井下节流技术研究与应用
- 格式:ppt
- 大小:1.58 MB
- 文档页数:25
井下油嘴节流机理研究及应用第1O卷翦5朔井下油嘴节流机理研究及应用刘鸿文刘德平(四川石油管理局钻采工艺研究所)内容提要本文在研究井下油嘴节流机理的基础上,导出7汕嘴最小下入深度关系式和气,液二相节流模型,书其应用于四川气田和胜利汕田的8口气井的井下节流设计,计算,获得7较好的效果.主题词油气井井下油嘴下八深度气液二相节流模型油,气,水混合物从油气藏到分离和储存系统,其流程如图1所示.为了控制油,气,水囝1多相流程中的扼流器(油嘴)示意图经由多孔介质渗流,垂直管流或起伏管流的流动型态使井按预期的要求生产,必须施加相应的机械条件.地面油嘴是自喷井垠重要的地面控h击4器具井下油嘴是自咬井是.重要的井下控制器具.它们是在流程的不同部位设置的扼流器.在井口管线上安装的地面油嘴,能够造成井口压力下降,以增大井口的安全程度和减少分离器的压力l而在井下(油管鞋上若干米)安装井下油嘴,则可造成井筒压力降,调节举升管中地层能量达到调节地屠气,液流体的产出量.井下油嘴节流机理1.流体节流的临界流动油,气,水混合物穿越油嘴的流动属于节流流动(囝2).节流将压力能转变为功能,获督流速的增加.上流压力越高,孔喉越小,在下流僻到的逋度增量则逃大.当上,下流压力囵2流经孔喉的状态示意之比达到某值时,穿越油嘴的流速将为近于声速,此时无论怎样降低下流压力,介质流速__.I曩.,vP天然气工业"zt仍保持声波传播速度.此即喷嘴的l临界流动状态.临界压力比为;=㈤.一(南'-o-se(1)式中k——等熵指数,=/c.≈l_3}尸】,^——节流嘴上,下流压力.节流压差为AP=Pl—P2≈Pl一0.5P.=0.5P.在ll缶界流动条件下,若地面装有油嘴,其下流,即出油管线至分离器之问产生任何压力波动时,压力渡不能回穿油嘴而影响上流的井口压力.同理t如井下装有油嘴,其下流, 即油嘴以上的自喷管柱至井口分离器之间产生任何压力波动时,如开大或关小井口阀门等,压力波同样不能穿越油嘴而影响上流的井底压力.即下流的压力波()传播速度(vp)不能穿越声障对上流压力(P)施加影响即,r,≤为此,几乎所有的研究者都倾向予研究,设计临界流动条件的节流模型.井下油嘴具有减缓井下压力激动,减少油井出砂等功能, 其原因亦在于此.2.热力学描述气体节流的等熵过程.气体(或可压缩气,液混合物)在喷嘴中流动时,由于钎进扳快,流动工质与外界如油管,油套环空,套管, 水泥环以及地层等所组成的多层壁,来不及进行热交换,因此,这一过程可视为等熵膨胀过程.根据热力学第一定律,等熵过程能量转换关系可写为:口=(一")+({一{)+AZ,(2)式中口——外界与节流系统的热交换(吸热为正嫩热为负)},——工质在流入,流出喷嘴时的热焓;",——工质在流入,流出喷嘴时的流速;——功热当量;L——与外界交换的机械功.对井下节流系统而言,气,渡混合流体流经孔喉瞬间,与外界无热交换(绝热膨胀),即口=0也不对外做机械功,故L=0.于是式(3)变为:n一:(;一)"一'i一岍)即,(3)从流动状态看,流速从W变为,如不考虑摩擦及惯性损失,气,液混合物内能的减少全部转化为动能,即速度的增大.内部消耗的结果,使混合物流经油嘴瞬问的温度急剧下降,这就是为何气井节流易出现水合物冰堵的缘故.3.井下节流与自喷管举升效率的关系对气井,液相物质是借助于气体膨胀被带出地面的.这一过程通过:(1)液体薄膜沿管壁运动l(2)小的液滴由高速气流带出.实验研究表明,从井内将液体带至地面所需的最小气体流速,应足以把井内可能存在的是? 太液滴举升至井口.这个最大渡滴的大小是由气流冲击液滴的曳力与液体的表面张力的. 共同作用所能维持的箍太尺寸.举升渡滴所需最小气体流速用下式表示(推导略)=7.03(一).'/(d)折算到标准状态下气体流率为:第l0卷第5期天然气工业口_一3.046×10'-20.3,t15P,v.I(Z7")3.√ZTy,(5)式中0.——液滴上行所需的最小(标准)气体流量,km'/OPt——井口油管压力,MPal——气体温度,Klz——气体压缩因子I.——气体相对密度}pL,p.——液体,气体的密度,kg/m}A——油管流通面积,131}——气液表面张力,N/m.,皇誊:PLMPa图3气井排液最低流量与井口压力的关系从上式可以看出,当其它参数不变时,气体举液所需展小标准流量口随井口压力P 的降低而减小.因此,采用井下油嘴时由于井口压力下降很大,因而提高了气体的举液能力.图3是根据式(5)绘制的口.一P.关系曲线.当井口压力从16.0MPa降至3.0MPa时, 气体连续排液所需最小气量从55kin/O降至20kin/O.油嘴最小下人深度的确定气井节流水合物冰堵与节流的状态参数,气体组分以及油嘴所在深度等因索有关. 下面将讨论地热环境对油嘴下流温度的影响以及下流温度£t与上流温度't的关系.1.绝热膨胀过程中状态参数的关系气体作等熵膨胀时,温度与压力有如下关系:孚一f鲁(6)pl…l,J,^用摄氏温度单位上式可写为:一("+273)flz.t'一973(7)油嘴人口温度(£)受井筒流动温度的控制.而流动温度梯度必须由生产测井得到. 但在某些情况下,油,气井缺少温度测量数据.为了找出油嘴进,出口温度与油嘴所在深度之关系,有必要引用地温梯度来做一些近似的定量判断.图4井下节流的温度梯度示意图图d表示油,气井有无井下节流的温度梯度曲线与地温梯度的关系.天然气工业I【fj}线I:沿井筒地诩十嚣度曲线;曲线Ⅱ:无井下节流的流动溢度曲线j曲线Ⅲ:有并下]{j}c的流动i厦曲线艘定由地温增率(莽到n嘴所在深度(L.)的地热温度近似地等于油嘴入口处的流体温度(),用摄氏温度单位表示为lfl'+厶/M.(8)式中£.——地面平均温度,℃J埘.——地温增率,m/℃..将式(8)代入式(7)得到如下估算公式:当有井温数据时一(@厶+273)一'一273(9)当无井温数据时岛一("+厶/?+273)庸'',.一273(10)式中tw@.——油嘴所在深度处的流动温度,℃}L.——油嘴所在深度,m.2.气井节流水合物堵塞的预测天然气水合物是水和烃类气体及酸性气体的结晶体.气井或高油气比油井安置井下油嘴时必须避免在节流嘴的下流生成水台物.应当考虑因素是:节流嘴下流压力PzF节流嘴下流温度tz{天然气的相对密度{酸性气体HS 或C02等.预测方法:估算下流压力=,,lP_一c2/0一1)~Jl(,t-u)一下流温度(z)必须高于水合物温度",即2≥h.水合物形成温度由天然气水合物生成条件的关系曲线查得.令j≥,井代入式O0)'则~≤(b+LM/埘D+273)废",.一273(11)式巾L…——不生成水合物的油嘴最小下人深度,IT].由式(11)可得油嘴最小下入深度的估算公式:当有井温数据时,已知油嘴所在深度处的平均温度梯度为以,L≥O~fE(6+273)且-工"_.^一(+273)3(12)当无井温数据时,厶≥M[他+273),.一((+273)](13)推导新的节流模型假设条件t(I)流体为气,液二相均匀混合流体,气, 液相问不存在滑脱现象,视为单一流体.(2)忽略流体进入喷嘴前的初速度.因油管直径(d)远太于嘴子直径(d.),因而≥砰,》砒,"_一0(3)忽略嘴子长度上的能量损失(位能和摩擦阻力),位能z一z..变换伯努利能量平衡方程为:A一—(15)C√2d^经过推导(从略)得到:一[鲁+c)],'‰面丽L十而'一"Ju一(1-F兰O.O±01205GORpw)二?(17)将式(16),(17)代入式(15),面积单位化为mm,最后得到;临界流动条件第1D卷第5期天然气工业一0.2732√v=些21:(1+0.O01205GO/~ys)(18)非临界流动条件.口:而—巫PTL1.…""J×丽(19)式中0.——油产量,t/d{A——油嘴孔喉攒截面积,iilln}P——油嘴上流压力, 0.1MPaiT——油嘴上流温度,Kiz-——P,'t条件下气体压缩囚子; P.——标准状态(2OC;760mmlTg)下的压力}.——标准状态(20Cl76Oml11】g)的温度}.——原汕的相对密度;——气体的相对密度fGoR——地面油气比,m/tIR.——溶解油气比,m./t;B0——地下原油的体积系数(在Pt,2'?条件下),m/m.}c——流量系数.为了满足油,气井井下节流的设ifi-P算,除推导的模型外,还收入了罗斯Ros,阿斯福特Ashford用于汕井的二个公式,以及桑赫尔一克拉弗Thornhill—Craver等用于气井的二个公式.1.推导模型与罗斯等六种公式的比较以川中矿区金lI,37,角56,27,遂l2等几口产出油,气二相的气井,分别用六种公式与推导模型计算汕嘴尺寸,其结果列于表1.表l说明:Ashford公式汁算的嘴子偏大;Gilbcrf公式计算的结果偏小;推导模型计算的油嘴尺寸与Ros等四种公式计算的结果较接近.2.将推导模型在不同油气比井检验青海冷潮油田的辣7,深1tO井和川中矿区遂12,角27井计算的井口油嘴尺寸见表2.囊1井号R皤Aslff,Acho.Gi】h丁一CSSSV推导实厮金112.754.362242.152.7fi2.492.383[金372.S73.弛2.102.052.5fi2.302.221.8[角56】.772.52J.441.421.7fij.581.520C角272.273.531.4O1.212.3O2.072.052.0C●遂J23.566.211.751.642.3{2.jJj.892.0C注;油嘴足寸为mm裹2井油气比井口汕喘足寸(ram)实号(m/m)Aslff.^ch0.G儿b.Ros推导际操750l16.4I5.637.026.656.236.00深1IO53l16.I85.657.0I6.426.1l6.00遂12>5DDo|I7.002.J82.054.I{2.202.20前27>5DDo|I6.021.56I.352.402.122.20表2说明;在所列的五模型中,推导模型计算的油嘴尺寸接近实际情况}对中,低油气比仍有较好的适应性I井下节流模型也可用于地面油嘴的计算.'3.现场验证结果1989年川中矿区的遂12井和角27井及胜利油田垦西和孤岛的6口井实施了井下节流工艺.这8口井的数据列于表3.天然气工业1990卑裹3井号遂l2角盯垦7l虽71—2垦1—1虽6孤1—1中9一l3气屠挥度m1253.01455.41248.01262.2766.0115.0油警长度∞2154.52484.01213.2l29t.9lO86.71284.4757.4l0l9_8,气体相对密壤O.63200.62000.55970.57910.56000.55720.56200.5636基油管内径mm63.563.563.563.S63.563.563.563.5气产量,d153501607014860884019000162201525012330础油产量t/d0.290.6{水产量t/d2.35数油压MPa15.117.286.3口.88.6.35.2套压MPa20.621.010.16.8l0.110.S7.56.0井底流压Mn24.625.411.07.8l0.811.56.5据井口温度℃20.020.0l8.0l毒.0l8.018.018.018.O井底温度℃70.077.O57.060.0S9.057.054.056.0井口油嘴mm2.22.23.03.03.03.03.0|.O下^深度m1955199511501200688l170500600设上施压力M2621.511.07.21D.811.O7.86.5计上流温度℃65.065.053.053.0{1.055.O42.041.0情况油嘴直径mm1.82.02.12.72.62.52.82.8气产量,d15500155001000095001800012000150008500实抽压M5.34.81.851.851.851.901.951.90际套压Ml10.216.910.26.610.010.07.56.2●情气产量m/a16601557010250970020500121l0155008350 况l8.0l&D15.015.0井口温度℃10l9.Ol8.O18.0从表3可以看出:设计计算较精确,其中有6口井的设计产量与实际产量的误差5N,另2口井的误差为l0.(本文收到日期1990年J月18日)。
井下节流原理
井下节流原理是一种通过减小油井产能,降低油井生产液体的压力,从而减少油井生产流量的一种方法。
井下节流原理主要依靠油井中安装的节流装置来实现。
节流装置通常由一系列孔径较小的喉咙组成,通过降低流体通过喉咙的截面积,从而增加液体的速度,并减小液体在油井中的压力。
节流装置的主要作用是产生一定的能量损失,使得流体能够保持一定的速度和压力降,从而减少油井的生产流量。
在井下节流原理中,节流装置的孔径大小会直接影响油井的产能。
通过调整节流装置的孔径大小,可以控制油井的产能和生产流量。
当需要减少油井产量时,可以采取加大节流装置孔径的方式,从而增加流体通过的截面积,减小液体的速度,降低流体的压力损失,从而降低油井的生产流量。
相反,当需要增加油井产量时,可以采取减小节流装置孔径的方式,从而减小流体通过的截面积,增加液体的速度,增加流体的压力损失,从而提高油井的生产流量。
总的来说,井下节流原理通过调整节流装置的孔径大小来实现降低油井生产流量的目的。
这种方法简单可行,且可以根据实际需要进行灵活调整,是一种常用的油田开发调控方法。
井下节流器的相关介绍井下节流器,顾名思义,是一种安装在油井井口的装置,其主要功能是通过调节井口压力和流量,实现对井口流体的节流控制。
井下节流器的工作原理主要包括两个方面,即压力平衡原理和流体力学原理。
井下节流器通过压力平衡原理来实现对井口压力的调节。
在油井生产过程中,井口压力是一个重要的参数,它直接影响到油井生产能力和油气的产出。
井下节流器的安装位置正好在井口,它可以通过调节进入井口的流体流量,来实现对井口压力的控制。
当井口压力过高时,井下节流器会适当减小流体的流量,从而降低井口压力;反之,当井口压力过低时,井下节流器会适当增大流体的流量,以提高井口压力。
通过不断调节流量,井下节流器可以使井口压力保持在一个合理的范围内。
井下节流器还利用流体力学原理来实现对井口流量的控制。
在油井生产过程中,流体的流量是一个关键参数,它直接影响到油井的产能和生产效率。
井下节流器通过调节进入井口的流体流量,来实现对井口流量的控制。
具体来说,井下节流器内部设有一个可调节的节流装置,通过改变节流装置的开度,可以控制流体通过井下节流器的速度和流量。
当需要增大井口流量时,节流装置会适当放大开度,使流体通过井下节流器的速度加快,从而增大井口流量;反之,当需要减小井口流量时,节流装置会适当缩小开度,使流体通过井下节流器的速度减慢,从而减小井口流量。
通过这种方式,井下节流器可以根据实际需要,精确地控制井口流量。
井下节流器通过压力平衡原理和流体力学原理的相互作用,实现对井口压力和流量的精确控制。
它在油井生产过程中起到了至关重要的作用,可以有效地调节井口压力和流量,提高油井的生产能力和生产效率。
同时,井下节流器还能够减少油井的砂层破坏、水气井的涌水、井底流体的分离等问题,保障油井的稳定运行。
因此,在油井生产中广泛应用井下节流器已成为一种必要的技术手段。
需要注意的是,井下节流器的选择和使用需要根据具体的油井条件和生产需求进行合理的设计和安装。