建筑行业的影响4. 光纤通信技术的优势与不足5. 光纤通信技术的未来发展趋势一、光纤通信技术的发展历程光纤通信是指在光纤中使用光信号传输信息的一种通信技术。
在20世纪60年代初,科学家们开始研制光波导传输系统,但是由于技术不成熟导致传输距离短、光衰减大等问题,使得光传输技术难以实际应用。
这种情况一直持续到20世纪70年代中期,当时一种叫做单模光纤的新型光纤问世,使得光纤通信技术迎来了发展的春天。
在1977年,美国贝尔实验室成功地进行了一次长距离传输试验,使得光纤通信技术进一步得到了证明。
此后,随着光纤通信技术不断地完善,其安装和维护费用也逐渐降低,从而进一步促进了光通信技术的发展。
到了20世纪80年代,光通信技术经历了一次重大的技术革新,这一革新使得光传输距离、信号传输速度等指标都得到了显著的提升。
随后,光纤通信技术开始被广泛应用于电信行业,在21世纪的今天,光纤通信技术已经成为了全球通信网络的核心技术。
二、光纤通信技术广泛应用的领域光纤通信技术已经成为了现代通信领域最为广泛应用的技术之一,具体的应用领域包括但不限于以下几个方面:1. 数字通信领域。
光纤通信技术以其高速率、宽带、低延迟等特性,被广泛应用于数字通信领域。
如今许多电话、移动、宽带电视等业务都采用了光纤通信技术。
2. 汽车工业。
随着汽车制造工艺技术的不断提高,现代汽车的仪表盘、后视镜、车内娱乐系统等都需要使用到高速稳定的通信传输技术,因此在汽车工业中也广泛应用了光纤通信技术。
3. 医疗保健。
现代医疗设备需要实时传输病历、照片等信息,因此也需要高速、稳定的通信技术,光纤通信就是满足这种需求的最佳选择。
4. 其他。
光纤通信技术还被广泛应用于激光医疗、军事防卫、工程制造等领域。
三、光纤通信技术对建筑行业的影响随着数码化时代的到来,现代建筑在设计与实施过程中也越来越需要使用到先进技术,光纤通信技术就是其中一个不可或缺的部分。
浅谈光纤通信技术发展及其前景摘要:光纤通信是当今世界发展速度最快、最具发展市场和应用潜力的一个高新技术领域,正逐渐成为推动全球信息通信业发展的主要驱动力量。
本文探讨了光纤通信技术的主要特征,分析了光纤通信现状,并介绍了目前光纤通信发展的新技术,同时对光纤通信技术的发展趋势进行了展望。
关键词:光纤通信特点发展现状热点技术未来趋势一、前言光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。
光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,光波按其波长长短,依次可分为红外线光、可见光和紫外线光。
光纤通信的诞生与发展是电信史上的一次重要革命。
1966年,美籍华人高锟发表论文,预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的关注和重视。
四十几年的发展先后经历了五代光纤通信系统,而今随着互联网业务的蓬勃发展,移动业务的持续高速增长,iptv业务蓄势待发,世界网络带宽需求的日益增长,这些业务的发展对光网络提出了更高的要求。
二、我国光纤通信现状光纤通信是我国高新技术中与国际差距较小的领域之一。
光纤通信由于其具有的一系列特点,使其在传输平台中居于十分重要的地位。
虽然目前移动通信,甚至卫星移动通信的热浪再现高波,但telecom99的展示说明,光纤通信仍然是最主要的传输手段。
今年5月以来,随着第lo届光网络研讨会“2010年光通信论坛暨第三届fttx发展战略咨询会”等一系列行业高层会议的密集举办,国内光通信市场一时成为人们关注的焦点,无论是运营商、光通信设备厂商,还是业界专家和广大用户都对当前和未来我国光通信市场的发展抱以乐观的态度,国内光通信市场将进入一段新技术不断涌现、新产品加速应用的景气发展时期。
三、光纤通信发展热点技术近年来,光纤通信技术基本成熟,业务需求相对不足。
未来传输网络的最终目标,是构建全光网络即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。
基于全光网络构架有很多核心技术,它们将引领光通信的未来发展。
全光网络组网方案一、全光网络概述全光网络是指信号在网络传输和交换过程中始终以光的形式存在,不需要进行光电转换。
这意味着数据可以在光域内进行传输、交换和处理,大大提高了网络的性能和效率。
与传统的网络架构相比,全光网络具有显著的优势。
首先,它能够提供极高的带宽,满足日益增长的大数据、高清视频等业务需求。
其次,光信号的传输速度快,延迟低,能够为实时性要求高的应用提供良好的支持。
此外,全光网络还具有能耗低、可靠性高、扩展性强等优点。
二、全光网络组网的关键技术(一)波分复用技术(WDM)通过将不同波长的光信号复用到一根光纤中进行传输,大大提高了光纤的传输容量。
WDM 技术可以分为粗波分复用(CWDM)和密集波分复用(DWDM),根据实际需求选择合适的技术可以有效降低组网成本。
(二)光交换技术光交换技术是实现全光网络的核心技术之一,包括光路交换(OCS)和光分组交换(OPS)。
光路交换适用于大颗粒业务的传输,而光分组交换则更适合小颗粒业务的快速处理。
(三)光放大器技术用于补偿光信号在传输过程中的损耗,延长传输距离。
常见的光放大器有掺铒光纤放大器(EDFA)和拉曼放大器等。
(四)无源光网络技术(PON)PON 技术是一种点到多点的光接入技术,能够实现高速宽带接入,为用户提供优质的网络服务。
三、全光网络组网方案设计(一)核心层设计核心层是全光网络的骨干部分,负责承载大量的数据流量。
在核心层中,应采用高性能的光传输设备,如 DWDM 系统,构建大容量的光传输通道。
同时,配置先进的光交换设备,实现高速的数据交换和路由转发。
(二)汇聚层设计汇聚层将多个接入层的业务汇聚到核心层。
可以采用 CWDM 技术或中等容量的 DWDM 系统,实现业务的汇聚和整合。
光交换设备的选择应根据业务量和性能要求进行合理配置。
(三)接入层设计接入层直接面向用户,提供各种接入方式。
PON 技术是接入层的常用选择,如 EPON 或 GPON。
此外,还可以根据用户需求采用光纤直接入户(FTTH)、光纤到楼(FTTB)等方式。
全光网络的发展历程与发展趋势
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】 全光网络的发展历程与发展趋势 彭承柱 彭明宇 摘要: 本文阐述全光网络如何经过WDM技术的发展与演变、全光网络的技
术研发、过渡到自动光交换网、直到当前智能光交换网络的发展历程与发展趋势。 1 引言 据国外统计,骨干因特网的带宽在1997年为622Mbps,1998年是,1999年突破10Gbps,2000年接近40Gbps;也就是说每经过6-9个月因特网的带宽或业务量翻一番。按照目前单波长光纤系统的传输速率最高为40Gbps考虑,仅因特网的数据流就占满了整个单波长系统的传输容量,更不用说宽带业务和其他多媒体应用了。事实上随着因特网的飞速发展,几乎在网络的所有层面,如企业网、接入网,传输、选路与交换等都在研发与应用高速宽带技术。带宽的"饥渴"极大地促进了DWDM技术的快速发展,基础速率为10bps的8波、16波、32波、40波乃至80波的DWDM系统已经商用,所有的波长都落在常规的C带内(1530-1565nm);此波带又分为蓝带和红带。各个波长或光路的间隔从100GHz缩小到50GHz。进一步增加波长数,例如增加到160波以上时需要应用L波带(1565-1625nm),也就是第4代WDM光纤通信系统。当波长数达到数百量级时各光路间隔将缩小到25GHz;此时对光源的精度与稳定度,对分光滤波器的分辨率的要求均很高。表1给出新世纪开始DWDM系统研发水平的概貌。由表1可见10Tbps的总容量业已突破,很多公司例如Ciena公司已在研发16Tbps的系统;而朗讯贝尔实验室的科研人员认为商用的DWDM系统容量最高将达到100Tbps。 DWDM系统在长途光传送网中的发展方向是超密集波分复用,超大容量和超常中继距离传输;而在城域光传送网中的发展方向是稀疏波分复用,超大容量、短传输距离和价廉的CWDM系统,也就是和具有第5光窗口的无水峰光纤即新的全波光纤相应的第5代WDM系统。此类光纤系统可利用的光谱是1280-1615nm,是常规可用波长范围的数倍,复用波长数大大增加,从而经济有效地解决网络扩容问题,故WDM系统和技术的发展为全光网络打下了物质基础。
2 WDM技术的发展与演变 在电信运营商寻找新的创收方法的同时,他们还在力图削减成本。直到几年前,削减成本的努力目标是在传输方面。例如血癌用DWDN系统就能经济有效地扩充网络容量,极大地削减了每话路的成本。此外,在长途中心局(CO)之间避免电信号再生是另一个削减成本的主要途径。通常每隔500km左右,光信号必须被变换到电信号,再消除失真后再变换成光信号。由于此再生过程需要再光链路两端配置相同的设备,故比无再生中继的光链路端对系统的成本增加约1倍。采用喇曼(Raman)放大的超常距离(ULH)无电中继的DWDM系统,每波长或每个光路光信号的传输距离由约500km延伸到1500-2000km。例如由芝加哥到旧金山一 个OC-192(STM-64)光路原来需要2个电再生中继器,经过2次光一电一光变换,现在即可不再需要了。据Cable&Wire less公司的网络战略规划高级主管Dave Garbin估计,ULH DWDM系统可能会将传送一个新波长的成本减少到有电中继系统成本的1/3,甚至1/4。
尽管光一电一光中继方式对光纤的损耗和色散搜有补偿作用,但毕竟装置复杂、提及打且损能多,使多波长复用系统变得很复杂而昂贵,故在光纤损耗限制的系统中,采用光放大器直接放大光信号,不仅可以节省成本,同时也为实现全光通信打下基础。也就是为什么一度出现低色散与低色散斜率型光纤,例如光纤、真波光纤等新一轮建设高潮的原因。
目前已实现的光放大器,除去应用最多的掺铒光纤放大器(EDFA)外,就是非线性光纤放大器和半导体激光放大器。前者利用光纤中的非线形效应,利用受激喇曼散射(SRS)和受激布里渊散射(SBS),实现受激喇曼散射光纤放大器和受激布里渊散射光纤放大器。喇曼光放大器能在1292nm到1660nm很宽的光谱上放大光信号,因此,它适合于任何类型的光纤,可在选定的低色散光谱区工作,例如光纤的1310nm波长区对光信号直接放大,同时其成本又较低。它可采用同向或反向光泵,增益带有6THz。除集中式喇曼光放大器外。分布式喇曼光纤放大器能在速率到达40Gbps的高速光网络中工作,增加光放大器之间的距离,实际上喇曼光放大器仅是掺铒光纤放大器的一种补充,目前还不能完全取代它。后者利用半导体的光电效应放大光信号(SOA),例如JDS Uniphase和其他一些公司生产的半导体光放大器。目前它的输出功率不够且噪声还比较高,不适应长距离超高 速DWDM系统的应用;但可用于短距离的WDM系统和城域光网中,尤其重要的是它能将接受的光信号波长改变,输出新的波长,并在次过程中放大光信号,起动态波长变换作用,必将会在全光网络的动态配置波长、选路由等方面大显身手。它虽未商用,但有望取得新的进展。当然,还可以配合利用光弧子效应不常光纤色散引起的脉冲展宽,延长光信号传输距离,增大光纤的传输跨度。根据Worldcom公司网络结构与先进技术副总裁Jack Wimmer估计,如果采用ULH技术,80-85%的长途光链路不需要光一电一光中继。这将减少高成本的光电变换器与分波滤光器。据路由器厂商介绍,光器件端口的成本占到路由器成本的60-70%,而端口的成本主要是光电变换器成本。一个OC-192光接口大约需要10万美元,一个OC-48(STM-16)光接口约4万美元。基于同样的原因,近期在城域网(不用光放大器)中利用全波光纤开发应用的CWDM系统势头很猛。因通过使用便宜、低功率的普通激光器(无制冷直接调制),低成本宽波长间隔的分拨滤光器以及较低等级的光纤,可降低OC-192光链路的成本达40%。
事实上,全光交换也是这一思想的反映:因为消除了高成本的光一电一光交换就可以大大减少变换成本。不仅在网络中心采用全光交换机,而且希望在信号到达网络边缘之前都无需将光信号变换到电信号。
由于WDM系统成本的进一步下降,更加增强的竞争力与无以匹敌的容量或带宽优势,将鼓励其向地区网乃至用户接入网发展,从而在整个通信网络中自然地形成一光层或"光子层"。这就说明随着WDM光网络应用规范的迅速扩展,WDM光传送网(OTN)将从容量带宽的增长发展的功能完善;将从追求线路系统的传 输距离到保护恢复自愈;从过去完全面向SDH平台到现在面向多业务平台;即转变单纯大容量宽带传送为端到端的多业务的连接,进一步将WDM技术和光交换结合形成一个大吞吐量的光网络平台,以有效地支持各种业务,尤其是IP分组数据业务。WDM技术的这种发展与演变将左右OTN技术的发展。道理很简单,一个波长10Gpbs速率的光路相当于12万条话路容量,而一个80*10GbpsWDM系统的容量接近1000万条电路,如此巨大容量的系统是不允许片刻中断的。为此,可像SDH自愈环那样,在WDM系统中采用OADM构成两纤单向光路共享保护环网,以及四纤线路共享保护环网。一旦某一方向某一段的光纤发生故障就能在50ms内自动迂回沟通,实现光路的自动保护,提高光网络的可靠性、可用性与生存性。作为光网络通信枢纽节点的主要设备OXC,位于多个光环网的交汇节点,随着调整疏通光波长数和光路走向,实现各向光路的交叉连接。从而,可通过OADM和OXC处理传送光层上的全光数字流,而将较低容量的电数字流的传送处理留给电层的ADM和DXC,以提高网络配置的灵活性,适应业务的迅速变化与需要,并降低网络运营维护管理的费用。
3 全光网络的技术与结构 在传统的光一电一光骨干网络节点中,尤其是枢纽节点,典型的情况是约有75-80%的业务量是直通的,为了少量的业务不得不全部进行光电变换处理,将落地的光信号转变为电信号,进行交换与选路,然后再将其变换为光信号,送到适当的光路中。这种电的处理技术大大限制了WDM技术的优越性,使网络节点 乃至网络的吞吐量变小,形成"电子瓶颈"。考虑这种现实,以及前节所述理由,人们想到全光网络。
全光网络在原理上讲就是网中端到端用户节点之间全是光路,始终保持光信号传送,没有任何光电变换器,也就是网络对光信号"透明"。就透明性来说只要有光电变换就是半透明的;我们当然希望做到全透明,以便全面充分地利用光纤的能力,使网络带宽几乎无限,对传送的信号无任何限制,对信号的处理极少,因而网络最经济可靠。但是,目前实现全透明光网络还有难处,例如直接组网与运营还有不少全光组网技术及相应标准需要研究开发;光交换机还未成熟和商用。
所以,考虑现实,为避免技术和运营的困难,ITU-T决定按光传送网(OTN)的概念研究光网络技术并制订相应的标准化建议。OTN是据网络功能与主要特征定名,它不限定网络的透明性,虽然最终目的是透明的全光网络,但可从半透明开始,即在网中允许有光电变换。这就解决了全光网络透明部分应多少的争议。全光网络的基本技术有全光交换,全光交叉连接、全光中继、全光复用与解复用等。
(1)全光交换 目前在研究开发热光、液晶光和声光交换机。热光交换机采用可调节热量的聚合物波导,其交换机制是由分布在聚合物中的薄膜加热元素控制。当电流 通过加热器时改变波导分支内的热量分布,从而改变了折射率,将光从主波导耦合至分支波导中。它的优点是体积小、交换速度快;缺点是介入损耗高、串光大,且要求有良好的散热器。
液晶光交换机包含液晶片、极化光束分离器或光束调相器。液晶片的作用是旋转入射光的极化角,而角度受电极上的电压控制。极化光束分离器或光束调相器起引导光信号到目的端口的作用。用此技术可构造多光路矩阵交换机,但接入损耗大,串光严重,驱动电路也较昂贵。
声光交换机以声光技术为基础,可实现微秒级的交换速度,但不适合矩阵交换机,因需要复杂的控制系统并需要通过改变波长来控制交换机。此外,介入损耗随波长变化较大,驱动电路昂贵。
由于在网络的边界,例如骨干网与城域网,它们所传输的波长是不一样的,光路的交换必须改变波长,而不仅是改变光的传输方向或光纤,所以,开发技术成熟、商用的全光交换机好有很长的一段路程。
(2)光交叉连接OXC OXC设备是光网络的关键设备,用于光层上的保护、回复和分布式网管,实现光网络中光波之间的交换。