基于空域的图像增强技术研究
- 格式:pdf
- 大小:70.25 KB
- 文档页数:3
图像增强image enhancement 增强图象中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。
图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。
基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
基于空域的算法分为点运算算法和邻域去噪算法。
点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。
邻域增强算法分为图像平滑和锐化两种。
平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。
常用算法有均值滤波、中值滤波。
锐化的目的在于突出物体的边缘轮廓,便于目标识别。
常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。
影响图像质量清晰程度有很多因素,室外光照度不均匀会造成图像灰度过于集中;摄像头获得的图像经过数/模转换,线路传输时都会产生噪声污染,图像质量不可避免降低,轻者变现为图像伴有噪点,难于看清图像细节;重者图像模糊不清,连大概物体面貌轮廓都难以看清。
磁共振成像技术中的图像重建算法磁共振成像技术是一种用于观察人体内部结构的非侵入性医学成像技术。
它通过对人体内部的磁场进行扫描,可以得到高分辨率的图像信息,从而帮助医生进行诊断。
在磁共振成像技术中,图像重建算法是非常重要的一环。
它负责从扫描得到的原始数据中重建出人体内部的结构信息,并生成可视化的图像用于医学诊断。
目前,磁共振成像技术的图像重建算法主要分为两类:频域算法和空域算法。
下面将分别对这两种算法进行介绍。
一、频域算法频域算法将磁共振信号转换到频域进行处理,然后再将处理后的数据转换回时域,得到最终的图像。
其中,最常用的频域算法是快速傅里叶变换(FFT)。
它可以将磁共振信号快速地转换到频域进行处理,然后再进行反变换,得到重建后的图像。
虽然快速傅里叶变换的速度很快,但是这种算法存在一定的局限性。
例如,磁共振信号中存在很多不同频率的信号,而快速傅里叶变换对信号的不同频率处理效果不能很好地区分,从而影响图像的质量。
二、空域算法空域算法是通过对原始数据进行处理,直接得到重建后的图像。
其中,最常用的空域算法是反向投影算法。
这种算法可以将不同方向的扫描数据按照一定的规则投影到图像平面上,然后将所有的投影结果叠加起来,得到最终的重建图像。
反向投影算法的优点是可以处理不同方向的扫描数据,其中还可以添加一些先验信息,从而提高图像质量。
然而,这种算法也存在一些问题,比如有时会出现伪影情况。
此外,还有一些其他的空域算法,比如基于大脑并行矩形图像重建的算法(BART)和基于稀疏表示的重建算法(CS-MRI)。
这些算法可以在一定程度上提高图片的质量,并降低成像时间。
总结起来,磁共振成像技术的图像重建算法是非常复杂的,需要结合理论和实践进行优化。
随着计算机技术和算法的不断发展,未来有望实现更快速、更准确、更高质量的图像重建算法,从而实现更好的医学诊断效果。