通用可变增益放大器(DOC)

  • 格式:doc
  • 大小:252.00 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通用可变增益放大器(B题)

摘要

本着简单、准确、可靠、通用的原则,采用了分级设计匹配互连的思想。本放大器系统分为前级放大部分、增益放大与控制电路部分、档位控制部分、后级稳压输出部分四部分。全系统采用单一的模拟电路方式,通过前级放大部分获得所需输入电压、输入阻抗等重要参数;通过拨码开关连接的反馈电阻进行精密全局控制,获得20dB至40dB之间分辨力不低于0.1%的可变增益范围;通过档位控制部分电路实现四个档位增益值转换,在衰减电路的作用下得到三个档位的增益值,即—20dB至0、0至20dB、20dB至40dB;最后通过后级稳压输出部分获得输出幅度不低于±8V的输出电压,此部分电路包括抑制零点漂移的调零电路。通过验证,本系统可以对输出电压数值的漂移,零点漂移等不良影响进行有效地抑制和降低。通过全面的调试和测量,使得本系统基本满足题目的基本部分和发挥部分的要求并融入了自己的创新思想,设计出了一个可控范围大、输出幅度高、稳定性好、抗干扰能力强、幅频特性好的通用可变增益放大器。

目录

摘要 (2)

目录 (3)

一、方案论证与比较 (4)

1、前级放大部分 (4)

2、增益放大与衰减控制电路 (4)

3、后级电压输出 (5)

二、系统设计 (5)

1、总体设计思路 (5)

2、主要电路原理分析与计算 (6)

2.1、前级放大电路 (6)

2.2、增益放大与控制电路 (6)

2.3、档位控制电路 (7)

2.4、电压输出电路 (7)

三、系统测试方法与测试数据 (8)

1、测试仪器 (8)

2、测试方法与测试数据 (8)

2.1、测前级放大电路 (8)

2.2、测增益放大与控制电路 (8)

2.3、各级电路调节好后,进行测量和详细记录 (8)

3、测试结果分析 (9)

3.1、测试结果分析 (9)

3.2、误差分析 (9)

3.3、测试心得 (10)

四、总结 (10)

一、方案论证与比较

1、前级放大部分

方案一:采用分立元件实现。此方案成本低,元器件易于得到,但是设计、调试难度过大,硬件电路连接与制作困难,在大赛规定的时间内很难保证作品的可靠性和指标,因此不予采用。

方案二:采用集成运放设计。此方案用可编程放大器芯片级联而成,电路简单,调试容易,指标和可靠性容易保证,因为OP37的幅频特性差,当放大倍数大于3时波形失真严重,THS3001的输入阻抗过低,经过多方面特性和通用性的比较与实际检测,选用高速宽带集成芯片OPA637可以满足此次放大器的设计要求,因此采用此方案。

2、增益放大与衰减控制电路

方案一:采用可编程放大器实现。此方案用单片机控制继电器,继电器控制相应的反馈电阻,四个档位,分辨力不低于0.1%,这对于单片机编程控制要求很高,而目前的编程能力

二进制的方式将十个电阻进行组合接入电路,得到在10—100内分辨力为0.1%的放大倍数,因为各个档位之间是十倍的对应关系,所以将放大器芯片输出的信号接衰减电路,用拨码开关接通相应的衰减电阻,得到四个档位的增益变化,同时接有调零电路,很好的抑制了零点

图—3 系统总体框图

根据题目的要求,结合考虑过的各种方案,充分发挥其优势,采用拨码开关预置和控制放大器增益的方法,大大提高了系统的精度和可控性;系统前端增益放大部分需设一级

OPA637程控增益放大器,实现输入阻抗变换和增益放大,同时接入了过压保护电路;根据增益步进的要求,需要采用拨码开关按照二进制方式控制增益值,再通过衰减电路获得三个档位增益,根据输出电压幅度和输出阻抗的要求,后级电压输出采用AD817连成电压跟随器的方式,于是系统总体设计方案如图—3所示。

输入信号通过转换开关获得大于10MΩ或50Ω的输入阻抗,并连接过压保护功能电Ω

路作为负载)。电路图如图—5所示。

1、测试仪器

2、测试方法与测试数据

2.1、测前级放大电路。在直流电压下调节反馈电路中的电位器,使放大倍数为10。

2.2、测增益放大与控制电路。通过设置拨码开关,调节负载电阻串联的电位器,使负载阻值尽可能等于理论值。同理,调节衰减电路中的电位器。

2.3、各级电路调节好后,进行测量和详细记录。具体数据如表—2和表—3所示。

3、测试结果分析

3.1测试结果分析

增益:—20dB ~ 40dB(分辨力为0.1%);

通频带宽:0 ~ 7MHz

3.2误差分析

由于人为读数存在误差,测量仪器不精准、周围环境如磁场、温度等一系列因素的影响,测量的数据并不能理想的达到理论计算值,但是我们通过多次测量取平均值把误差降低到最小,整个电路系统由手工制作完成,无法实现严格的阻抗匹配,布线无法避免线路之间

以及外界磁场的干扰,干扰抑制还有待提高,但是基本可以满足题目的要求。

3.3 测试心得

在这次制作放大器并不断调试的过程中,我们充分了解了测试过程中应注意的问题,需要极高的耐性和极强的观察分析能力,对数据要有很高的敏感度,需要反复测试,得到多组数据,最后取它们的平均值。

四、总结

本系统带宽宽、增益范围大、模拟前端由2块高性能集成带宽宽、低噪声可变增益放大器OPA637级联而成,负责信号放大并与拨码开关配合实现了增益控制;为保证高频端放大器的稳定性和带内幅度的平坦度,电压输出模块则是采用高性能的AD817集成放大器芯片,得到较高的输出电压幅值和相应的输出阻抗;设计与制作中利用分级设计、匹配互连、数模搭配等技术,采用双层PCB板的安装固定,以及合理的走线布局、级间阻抗匹配等措施,有效的减少了噪声和干扰的影响,同时有效提高了系统稳定性。

我们在整个设计制作过程中,始终关注系统的性能指标和运行的稳定性,本着稳定性和精确性并重的原则,我们采取了诸多的有效措施,不断地调试,进行众多方案的比较与试验,完成了设计题目所规定的部分指标和要求,达到基本的性能指标,而且对于有些指标我们的设计还有了一定的的提高,功能也有所扩展。

这次是我们新团队第一合作共同完成一个项目,虽然在过程中有很多的麻烦和困难存在,但是最终我们都一一克服,我们希望在未来的努力中可以更加团结,达到更加完美的地步。