信息论与编码技术论文

  • 格式:doc
  • 大小:48.00 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码技术论文

2009年06月02日星期二 06:21

信息论与编码技术论文

多媒体信息是未来人类获取信息最主要的载体,因此它已成为目前世界上技术开发和研究的热点。视频信息作为多媒体信息中最被关注、数据量最大的一员,现在也正面临着一场其意义不亚于从模拟到数字的技术进步革新:从传统的矩形DCT变换编码到根据视频内容、划分对象、分别变换编码的新的编码方法。

一、传统的编码方式

传统的视频编码是以视频信号的数字量为编码对象的,与视频信息的内容无关,无论是M-JPEG、MPEG-1还是MPEG-2,都是以DCT矩形变换块为变换编码单元,对DCT块内图像的亮度和色度进行特征取样,提取像素;采用帧间编码、运动估测技术,在参考帧帧内DCT编码的基础上,对DCT块内图像的像素特征进行差值预测编码。基于矩形DCT编码的视频编码在设计思想上只考虑到对信号数据进行处理的需要(比如小的比特率以利于传输、高的比特率以保证质量),但未考虑视频信息--图像内容本身的含义和重要性,以及视频信息应用者的主观需求(比如部分内容的提取功能)。另外,这种基?quot;块"的压缩算法在低码率时容易产生"方块效应"和"抽帧",大大缩小了视频信息的应用领域。

小波变换是一种新的变换编码方法,它与DCT变换相比,考虑到了视频信号对不同应用环境的自适应性(不同的清晰度与比特率),可以将基础图像层与增强图像层分离编码传输,用户可根据实际情况选择是否打开增强图像层。但无论用户选择是或否,被传送的视频信息却都是一样的。

二、基于内容对象的编码

1、 VO与VOP概念的引入

传统的视频编码方式是将整个视频信号作为一个内容单体来处理,其本身不可再分割,而这与人类对视觉信息的判别法则,也就是大脑对视神经导入的视觉信号的处理方法是完全不同的。这就决定了我们不可能将一个视频信息完整的从视频信号中提取出来,比如:将加有台标和字幕的视频恢复成无台标、字幕的视频。解决问题的惟一途径就是在编码时就将不同的视频信息载体--视频对象VO(Video Objects)区分开,独立编码传送,将图像序列中的每一帧,看成是由不同的VO加上活动的背景所组成。VO可以是人或物,也可以是计算机生成的2D或3D图形。VO具有音频属性,其属性赋值可能?quot;有"或者是"无"。但音频的具体内容数据是独立于视频编码、传输的。VO概念的引入,更加符合人脑对视觉信息的处理方式,并使视频信号的处理方式从数字化进展到智能化。提高了视频信号的交互性和灵活性,使得更广泛的视频应用和更多的内容交互功能成为可能。

现代图像编码理论指出,人眼捕获图像信息的本质是"轮廓-纹理",即人眼感兴趣的是VO的一些表面特性,如形状、运动、纹理等。VO的表面往往是不规则的、千变万化的,但可将其视为一定视角下,n个形状规则的、具有一定纹理的剖面的组合的连续运动,这些剖面的组合称为视频对象面

VOP(Video Object Profile)。VOP描述了VO在一定视角条件下的表面特性。VOP 的编码主要由两部分组成:一个是形状编码,另一个是纹理和运动信息编码。VOP 纹理编码和运动的预测、补偿在原理上同MPEG-2基本一致,而形状编码技术则是首次应用在图像编码领域。

2、新的编码技术

合成VO的独立编码在以前,2D或3D动画被看作是视频的一部分,并一概以视频的方法来处理。实际上,根据合成VO的合成机理和特性,大部分合成VO都可以用通用的有关图形文本的多种表达方式来描述。非复杂性合成VO将被视为一种独立于视频的数据类型来编码,并定义了其描述框架、通用的数据流结构和灵活的接口。而复杂性合成VO和自然VO的编码方法,将采用以下的编码方法。

基于矩形窗口的VOP分割考虑到与现有标准的兼容,目前已得到应用的VO编码技术,比如MPEG4,仍采用了基于矩形窗口的内容分割法。编码时,首先利用像素特征统计,将每一个VOP都限定在一个矩形窗口内,称之为VOP窗口(VOP Window),取窗的原则为:长、宽均为16像素的整数倍(便于对现有标准的兼容和将来的扩展),同时保证VOP窗口中非VOP的宏块数目最少。目前标准中的视频帧可认为是一个无VOP的特例,在编码过程中将形状编码模块屏蔽掉就可以了。在一个VOP窗口内,VOP剖面的形状也是采用8×8像素的矩形形状。针对不同的VOP,可以根据不同的应用场合和运动、变化的特点,采用固定的或可变的VOP帧频(即VOP刷新频率)。

矩形窗口分割法并不能体现VOP的具体形状信息。为了确认采用矩形窗口分割法的VOP的形状信息,就引入了形状编码技术。形状编码其实并不是什么新技术,它在计算机图形学、计算机视觉领域早有应用。而目前的视频编码标准中的位图技术其实就是形状编码的简单特例。位图采用矩阵的形式来表示二值(0或1)的形状信息,具有较高的编码效率和较低的运算复杂度。VOP 的形状信息有两类:边缘信息和灰度信息。边缘信息用0、1来表示VOP的形状,0表示非VOP区域,1表示VOP区域。对于包含一定透明度的VOP区域,可以用灰度信息(取值0~255之间)来表示透明程度,其中0表示完全透明,255表示完全不透明。对于模糊边缘部分,可将其视为灰度信息从周围已知VOP区域的灰度值向0值的过渡区域,采用内插法确定其形状信息。

基于小波变换的VOP分割基于矩形窗口的VOP分割依旧存在"块效应"问题,而基于小波变换的VOP分割则可以很好的解决这个问题,而且由于这种分割方法的本身就包含了VOP的形状信息,所以无需另对形状信息进行判别与编码。基于小波变换的VOP分割方法是目前最为活跃的视频编码课题研究领域,各种算法不断的被发表,但基本上可以划分为两类方法:

1、利用图像灰度特征分割:不同的图像具有不同的灰度分布,利用小波变换,将图像变换到小波域,产生各层、各子带图像。小波变换后,大部分的能量是集中在低频子带图像上,即大面积的平均灰度区域信息主要在低频子带图像中体现。根据信息论的原理,确定多个灰度阈值,可以将具有不同灰度的VOP从低频子带图像中分离。同时再利用高频子带图像以及模糊数学模型,确定每一个VOP的边缘信息。利用图像灰度特征分割的小波变换,是沿扫描方向的单方向变换。

2、利用图像纹理特征分割:纹理是一种局部特征反复出现的结果,它体现了图像的局部频域信息。对于一幅数字图像,进行多方向的小波变换是可行的,比如对一帧画面进行垂直方向或对角线方向的小波变换。经过多种小波变换后可得到不同方向的各子带图像,它们各自蕴涵着不同纹理的局部频谱信息和纹理走向等信息。对具有相同频谱特征的图像局部进行聚类分析,并根据纹理频谱和纹理走向确定该聚类的纹理边缘。根据信息论原理和运动估测,将运动矢量具有相关性的聚类二次归类于不同的对象(即VOP),并影射成不同灰度显示。多级小波变换的结果最多可线性的影射成0~255灰度级显示。进行小波变换的方向越多,各方向的夹角越小,图像分割也就越准确,但计算量也随之迅速膨胀。根据局域纹理中心频率的变化自适应地选择小波变换的级数(几个方向的变换)和方向,有助于在图像分割的准确性和计算量之间达到平衡。正如本文前面所述,人眼捕获图像信息的本质?quot;轮廓-纹理",故基于多方向小波变换的提取图像特征、分割纹理图像的方法符合人眼视觉生理的特点,是纹理图像分析的重要发展方向。

无论是哪一种方法,当得到不同VOP的不同灰度表示之后,通过类似于键技术的多通道处理,即可得到多个原始的彩色VOP。目前实验表明,基于小波变换的图像分割在边界上仍有些模糊,但总体效果还是相当满意的,达到了分割纹理图像的目的。

VOP运动信息编码和运动补偿人眼在观看图像时,会自动跟踪人所感兴趣的VOP。即人看的不是时间轴上的信息,而是VOP的运动轨迹---光流轴上的信息。光流轴是VOP上的一点在活动图像上的运动轨迹,它在不同的帧中位于不同的空间位置,其意义在于:VOP自身的各种变化都将映射于光流轴上的一点。光流轴信息的独立编码将带来诸多好处:(1)在编码时,对于刚性VOP,由于它在运动中不会发生形状和纹理上的变化,故该VOP只需要完成一次采样、编码,而后就只需发出几个运动矢量指明它的光流轴即可;对于非刚性VOP,只需在发生变化时才需要重新采样、编码,这就使得不同的VOP采用不同的VOP

帧频成为可能,将编码的数据率最低限度的降低。(2)VOP在运动中的各种变化都将"留迹"于光流轴,当在进行运动补偿时,比如不同制式之间的转换或者慢动作的制作,就可以根据光流轴映射信息,采用内插法得出时间轴上某一确定点的VOP状态,达到无损转换的目的。(3)在时间轴上,简单的将一个图像序列的两路信号叠加,随即噪波和图像的活动部分都得不到增强;若在光流轴上进行