复合式生物膜反应器中生物膜的特性
- 格式:pdf
- 大小:343.75 KB
- 文档页数:7
MBR膜生物反应器一、MBR技术简介膜生物反应器(Membrane Bio-Reactor,MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理系统。
以膜组件取代传统生物处理技术末端二沉池,在生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。
主要利用沉浸于好氧生物池内之膜分离设备截留槽内的活性污泥与大分子有机物。
膜生物反应器系统内活性污泥(MLSS)浓度可提升至8000~10000mg/L,甚至更高;污泥龄(SRT)可延长至30天以上。
膜生物反应器因其有效的截留作用,可保留世代周期较长的微生物,可实现对污水深度净化,同时硝化菌在系统内能充分繁殖,其硝化效果明显,对深度除磷脱氮提供可能。
1.MBR 的技术原理MBR 工艺一般由膜分离组件和生物反应器组成, 由膜组件代替二次沉淀池进行固液分离。
由于膜能将全部的生物量截留在反应器内, 可以获得长泥龄和高悬浮固体浓度,有利于生长缓慢的固氮菌和硝化菌的增殖,不需进行延时曝气就能实现同步硝化和反硝化, 从而强化了活性污泥的硝化能力, 膜分离还能维持较低的FöM , 使剩余污泥产率远小于活性污泥工艺, 且系统运行更加灵活和稳定。
2. MBR 工艺中膜选择的技术要点MBR 从膜分离的角度主要涉及微滤、超滤、纳滤及反渗透。
由于无机膜的成本相对较高, 目前几乎所有的膜技术都依赖于有机的高分子化合物。
应用于MBR 的膜材料既要有良好的成膜性、热稳定性、化学稳定性, 同时应具有较高的水通量和较好的抗污染能力。
目前, 国内外常采用的方法是膜材料改性或膜表面改性,能有效地提高膜组件的通量和抗污染能力。
另一点需要考虑的因素是膜的孔径, 由于曝气池中活性污泥是由聚集的微生物颗粒构成, 其中一部分污染物被微生物吸收或粘附在微生物絮体和胶质状的有机物质表面,尽管粒子的直径取决于污泥的浓度、混合状态以及温度条件, 这些粒子仍存在着一定的分布规律,考虑到活性污泥状态与水通量, 最好选择0.10~0.40 微米孔径的膜。
复合生物反应器处理生活污水摘要:本研究在接触氧化法基础上,在传统活性污泥法反应器中悬挂填料构成复合生物反应器,并利用该反应器进行了处理生活污水的研究。
研究表明,复合生物反应器对生活污水有较好的去除效果。
当水力停留时间为3h,气水比为2:1,进水负荷为2.72kg/(m3d)时,出水cod、nh3-n、tn和ss达到国家城镇二级污水处理厂一级标准。
关键词:接触氧化,活性污泥,复合生物反应器,生活污水domestic sewage treatment performance using hybrid bioreactoryang nai-peng(xingtai environmental inspection detachment, xingtai 05400, china)abstract: hybrid bioreactor based on the bio-contact oxidation process, combining both suspended growth-activated sludge and attached growth-biofilm in one bioreactor by addingcarriers into the mixed suspension demonstrated a promising effective treatment of domestic sewage. experimental results showed that when the hydraulic retention time was 3h and air/water ration was 2:1, cod loading rates was 2.72kg/(m3d) , the effluent cod, nh3-n , tn, ss concentration can up to national primary emission standardof wastewater.keywords: bio-contact oxidation , activated sludge, hybrid bioreactor, domestic sewage中图分类号:u664.9+2文献标识码: a 文章编号:引言复合式生物反应器(hbr)是近年来颇受关注的新型污水处理工艺[1],其特点是在活性污泥曝气池中投加填料作为微生物附着生长的载体,进而形成悬浮生长的活性污泥和附着生长的生物膜,共同承担去除污水中有机物的任务[2,3],与传统活性污泥法(cas)相比,hbr系统一是通过投加生物载体供微生物附着生长,可提高反应器中的生物量,在较高有机负荷下增强了对有机物的去除能力;二是可使丝状菌优先附着生长在载体上,从而改善污泥的沉降性能,防止污泥膨胀,提高系统运行的稳定性[2];三是世代时间较长的硝化菌优先附着在载体上,使硝化作用不受悬浮生长的固体停留时间(srt)的影响,从而提高系统的脱氮功效[1,3,4]。
膜生物反应器(MBR)介绍膜生物反应器(MBR)是一种先进的污水处理技术,它采用了生物膜技术和微孔膜技术相结合,可以高效地去除水中的污染物和细菌,使废水达到国家排放标准,同时还可以实现水资源的循环利用。
一、膜生物反应器的工作原理膜生物反应器的工作原理分为生物反应和膜过滤两个主要过程。
生物反应阶段是将废水中的有机物降解为可被微生物吸收的低分子化合物,同时释放出能量和二氧化碳。
而膜过滤阶段则是利用微孔膜的过滤作用,将生物反应池中的生物团和细菌截留在膜外,把清洁的水从膜孔中压出,最终得到达标的排放水。
二、膜生物反应器的优点1. 净水效果好。
MBR工艺对水中的悬浮物、生物细胞、病菌等有良好的截留和杀灭效果,可以有效提高出水水质。
2. 占地面积小。
相比传统生物脱氮、脱磷工艺,MBR工艺使用的生物反应池体积更小,系统更紧凑,因此占地面积更小。
3. 运行成本低。
MBR工艺可以避免传统工艺中用于搅拌、沉降、澄清等工序所需要的设备和能源消耗和维护费用。
此外,膜组件使用寿命长,可加快工艺流程,降低进出水波动对系统负荷产生的影响,从而减少了后处理设备的需求。
4. 可实现零废水排放。
通过再利用MBR反应池内的生物菌群、生物膜和微孔膜的功能,废水可以完全达到生态恢复和循环利用的标准。
三、膜生物反应器的应用领域MBR工艺已被广泛应用于城市污水处理、工业废水处理、恶臭气体治理、海水淡化等领域。
城市污水处理中,MBR工艺利用膜过滤技术对废水进行处理,可用于公共卫生、景观池和生态用水等方面。
在工业废水处理中,MBR工艺可以对各种工业生产废水和污染地下水进行处理和回收利用。
在海水淡化中,MBR工艺是一种可靠的技术手段,可以将海水转化为可饮用的淡水。
总的来说,MBR工艺具有净水效果好、占地面积小、运行成本低和可实现零废水排放等优点,在废水处理和资源再利用方面具有广阔的应用前景和重要意义。
生物膜反应器原理
生物膜反应器是一种利用微生物在固体生物膜上附着生长并进行废水或废气处理的装置。
其原理是通过将废水或废气引入反应器中,利用在生物膜上附着生长的微生物对有机物和无机物进行降解和转化。
在生物膜反应器中,废水或废气流经生物膜时,微生物在膜面上形成一个生物膜群落。
这些微生物通过吸附、吸附和生物活性,利用废水或废气中的有机物作为能源和碳源进行代谢活动。
在生物膜表面,氧和营养物质通过传质作用从环境中扩散到微生物细胞上,废物和产物则通过反向扩散将其释放到环境中。
生物膜反应器的好处在于附着生长的生物膜提供了大量的微生物生境,使得微生物的降解效率更高。
此外,生物膜还可以保护微生物免受外界环境的影响,增加微生物对有害物质的抵抗能力。
同时,生物膜反应器可以在较小的空间内实现高度的废水或废气处理效果。
生物膜反应器的应用范围广泛,可以用于废水处理、废气处理以及生物质能源转化等领域。
它在工业和城市废水处理、生物医药废水处理、有机废气处理等方面具有重要的应用价值。
通过合理设计和控制生物膜反应器,可以实现高效、经济、环保的废水和废气处理。
新型生物材料在水处理中的应用一、生物吸附材料生物吸附材料是一类利用生物体或其衍生物制备的具有高效吸附能力的材料。
它们在水处理中主要用于去除重金属离子、有机污染物和放射性物质等。
生物吸附材料具有来源广泛、可再生、环境友好等优点,因此在水处理领域具有广阔的应用前景。
二、生物膜反应器生物膜反应器是一种利用生物膜进行污水处理的技术。
在反应器中,微生物附着在载体表面形成生物膜,通过生物膜的代谢作用降解有机物。
生物膜反应器具有处理效率高、占地面积小、抗冲击负荷能力强等特点,适用于城市污水和工业废水的处理。
三、生物催化剂生物催化剂是利用酶或微生物作为催化剂,加速化学反应的速率。
在水处理中,生物催化剂可用于降解难降解的有机污染物,提高处理效率。
生物催化剂具有反应条件温和、催化效率高、环境友好等优点,是一种绿色、可持续的水处理技术。
四、生物纳米材料生物纳米材料是将纳米技术与生物技术相结合,制备出具有特殊功能和性质的材料。
在水处理中,生物纳米材料可用于去除重金属离子、有机污染物和微生物等。
生物纳米材料具有尺寸小、比表面积大、活性高等优点,可显著提高水处理效果。
五、微生物燃料电池微生物燃料电池是一种将有机物转化为电能的装置。
在水处理中,微生物燃料电池可以同时实现污水处理和能源回收。
通过微生物的代谢作用,将有机物转化为电能和二氧化碳等无害物质,实现了废水处理和能源利用的双重目标。
六、生物复合材料生物复合材料是将生物材料与其他材料相结合,制备出具有优异性能的新型材料。
在水处理中,生物复合材料可用于提高吸附性能、增强膜材料的稳定性等。
通过优化材料组合和结构设计,可以进一步提高生物复合材料在水处理中的性能和应用效果。
七、生物絮凝剂生物絮凝剂是利用微生物或其代谢产物制备的具有絮凝作用的剂剂。
它们可以通过吸附、桥联、卷扫等作用将水中的悬浮颗粒和胶体物质凝聚成大的絮体,从而实现固液分离。
生物絮凝剂具有环境友好、易降解等优点,在水处理中具有良好的应用前景。
MBR污水处理工艺简介一、工艺简介在污水处理,水资源再利用领域,MBR又称膜生物反应器Membrane Bio-Reactor,是一种由活性污泥法与MBR膜图片膜分离技术相结合的新型水处理技术;膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜生物膜和合成膜有机膜和无机膜;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等;二、工艺的组成膜- 生物反应器主要由膜分离组件及生物反应器两部分组成;通常提到的膜- 生物反应器实际上是三类反应器的总称: ①曝气膜- 生物反应器Aeration Membrane Bioreactor, AMBR ; ②萃取膜- 生物反应器ExtractiveMembrane Bioreactor, EMBR ; ③固液分离型膜- 生物反应器Solid/Liquid SeparationMembrane Bioreactor, SLSMBR, 简称MBR ;1、曝气膜-生物反应器曝气膜-生物反应器最早见于Cote.P 等1988年报道,采用透气性致密膜如硅橡胶膜或微孔膜如疏水性聚合膜,以板式或中空纤维式组件,在保持气体分压低于泡点Bubble Point情况下,可实现向生物反应器的无泡曝气;该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响;如图1 所示;2、折叠萃取膜-生物反应器萃取膜- 生物反应器又称为EMBR Extractive Membrane Bioreactor;因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染;为了解决这些技术难题,英国学者Livingston研究开发了EMB ;废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解;由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定;系统的运行条件如HRT 和SRT 可分别控制在最优的范围,维持最大的污染物降解速率;3、折叠固液分离型膜-生物反应器固液分离型膜- 生物反应器是在水处理领域中研究得最为广泛深入的一类膜-生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术;在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高;而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围;由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在1.5~3.5g/L左右,从而限制了生化反应速率;水力停留时间HRT 与污泥龄SRT相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾;系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的25% ~40% ;传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化;针对上述问题, MBR将膜分离技术与传统生物处理技术有机结合,MBR实现污泥停留时间和水力停留时间的分离,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌特别是优势菌群的出现,提高了生化反应速率;同时,通过降低F/M比减少剩余污泥产生量甚至为零,从而基本解决了传统活性污泥法存在的许多突出问题;三、MBR工艺类型以下讨论的均为固液分离型膜- 生物反应器; 根据膜组件和生物反应器的组合方式,可将膜- 生物反应器分为分置式、一体式以及复合式三种基本类型;分置式膜- 生物反应器把膜组件和生物反应器分开设置,如图3所示;生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内;分置式膜-生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大;但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高Yamamoto, 1989,并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象Brockmann and Seyfried, 1997 ;一体式膜- 生物反应器是把膜组件置于生物反应器内部,如图4 所示;进水进入膜-生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水;这种形式的膜-生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注;但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换;复合式膜- 生物反应器在形式上也属于一体式膜- 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜- 生物反应器,改变了反应器的某些性状,如图5 所示:四、MBR处理工艺的特点与许多传统的生物水处理工艺相比, MBR 具有以下主要特点:1、出水水质优质稳定由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除,出水水质优于建设部颁发的生活杂用水水质标准CJ25.1-89 ,可以直接作为非饮用市政杂用水进行回用;同时,膜分离也使微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷水质及水量的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质;2、剩余污泥产量少该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低理论上可以实现零污泥排放,降低了污泥处理费用;3、占地面积小,不受设置场合限制生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式;4、可去除氨氮及难降解有机物由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高;同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高;5、操作管理方便,易于实现自动控制该工艺实现了水力停留时间HRT 与污泥停留时间SRT 的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便;6、易于从传统工艺进行改造该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理从而实现城市污水的大量回用等领域有着广阔的应用前景;膜- 生物反应器也存在一些不足;主要表现在以下几个方面:o 膜造价高,使膜- 生物反应器的基建投资高于传统污水处理工艺;o 膜污染容易出现,给操作管理带来不便;o 能耗高:首先MBR 泥水分离过程必须保持一定的膜驱动压力,其次是MBR 池中MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成MBR 的能耗要比传统的生物处理工艺高;五、MBR处理工艺用膜膜可以由很多种材料制备,可以是液相、固相甚至是气相的;目前使用的分离膜绝大多数是固相膜;根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜;膜可以是均质或非均质的,可以是荷电的或电中性的;广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜;膜的分类依据及分类:1、MBR 膜材质1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等;有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短;2、无机膜:是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜;目前在MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在pH = 0~14 、压力P<10MPa 、温度<350 ℃的环境中使用,其通量高、能耗相对较低,在高浓度工业废水处理中具有很大竞争力;缺点是:造价昂贵、不耐碱、弹性小、膜的加工制备有一定困难;2、MBR 膜孔径MBR 工艺中用膜一般为微滤膜MF 和超滤膜UF ,大都采用0.1 ~ 0.4 μ m 膜孔径,这对于固液分离型的膜反应器来说已经足够;微滤膜常用的聚合物材料有:聚碳酸酯、纤维素酯、聚偏二氟乙烯、聚砜、聚四氟乙烯、聚氯乙烯、聚醚酰亚胺、聚丙烯、聚醚醚酮、聚酰胺等;超滤常用聚合物材料有:聚砜、聚醚砜、聚酰胺、聚丙烯腈PAN 、聚偏氟乙烯、纤维素酯、聚醚醚酮、聚亚酰胺、聚醚酰胺等;3、MBR 膜组件为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力下,完成混合液中各组分的分离,这类装置称为膜组件Module ;工业上常用的膜组件形式有五种:板框式Plate and Frame Module 、螺旋卷式Spiral Wound Module 、圆管式TubularModule 、中空纤维式Hollow Fiber Module 和毛细管式Capillary Module;前两种使用平板膜,后三者使用管式膜;圆管式膜直径>10mm; 毛细管式- 0.5~10.0mm ;中空纤维式<0.5mm> ;MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式; 板框式:是MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机;优点是:制造组装简单,操作方便,易于维护、清洗、更换;缺点是:密封较复杂,压力损失大,装填密度小;圆管式:是由膜和膜的支撑体构成,有内压型和外压型两种运行方式;实际中多采用内压型,即进水从管内流入,渗透液从管外流出;膜直径在6~24mm 之间;圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小;缺点是:装填密度小;中空纤维式:外径一般为40 ~ 250 μm ,内径为25 ~ 42μm ;优点是:耐压强度高,不易变形;在MBR 中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜-生物反应器;一般为外压式膜组件;优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料;缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响;MBR 膜组件设计的一般要求:o 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;o 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;o 尽可能高的装填密度,安装,清洗、更换方便;o 具有足够的机械强度、化学和热稳定性;膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等;六、MBR处理工艺的应用领域进入90 年代中后期,膜- 生物反应器在国外已进入了实际应用阶段;加拿大 Zenon公司首先推出了超滤管式膜-生物反应器,并将其应用于城市污水处理;为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜-生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从380m 3 /d 至7600m 3 /d;日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在MBR 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际MBR工程;日本Kubota 公司是另一个在膜-生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点;国内一些研究者及企业也在MBR实用化方面进行着尝试;现在,膜- 生物反应器已应用于以下领域:1、城市污水处理及建筑中水回用1967年第一个采用MBR 工艺的废水处理厂由美国的Dorr-Oliver 公司建成,这个处理厂处理14m 3 /d 废水; 1977年,一套污水回用系统在日本的一幢高层建筑中得到实际应用; 1980 年,日本建成了两座处理能力分别为10m 3 /d 和50m 3 /d的MBR 处理厂; 90 年代中期,日本就有39 座这样的厂在运行,最大处理能力可达500m 3 /d ,并且有100 多处的高楼采用MBR 将污水处理后回用于中水道; 1997 年,英国Wessex 公司在英国Porlock 建立了当时世界上最大的MBR系统,日处理量达2 , 000 m 3 , 1999 年又在Dorset 的Swanage 建成了13 , 000m 3 /d 的MBR 工厂14 ;1998 年5 月,清华大学进行的一体式膜- 生物反应器中试系统通过了国家鉴定; 2000年初,清华大学在北京市海淀乡医院建起了一套实用的MBR 系统,用以处理医院废水,该工程于2000 年6 月建成并投入使用,目前运转正常;2000 年9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个MBR 示范工程,该系统日处理污水25吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为10 平方米,处理每吨污水的能耗为0.7kW · h ;2、工业废水处理90年代以来, MBR 的处理对象不断拓宽,除中水回用、粪便污水处理以外, MBR在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果; 90 年代初,美国在Ohio 建造了一套用于处理某汽车制造厂的工业废水的MBR 系统,处理规模为151m 3 /d,该系统的有机负荷达6.3kgCOD/m 3 · d , COD 去除率为94%,绝大部分的油与油脂被降解;在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用Zenon 的膜组件代替沉淀池,运行效果良好;3、微污染饮用水净化随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染; LyonnaisedesEaux 公司在90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的MBR工艺, 1995 年该公司在法国的Douchy 建成了日产饮用水400m 3 的工厂;出水中氮浓度低于0.1mgNO 2 /L,杀虫剂浓度低于0.02 μ g/L ;4、粪便污水处理粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果; MBR 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能;日本已开发出被称之为NS 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统; NS 系统于1985年在日本琦玉县越谷市建成,生产规模为10kL/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施; NS 系统中的平板膜每组约0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗;膜材料为截流分子量20000 的聚砜超滤膜;反应器内污泥浓度保持在15000~18000mg/L 范围内;到1994 年,日本已有1200 多套MBR 系统用于处理4000 多万人的粪便污水;5、土地填埋场/ 堆肥渗滤液处理土地填埋场/ 堆肥渗滤液含有高浓度的污染物,其水质和水量随气候条件与操作运行条件的变化而变化; MBR 技术在1994年前就被多家污水处理厂用于该种污水的处理;通过MBR 与RO 技术的结合,不仅能去除SS、有机物和氮,而且能有效去除盐类与重金属;最近美国Envirogen 公司开发出一种MBR用于土地填埋场渗滤液的处理,并在新泽西建成一个日处理能力为40 万加仑约1500m 3 /d 的装置,在2000年底投入运行;该种MBR使用一种自然存在的混合菌来分解渗滤液中的烃和氯代化合物,其处理污染物的浓度为常规废水处理装置的50 ~ 100倍;能达到这一处理效果的原因是, MBR 能够保留高效细菌并使细菌浓度达到50 , 000g/L ;在现场中试中,进液COD 为几百至40 , 000mg/L ,污染物的去除率达90% 以上;国内外MBR 主要应用领域及相应百分比率:污水类型所占百分比率% 污水类型所占百分比率%工业污水27 城市污水12建筑污水24 垃圾9家庭污水27七、MBR处理工艺发展前瞻1、MBR应用的重点领域和方向o现有城市污水处理厂的更新升级,特别是出水水质难以达标或处理流量剧增而占地面积无法扩大的水厂;o 无排水管网系统的小区,如居民点、旅游度假区、风景区等;o 有污水回用需求的地区或场所,如宾馆、洗车业、客机、流动厕所等充分发挥MBR 占地面积小、设备紧凑、自动控制、灵活方便的特点;o 高浓度、有毒、难降解工业废水处理;如造纸、制糖、酒精、皮革、合成脂肪酸等行业,是一种普遍的点源污染; MBR 可以对这些常规处理工艺无法达标的废水进行有效的处理,并实现回用;o 垃圾填埋厂渗滤液的处理及回用;o 小规模污水厂站的应用;膜技术的特点十分适合处理小规模污水;2、MBR 未来的研究重点如下o 膜污染的机理及防治;o MBR 工艺流程形式及运行条件的优化;o MBR 污泥产率与运行条件的关系,以合理减少污泥产量,降低污泥处理费用;o MBR 生物反应器内微生物的代谢特性及其对出水水质、污泥活性等的影响,从而确定适宜的微生物生长及代谢条件;o MBR 工艺经济性研究;在目前国内经济发展水平、膜产品供应状况和规范设计要求的条件下, MBR 用于污水处理的最大经济流量的确定;o 以节能、处理特殊水质对象、兼具脱氮除磷、操作维护简便、可以长期稳定运行等为目标,开发新型的膜生物反应器;。
生物膜生成及生物反应器功能分析随着社会的发展,人们越来越注重生活的健康和水资源的再利用,水的饮用安全和污水的达标排放就显得尤为重要。
饮用水在经管道输送过程中,微生物附着到管网内壁生长形成生物膜。
生物膜的存在会引起一系列水质问题,影响用户用水安全。
所以,生物膜的研究非常重要,但给水管网中生物膜的实际采样比较困难,因此模拟生物膜生长的生物反应器应运而生。
文章就生物膜的形成及生物反应器的功能进行了分析。
标签:给水管网;生物膜;生物反应器饮用水在经管道输送过程中,水中微生物附着到管网内壁生长形成生物膜。
生物膜的存在会引起一系列水质问题,对人类饮用水安全构成威胁。
为控制生物膜,需对生物膜进行研究,并对影响生物膜生成的诸多因素进行实验分析。
由于在给水管网中直接提取生物膜比较困难,而且提取后极易破坏生物膜本身结构,因此用反应器实验模拟生物膜的生成就显得尤为重要[1]。
1 生物膜的形成及影响生物膜的形成和存在引起人们高度重视。
研究发现,生物膜的形成与时间有着密切的关系,不同时间阶段,形成的生物膜具有不同的特征。
但一般来讲,生物膜形成包括以下几个阶段[2]:(1)水中或多或少存在的有机物,在物理、化学以及生物过程综合作用下吸附于管壁表面,形成一层富有营养的生物膜载体;(2)水中的一些浮游细菌通过静电等作用被吸附到载体表面,由于水流冲击等作用,这些细菌形成并不稳定的聚合物,但经过一定时间以后,终会有部分细菌通过分泌具有黏合作用的胞外多聚物稳定吸附于管壁;(3)随着时间的推移,这些细胞摄取并消耗水中的营养物质繁殖增长,逐渐连接成片,并向外伸展,形成个体种类繁多、结构凸出的成熟生物膜。
尽管这个过程中会有一些生物膜脱落,但大部分生物膜还是与管道内壁紧密连接在一起[3]。
生物膜给饮用水及管网带来的影响是:(1)管壁生物膜逐渐加厚,导致管壁直径变小,管网过水能力降低,动力消耗增加,同时,管壁生物膜腐蚀管壁,在过大水压下,可能导致爆管;(2)在水流作用下,部分生物膜脱落进入水体,导致管网出口处饮用水的悬浮菌数量骤然增加,色度和浊度上升,影响用水安全[4]。
生物膜反应器技术在饮用水处理中的应用研究一、前言随着人口增加和经济发展,水资源的需求量不断增加,而水资源却变得日益缺乏。
因此,水质污染问题已经成为全球性问题。
其中,饮用水的质量对人的健康和生命安全至关重要。
生物膜反应器技术作为一种先进的技术,可以有效地处理饮用水中的污染物,保证饮用水的安全和健康。
二、生物膜反应器技术简介1.生物膜反应器技术的发展历程生物膜反应器技术是20世纪70年代兴起的一种生物处理技术,经过40多年的发展,已经成为一种成熟、先进的废水处理技术。
其主要特点是使用固定生物膜来附着和生长微生物,以达到净化水体的目的。
2.生物膜反应器技术的原理生物膜反应器技术是利用生物膜作为载体,形成微生物附着生长的微生物群落,以微生物的代谢反应作用来降解和转化废水中的有机物质和氮、磷等营养物质。
同时,利用填料内的空隙来满足废水和氧气的接触,促进微生物的代谢过程,从而达到净化水体的目的。
三、生物膜反应器技术在饮用水处理中的应用1.生物膜反应器技术在自来水处理中的应用自来水处理是指对自然水体进行处理,去除其中的有害物质,使之符合安全、卫生的要求,可以作为人们饮用和生活的用水。
生物膜反应器技术在自来水处理中的应用中,主要是针对废水处理后存量余氯、氨氮、难降有机物等特别难处理的问题。
通过生物膜反应器的处理,可以有效地去除废水中的有机物和氮、磷等营养物质,降低废水中的COD和氨氮含量,同时能够有效地去除臭味和颜色,提高水的透明度,并达到标准饮用水的要求。
2.生物膜反应器技术在地下水处理中的应用地下水是天然的水源,主要分布在地球的岩石、煤层、泥层和沙砾层等地层中。
生物膜反应器技术可以应用于地下水中的污染物去除,包括有机化合物、氮、汞等重金属离子等。
与传统的水处理工艺相比,生物膜反应器技术在处理过程中具有更低的成本和更高的效率。
同时,该技术具有可持续性和环保性,可以最大程度地保护地下水资源。
3.生物膜反应器技术在城市污水处理中的应用城市污水是城市生活污水和工业排放污水的混合物,通常含有大量的有机物质、氮、磷和重金属等有害物质。
生物膜法的基本原理1、生物膜在载体上的生长过程:当有机污水或由活性污泥悬浮液培养而成的接种液流过载体时,水中的悬浮物及微生物被吸附于固相表面上,其中的微生物利用有机底物而生长繁殖,逐渐在载体表面形成一层粘液状的生物膜。
这层生物膜具有生物化学活性,有进一步吸附、分解污水中呈悬浮、胶体和溶解状态的污染物。
2、生物膜的降解机理(1)物质的传递1)空气中的氧溶解于流动水层中,通过附着水层传递给生物膜;2)有机污染物则由流动水层传递给附着水层,然后进入生物膜;3)微生物的代谢产物如H2O等则通过附着水层进入流动水层,并随其排走;4)CO2及厌氧层分解产物如H2S、NH3以及CH4等气态代谢产物则从水层逸出进入空气中。
(2)膜的生长与脱落1)生物膜降解有机物的过程,也是膜生长的过程;2)好氧层与厌氧层的平衡稳定关系;3)厌氧层加厚,生物膜老化、脱落。
二、生物膜的主要特征1、生物相方面的特征:(1)微生物多样化(2)生物的食物链长(3)能够存活世代时间较长的微生物(4)分段运行与优占种属2、处理工艺方面的特征:(1)对水质、水量变动有较强的适应性(2)污泥沉降性能良好,宜于固液分离(3)能够处理低浓度的污水4)易于维护运行、节能三、生物滤池1、生物滤池法的特征:生物滤池法是在砂滤池的基础上发展起来的一种生物膜处理方法,它利用滤料表面形成的一层生物膜来净化污水。
在滤池内,污水由于重力作用自上而下地连续流经滤料,滤料表面的微生物借助酶的作用,使被吸附和吸收的有机物在氧气的参与下进行氧化分解,同时微生物又以有机物为营养进行自身繁殖。
老化的微生物附着力差,在污水冲刷会不断脱落,脱落后随水流出滤池,同时新的生物膜不断生长,因而处理可连续进行。
2、典型构造生物滤池主要由池壁、池底、滤料、布水器等部分组成。
滤料:组成滤层的过滤材料。
常以花岗石、安山岩、闪绿岩等较硬的岩石以及无烟煤等材料制成。
布水器:将污水散布于滤层表面的装置,使用较多的是旋转式布水器,其次是固定喷嘴式布水器。
生物膜法主要工艺类型及其优缺点比较摘要:生物膜法技术具有很强的抗冲击负荷能力,且处理效果理想,运行维护简单,不会产生污泥膨胀的现象,因此在污水处理中有着广泛的应用。
本文介绍了生物膜技术的概念、分类和特点,对生物膜技术在污水处理中的应用状况做了简要的分析。
关键词:生物膜;污水处理随着我国经济的高速增长,工业化和城市化的步伐加快,对水资源的需求也日益增加,进而产生了大量污水,加剧了对环境的污染,因此,不断地寻求效率高、投资少、运行费用低、治理效果好的污水处理技术是研究工作的主要任务。
在污水处理的二级生化处理工艺中,活性污泥法和生物膜法占主导地位,而生物膜法处理工艺凭借其处理效率高、剩余污泥产泥量少、运行管理方便等特点得到快速发展,越来越得到人们的关注,发展十分迅速,在污水处理中有广阔的应用前景。
生物膜可认为是由一种或是多种微生物群体组成的,并附着在一种载体表面上进行生长发育。
生物膜主要由微生物细胞和它们所产生的胞外多聚物组成。
微生物生长在载体的表面且分布不均匀、不连续。
生物膜法是近十几年来发展的新型微生物处理技术,为提高生物膜的处理能力。
一、生物膜法概述1. 生物膜法处理污水的发展进程生物膜法是一种古老又在不断发展中的处理技术,1865年德国科学家发现生物过滤作用,1893年英国将污水喷洒在粗滤料上,作为膜生物反应器的生物滤池问世,2O世纪二三十年代建造了许多生物膜反垃器,四五十年代生物滤池逐渐被活性污泥取代的趋势,70年代新的反应器以独特的优势受关注[1]。
2.生物膜法的概念生物膜法和活性污泥法一样都是利用微生物来去除废水中各种有机物的污水处理工艺。
生物膜是指附着在惰性载体表面上生长的,具有较强的吸附和生物降解性能的结构,以微生物为主(包含其产生的胞外多聚物和吸附在微生物表面的无机及有机物等组成),其中提供微生物附着生长的惰性载体称之为滤料或填料。
生物膜法是模拟了自然界中土壤自净的一种污水处理法,它使微生物群体附着于固体填料的表面,形成生物膜。
膜生物反应技术下的环境工程污水处理江苏欧亚华都环境工程有限公司摘要:随着工业化的快速发展,污水处理问题日益受到关注。
膜生物反应技术作为一种新型的污水处理方法,因其高效、环保的特性而被广泛研究与应用。
本文综述了膜生物反应技术的原理、类型和在环境工程污水处理中的应用现状,并对其未来发展进行了展望。
关键词:膜生物反应技术;环境工程;污水处理1引言随着城市化进程的加速和工业的快速发展,大量未经处理的污水直接排放到环境中,对水体造成了严重污染。
传统的污水处理方法虽然在一定程度上解决了污水问题,但存在着处理效率低下、能耗高等问题。
膜生物反应技术(MBR)的出现为污水处理提供了一种新的解决方案。
2膜生物反应技术概述膜生物反应技术(MBR)是一种先进的污水处理技术,将生物降解和膜分离技术结合,实现对污水的有效处理。
该技术利用膜组件的高效分离性能,将微生物与悬浮固体进行分离,从而提高了生物反应器的处理效率和处理能力。
在膜生物反应器中,微生物附着在膜的表面生长,形成一层生物膜。
当污水通过生物膜时,微生物通过降解有机物将污染物转化为无害的物质,如二氧化碳和水。
同时,膜的过滤作用将悬浮固体和微生物有效分离,使出水质量得到显著提高。
与传统污水处理方法相比,膜生物反应技术具有更高的处理效率和处理能力。
能够去除污水中的多种污染物,包括有机物、氮、磷等营养物和重金属离子。
此外,膜生物反应器具有较小的体积,可以减少占地面积,并且易于实现自动化控制。
然而,膜生物反应技术也存在一些挑战和限制。
例如,膜污染问题是一个常见的问题,会影响膜的分离效率和寿命。
此外,该技术的运行和维护成本相对较高,因此在实际应用中需要考虑经济可行性。
3膜生物反应技术的类型3.1膜分离生物反应器(MBR)膜生物反应技术中的分置式和一体式是两种常见的类型。
分置式MBR将膜组件与生物反应器分开设置,通过泵的抽吸作用实现泥水分离。
这种类型的优势在于可以减轻膜污染,提高膜的使用寿命,并且便于维修和清洗。
移动床生物膜反应器(MBBR)原理和优势定义和简介:MBBR(moving-bed biofilm reactor),移动床生物膜反应器,是近年来筑生物滤池和生物流化床的基础上发展起来的。
既有生物膜法耐冲击负荷、泥龄长和剩余污泥量少的特点,又具有活性污泥法的高效和灵活。
适合中小型生活污水和工业有机废水的处理。
原理:MBBR,移动床生物膜反应器的本质是生物膜法,但是由于载体颗粒的密度、尺寸、规格等设计的恰到好处,可使附着生物膜的载体在污水中随处漂动、旋转,与水和氧气充分混合,使它的操作像活性污泥法那样灵活,使它的处理效果比活性污泥法高效得多。
组成:MBBR由池体、载体、出水装置、曝气系统或搅拌系统组成。
池体可以是任意形状,任意大小,可由废弃池体改建而成。
适用于中小型污水处理厂的改造升级。
载体的密度一般为0.96,略小于1,多为聚乙烯、聚丙烯塑料等,可以装水中随水流的回旋翻转而自由移动。
尺寸十几到几十毫米不等。
出水装置的孔径取决于载体颗粒的尺寸,作用是把载体拦截在反应器中,且不会被污泥堵塞。
合适工艺:MBBR混合工艺:MBBR可在不增加池容的条件下,与A2/O、氧化沟、SBR 等多种工艺结合。
可提高处理能力50%以上并达到脱氮除磷的目标。
MBBR前置工艺适用于高浓度有机废水处理,大大改善活性污泥的沉降性能和出水水质,具有较高的抗冲击负荷能力,同时避免了污泥膨胀的困扰,使得运行更加稳定可靠。
MBBR后置工艺可深度处理污水,加强硝化及反硝化效果;提高有机物或氨氮的去除率,保障出水水质。
案例:市政污水处理厂,原设计处理能力5万吨/天,工艺为传统活性污泥法,排放标准为二级。
要求升级到一级A标准。
利用MBBR工艺的改造方案:向原氧化沟内投加B-Cell TM悬浮填料;改造曝气系统,出水增设拦截装置;新建厌氧池及缺氧池。
结果:污水处理厂处理能力5万吨/天,出水水质指标均已达一级A标准;MBBR工艺对氨氮及总氮的去除达到很好的处理效果。
生物膜法处理污水的基本原理生物膜法是一种高效处理污水的方法,它通过在生物膜上固定微生物来降解有机物和氮、磷等污染物,实现水的净化。
其基本原理包括生物附着、生物降解和脱附等几个过程。
生物膜法的基本原理如下:1.生物附着:在生物膜法中,废水中的微生物通过重力沉降或悬浮而进入生物膜,随后附着在膜表面。
膜表面具有丰富的微观和宏观的孔隙结构,为微生物提供良好的附着环境。
2.生物降解:生物膜中的附着微生物通过吸附、降解和转化等生物过程,将废水中的有机物、氮、磷等污染物分解为二氧化碳、水和无机盐等无害物质。
降解的过程主要依赖于附着微生物种类和数量的多样性以及微生物与废水中有机物的接触时间和接触面积。
3.脱附:生物膜中的微生物在代谢或繁殖过程中会产生代谢产物或新生物物质,导致生物膜厚度增加。
过厚的生物膜会降低废水的通量和处理效率,因此需要进行脱附操作。
脱附操作可以通过物理和化学方法实现,例如高浓度的气体喷射、机械刮擦或化学清洗等。
生物膜法的工艺流程如下:1.进水:废水经过前处理后,进入生物膜反应器。
前处理可以包括初沉池、格栅过滤和沉淀等,目的是除去废水中的大颗粒物和悬浮物质。
2.微生物固定化:废水进入生物膜反应器后,通过曝气和搅拌等工艺,使废水中的微生物附着在膜表面形成生物膜。
生物膜的形成需要一定的时间,一般为几天到几周。
3.生物降解:附着在膜表面的微生物通过呼吸作用分解废水中的有机物和氮、磷等污染物,产生二氧化碳、水和无害物质。
4.出水:经过生物降解后的废水通过膜表面的微孔进入废水集水管道,形成净水。
生物膜法的特点如下:1.处理效率高:生物膜法具有较大的生物附着面积和高降解效率,可以有效降解污水中的有机物和氮、磷等污染物。
2.占地面积小:相比传统活性污泥法,生物膜法的处理设备体积更小,占地面积更少。
3.操作简单:生物膜法的操作相对简单,不需要频繁的混合和曝气操作,减少了设备维护和操作的难度。
4.可抗冲击负荷:生物膜法对冲击负荷的抗性较强,处理高浓度的有机物和氮、磷等污染物时有较好的稳定性。
环保工程师专业知识:生物膜法环保工程师专业知识:生物膜法生物膜法和活性污泥法一样,都是利用微生物来去除废水中有机物的方法,为生物膜提供附着生长固定表面的材料称为填料,是影响生物膜法的发展和性能的重要因素。
生物膜法的基本原理1.生物膜的形成及特点生物膜法是通过附着在载体或介质表面上的细菌等微生物生长繁殖,形成膜状活性生物污泥——生物膜,利用生物膜降解污水中的有机物的生物处理方法。
生物膜中的微生物以污水中的有机污染物为营养物质,在新陈代谢过程中将有机物降解,同时微生物自身也得到增殖。
随着微生物的不断繁殖增长,以及废水中悬浮物和微生物的不断沉积,使生物膜的厚度不断增加,其结果是使生物膜的结构发生变化。
在生物处理过程中,生物膜总是在不断地生长、更新和脱落的,造成生物膜不断脱落的原因有:水力冲刷、由于膜增厚造成重的增大、原生动物的松动、厌氧层和介质的粘结力较弱等。
生物膜法适用于中小规模污水生物处理,污水处理系统可以独立建立,也可以与其他污水处理工艺组合应用。
污水进行生物膜法处理前,宜经沉淀处理,当进水水质或水量波动大时,应设置调节池。
2.生物膜的结构及其净化废水的机理生物膜是蓬松的絮状结构,微孔多,表面积大,具有很强的吸附能力。
生物膜微生物以吸附和沉积于膜上的有机物为营养物质,将一部分物质转化为细胞物质,进行繁殖生长,成为生物膜中新的活性物质,另一部分物质转化为排泄物,在转化程中放出能量,供应微生物生长的需要。
增殖的生物膜脱落后进入废水,在二次沉淀池中被截留下来,成为污泥。
如果有机物负荷比较高,生物膜对吸附的有机物来不及氧化分解时,能形成不稳定的污泥,这类污泥需要进行再处理。
由于生物膜法中的微生物以附着的状态存在,所以泥龄长,使生物膜中既有世代时间短、比增长速率大的微生物,双有世代时间长、比增长速率小的微生物,这使生物膜法中参与代谢的微生物种类多于活性污泥法。
3.生物膜法的主要特征与活性污泥法相比,生物膜法具有以下特征:⑴生物相特征:①参与净化反应微生物多样化②生物的食物链长③能够存活世代时间较长的微生物④分段运行与优占种属⑵工艺特征①抗冲击负荷能力强②污泥沉降性能良好,宜于固液分离③能够处理低浓度的废水④运行简单、节能,易于维护管理,动力费用低⑤产生的污泥量少⑥在低水温条件下,也能保持一定的净化功能⑦具有较好的硝化与脱氮功能生物膜法的主要影响因素影响生物膜法的因素很多,例如水质、温度、pH值、溶解氧、营养平衡、有毒有害物质浓度等,这些因素也是影响活性污泥法等的因素,前面已讲过,下面介绍一下生物膜法所特有的影响因素。