相敏检波电路
- 格式:ppt
- 大小:1.18 MB
- 文档页数:12
第一章!测控系统的组成:传感器测量控制电路和执行机构!!测控电路的功用:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。
!!!测控电路的主要要求:1.精度高(1)低噪音和高抗干扰能力对信号进行调制,合理安排电路的通频带。
采用高共模抑制比的电路(2)低漂移、高稳定性首先选择温漂低觉得器件,其次应尽量减小电路的特别是关键部分的温度变化并保持电路工作稳定(3)线性与保真度好2.转换灵活(1)A/D转换灵活(2)电量参数转换(3)量程的变化3.有适合的输入电阻和输出电阻4.动态性能好响应快和动态失真小5.高的识别和分辨力6.可靠性高7.经济性好一:测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。
随着传感器类型的不同,输入信号的类型也随之而异。
主要可分为模拟式信号与数字式信号。
随着输入信号的不同,测量电路的组成也不同。
图X1-1是模拟式测量电路的基本组成。
传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。
根据被测量的不同,可进行相应的量程切换。
传感器的输出一般较小,常需要放大。
图中所示各个组成部分不一定都需要。
例如,对于输出非调制信号的传感器,就无需用振荡器向它供电,也不用解调器。
在采用信号调制的场合,信号调制与解调用同一振荡器输出的信号作载波信号或参考信号。
利用信号分离电路(常为滤波器),将信号与噪声分离,将不同成分的信号分离,取出所需信号。
有的被测参数比较复杂,或者为了控制目的,还需要进行运算。
测控电路李醒飞第五版第三章习题答案第三章 信号调制解调电路3-1 什么是信号调制?在测控系统中为什么要采用信号调制?什么是解调?在测控系统中常用的调制方法有哪几种?在精密测量中,进入测量电路的除了传感器输出的测量信号外,还往往有各种噪声。
而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分离出来是测量电路的一项重要任务。
为了便于区别信号与噪声,往往给测量信号赋以一定特征,这就是调制的主要功用。
调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。
在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。
在信号调制中常以一个高频正弦信号作为载波信号。
一个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进行调制,分别称为调幅、调频和调相。
也可以用脉冲信号作载波信号。
可以对脉冲信号的不同特征参数作调制,最常用的是对脉冲的宽度进行调制,称为脉冲调宽。
3-2 什么是调制信号?什么是载波信号?什么是已调信号?调制是给测量信号赋以一定特征,这个特征由作为载体的信号提供。
常以一个高频正弦信号或脉冲信号作为载体,这个载体称为载波信号。
用需要传输的信号去改变载波信号的某一参数,如幅值、频率、相位。
这个用来改变载波信号的某一参数的信号称调制信号。
在测控系统中需传输的是测量信号,通常就用测量信号作调制信号。
经过调制的载波信号叫已调信号。
3-3 什么是调幅?请写出调幅信号的数学表达式,并画出它的波形。
调幅就是用调制信号x 去控制高频载波信号的幅值。
常用的是线性调幅,即让调幅信号的幅值按调制信号x 线性函数变化。
调幅信号s u 的一般表达式可写为:t mx U u c m s cos )(ω+=式中 c ω──载波信号的角频率;m U ──调幅信号中载波信号的幅度; m ──调制度。
图X3-1绘出了这种调幅信号的波形。
一、简答题1、影响测控电路精度的主要因素有哪些?影响测控电路精度的主要因素有:噪声与干扰; 失调与漂移,主要是温漂;线性度与保真度;输入与输出阻抗的影响。
2、什么是自举电路?说明右图所示电路是如何提高放大器的输入阻抗的? 自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。
U 02=—2R 1u 0/R 3 I 1=u i /R 1 U 0=-R 3u i /R 1 I 2=(u 02-u i )/R 1=I1 I=0,故输入阻抗极大。
3。
什么是双边带调幅?请写出其数学表达式,并画出其波形。
答:双边带调幅是在调幅信号中,将载波信号幅值Um 取0,从而得到频带在Ω±c ω范围内的调幅信号。
数学表达式:t t U t t mX U c xm c m s ωωcos cos cos cos Ω=Ω=m X -调制信号幅度,Ω—调制信号角频率,c ω—载波角频率,m —调制度4、 什么是隔离放大电路?画图并简述光电耦合隔离放大电路的基本工作原理。
(10分)隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。
u ou i 1 2 R 1 i u o2 2R 1 R 3 R 1 ∞ - + + N 1 ∞ - + + R 3 N光电耦合隔离放大电路是将输入被测信号放大(也可载波调制),并由耦合器中的发光二极管LED转换成光信号,再通过光耦合器中的光电器件(如光敏二极管、三极管等)变换成电压或电流信号,最后由输出放大器放大输出.5、什么是相敏检波电路?(6分)包络检波电路两个问题:第一是解调的主要过程是对调幅信号进行半波或者全波整流,无法从检波器的输出鉴别调制信号的相位;第二是包络检波电路不具有区分不同载波频率的信号的能力。
相敏检波电路功能:使检波电路具有判别信号和选频的能力。
从电路结构上看,相敏检波电路的主要特点是,除了需要解调的调幅信号外,还需要输入一个参考信号。
简述相敏检波器的作用及用法。
相敏检波器是一种电子设备,用于检测高频信号中的调制信号。
它可以将高频信号中的调制信息提取出来,并将其转换成低频信号输出。
相敏检波器的作用是将调制信号从高频转换到低频,以便于后续的处理和分析。
它常用于收音机、电视机、无线电通信等领域,用于接收和解调无线信号。
相敏检波器的用法如下:
1. 连接:将需要检测的高频信号输入到相敏检波器的输入端,连接好电源和地线。
2. 调节:根据实际需求,调节相敏检波器的增益、中心频率、带宽等参数。
3. 检测:将输出端连接到后续的处理设备或进行信号分析。
可以通过观察输出信号的变化来判断调制信号的特征。
需要注意的是,相敏检波器对输入信号的频率范围有一定要求,应根据信号的特性选择合适的相敏检波器。
另外,还需要注意相敏检波器的性能指标,如灵敏度、线性度、动态范围等,以确保信号的准确检测和解调。
检波电路详解概述检波电路是一种将模拟信号转化成直流信号的电路,在实际电子设备中广泛应用。
检波电路起到了信号解调和信号处理的作用,对于很多领域的电子设备,尤其是通信设备,都具有非常重要的意义。
检波电路的基本原理是通过将模拟信号与一个特定的参考信号进行比较,得到一个输出电压,该电压是信号的振幅的函数。
这个输出电压就是解调信号,它经常用来表示原始信号。
检波电路可以实现多种解调方式,如整流、取样等。
这样,检波电路可以提取出原始信号中的有用信息,实现信号传输与处理的目的。
检波电路的类型很多,常见的有整流检波电路、抑制副载波检波电路、同步检波电路等。
下面将对其中几种常见的检波电路进行详细介绍。
1.整流检波电路整流检波电路是最常见的检波电路之一、它可以将交流信号转化为直流信号。
整流检波电路的工作原理是利用二极管的导通特性,通过将交流信号输入二极管,使得二极管只在正半周导通,从而得到一个只有正半周信号的输出。
整流电路通常用于电源的正则电路中,以将交流电源转化为直流电源。
2.抑制副载波检波电路抑制副载波检波电路是用于抽取基带信号的一种检波电路。
在调频调幅(FM/AM)收发机中使用得较多。
抑制副载波检波电路通过使用相位环路控制技术,在输入信号的正弦波周围形成一个窄带滤波器,来滤除波形的高频部分,从而得到包含基带信号的输出。
3.同步检波电路同步检波电路是一种将调幅信号解调为基带信号的电路。
它通过引入一个本地振荡器与输入信号进行混频,然后对混频后的信号进行低通滤波,最终得到基带信号。
除了以上几种经典示例外,还有一些其他的检波电路,如包络检波电路、采样保持电路等。
这些检波电路在不同的应用场景中起到了重要的作用。
检波电路的设计中需要考虑到很多因素,如电路的稳定性、灵敏度、抗干扰性等。
在实际应用中,需要根据具体的需求来选择合适的检波电路,并进行相应的调整和优化。
总之,检波电路在电子设备中起着重要的作用,通过将模拟信号转化为直流信号,实现了信号的解调和处理。
AD630锁相放大器相敏检波器微弱信号提取原理图和PCB基本原理锁相放大器是一种用于测量动态信号的电子仪器。
它的主要组成部分前置放大器、相敏检波器、移相器和低通滤波器组成。
系统最常用的功能是从被噪声淹没的信号中测出某一频率的信号的相位和幅值。
将非选定频率的信号(即噪声)去除而选定频率的信息得以保留。
因为具有很强的抗噪声能力,锁相放大器被广泛应用于各种高精测量系统中。
芯片选型AD630用作采用锁定放大器配置的同步解调器时,可从100dB干扰噪声中恢复小信号(参见锁定放大器应用部分)。
芯片频道带宽:2MHz,实际使用是时可用在100K以内的锁相放大。
AD630可被视作集成两个独立差分输入级的精密运算放大器以及可用于选择活动前端的精密比较器。
该比较器的快速响应时间以及线性放大器的高压摆率和快速建立时间可最大限度地降低开关失真。
了解了锁相原理后,在精度不高的情况也可以用CD4052这样的模拟开关替代。
原理图&3D-PCB在当前设计下保留了芯片的平衡调制功能,这里主要介绍锁相放大系统,平衡调制功能不做详解。
具体讲解1、前置放大器我们选用低失调、低偏置、精密运算放大器OPA627,为了方便测试,只将OPA627的放大倍率设置为11倍(同相比例放大)。
在实际运用中可以根据需要检测的信号幅度调节电阻达到较大的放大倍率,G=1+R2/R1。
2、P6为同步信号输入口,要求同步信号为带检测信号的同频率同相位的信号。
由于模块是正负供电,所以这里输入的信号也要是正负的,这里可以输入正弦波三角波或者方波,由于内部有比较器最终都会转换为方波。
但是要求输入的幅度需要达到200mvpp以上。
3、D1是同步信号指示灯,在同步信号输入时会亮起,同步信号频率低的时候可以看到LED 会随着同步信号频率频闪。
4、P2是平衡调制的信号输入口,这里我们不做介绍。
P3是锁相放大和平衡调制的功能选择端,连接1、3为锁相放大模式。
连接2、3为平衡调制功能。
检波电路原理检波电路是一种常见的电子电路,用于从调制信号中提取出基带信号。
它在通信系统、无线电接收机、音频处理等领域都有着广泛的应用。
在本文中,我们将深入探讨检波电路的原理及其工作方式。
首先,让我们来了解一下检波电路的基本原理。
检波电路的主要作用是将调制信号中的信息信号提取出来,通常是通过去除载波信号来实现的。
根据不同的调制方式,检波电路可以分为调幅检波、调频检波和调相检波等不同类型。
不同类型的检波电路在工作原理上会有所不同,但其基本原理都是对调制信号进行解调,提取出原始的信息信号。
接下来,我们将重点介绍调幅检波电路的原理。
调幅检波电路主要用于解调调幅调制信号,其基本原理是利用非线性元件的特性来实现。
最常见的调幅检波电路是二极管检波电路。
二极管的导通特性使其能够将高频载波信号去除,从而得到原始的调制信号。
通过合理设计电路结构和参数,可以实现高效的调幅检波效果。
除了调幅检波电路,调频检波和调相检波电路也有着各自独特的原理和工作方式。
调频检波电路主要用于解调调频调制信号,其原理是利用频率-相位特性来实现信号解调。
而调相检波电路则是用于解调调相调制信号,其原理是通过比较相位差来提取信息信号。
在实际应用中,检波电路的性能对信号解调质量有着重要影响。
因此,在设计检波电路时,需要考虑到非线性失真、噪声干扰、频率偏移等因素,以确保其能够稳定、高效地工作。
此外,随着电子技术的不断发展,各种新型的检波电路也不断涌现,如数字检波电路、混合信号检波电路等,它们在提高检波精度、抑制干扰等方面具有独特优势。
总的来说,检波电路作为一种重要的电子电路,在现代通信和无线电领域有着广泛的应用前景。
通过深入理解其原理和工作方式,我们可以更好地应用检波电路,提高信号解调的质量和效率,推动电子技术的发展。
希望本文对您了解检波电路的原理有所帮助,谢谢阅读!。
相敏检波器的工作原理
相敏检波器是一种广泛应用于射频和微波信号处理的设备,其工作原理基于信号的相位差引起输出电压变化的原理。
具体工作原理如下:
1. 进行信号混频:将待测信号与载波信号进行混频,产生一个中频信号。
2. 通过低通滤波:将混频后的中频信号通过低通滤波器,滤除高频成分,得到一个纯净的中频信号。
3. 产生参考信号:通过一个参考信号发生器产生一个参考电压或参考频率的信号,并与原始信号进行比较。
4. 使用相移器:将待测信号与参考信号进行相移,通常相移180度。
5. 相干检波:将相移后的信号与混频后的中频信号相乘,并通过低通滤波器进行滤波,得到一个直流信号。
该直流信号的幅度与相位差有关。
6. 输出结果:最后,根据相移后信号的幅度来测量相位差的大小,并通过输出电压或者其他形式的输出来展现。
总结,相敏检波器通过将待测信号与参考信号相乘,并通过低通滤波器进行滤波,输出和相位差相关的信号,实现对相位差的测量。