低氮燃烧器如何选择
- 格式:docx
- 大小:26.30 KB
- 文档页数:3
低氮燃烧技术1 水泥窑炉系统NO X形成机理大致介绍2 现有低氮燃烧技术大致介绍3 低氮燃烧技术的效果4 改变燃料物化性能5 提高生料易烧性6、新型干法水泥应对脱硝的相应措施1、水泥窑炉系统NO X形成机理大致介绍1.1NO X的生成机理窑炉内产生的NO X主要有三种形式,高温下N2与O2反应生成的热力型NO X、燃料中的固定氮生成的燃料型NO X、低温火焰下由于含碳自由基的存在生成的瞬时型NO X.1.2热力型NO X:由于是燃烧反应的高温使得空气中的N2与O2直接反应而产生的,以煤为主要燃料的系统中,热力型NO X为辅。
➢一般燃烧过程中N2的含量变化不大,根据泽里多维奇机理,影响热力型NOX 生成量的主要因素有温度、氧含量、和反应时间。
➢热力型NOX产生过程是强的吸热反应,温度成为热力型NOX生成最显著影响因素。
研究显示,温度在1500K以下时,NO生成速度很小,几乎不生成热力型NO,1800K以下时,NO生成量极少,大于1800K时,NO生成速度每100K约增加6-7倍。
➢温度在1500K以上时,NO2会快速分解为NO,在小于1500K时,NO将转变为NO2,一般废气中NO2占NO X的5-10%,排入大气中NO最终生成NO2,所以在计算环境影响量时,还是以NO2来计算。
可以说,窑炉内的温度及燃烧火焰的最高温度是影响热力型NO X生成量的一个重要指标,也最终决定了热力型NO X的最大生成量。
因此,在窑炉设计中,尽量降低窑炉内的温度并减少可能产生的高温区域,特别是流场变化等原因而产生的局部高温区。
燃烧器设计中,要具备相对均匀的燃烧区域来保证燃料的燃烧,降低火焰的最高温度。
这些都是有效降低热力型NO X的有效办法。
➢热力型NOX生成量与氧浓度的平方根成正比,氧含量也是影响热力型NO X 生成量的重要指标。
随O2浓度增加和空气预热温度的增加,NO X生成量上升,但会有一个最大值。
O2浓度过高时,过量氧对火焰有冷却作用。
锅炉低氮燃烧器改造方案随着环境保护意识的增强和对空气质量要求的提高,锅炉低氮燃烧技术逐渐成为热点话题。
低氮燃烧技术可以有效降低锅炉燃烧过程中产生的氮氧化物排放,减少对大气环境的污染,具有重要的意义。
本文将针对锅炉低氮燃烧器改造方案进行探讨和分析。
锅炉低氮燃烧器改造方案的核心是优化燃烧过程,减少氮氧化物的生成。
传统锅炉燃烧过程中,燃料在高温条件下与空气混合燃烧,产生大量氮氧化物。
而低氮燃烧技术通过改变燃烧器结构、优化燃烧参数等方式,有效降低氮氧化物的生成。
因此,在锅炉低氮燃烧器改造方案中,我们应该注重以下几个方面的优化。
改进燃烧器结构是降低氮氧化物排放的关键。
通过优化燃烧器的进气和出气结构,可以改善燃烧过程中的氧气浓度分布,提高燃烧效率,减少氮氧化物的生成。
例如,可以采用分级燃烧技术,将燃料和空气分层供给,使燃烧更加均匀稳定,减少局部高温区域的形成,从而降低氮氧化物的生成。
调整燃烧参数也是实现低氮燃烧的重要手段。
合理控制燃烧过程中的温度、氧气浓度、燃料供给等参数,可以降低氮氧化物的排放。
例如,通过优化燃烧器的供气方式,控制燃烧过程中的氧气含量,可以减少氮氧化物的生成。
此外,合理调整燃烧器的燃料供给量和燃烧温度,也可以降低氮氧化物的排放。
锅炉低氮燃烧器改造方案还需要考虑燃烧过程中的污染物处理。
在燃烧过程中,除了氮氧化物外,还会产生其他有害物质,如颗粒物、二氧化硫等。
因此,在改造方案中,应该考虑如何有效处理这些污染物。
可以采用除尘器、脱硫装置等技术手段,将这些污染物进行处理,达到排放标准要求。
锅炉低氮燃烧器改造方案的实施需要合理安排时间和成本。
改造过程中需要停机维护,这对于生产运营会带来一定的影响。
因此,在制定改造方案时,应该合理安排时间,并选择合适的改造方式,以尽量减少停机时间和成本投入。
锅炉低氮燃烧器改造方案是通过优化燃烧器结构、调整燃烧参数以及处理燃烧过程中的污染物来实现降低氮氧化物排放的目标。
低氮燃烧技术原理
低氮燃烧技术,是指在燃烧过程中将NOx的产生控制在一定范围内的一种技术。
对于燃煤锅炉,低氮燃烧主要是指减少燃料中的氮化合物的生成量。
燃烧过程中,生成的NOx有两种形态:一种是NOX,一种是氮氧化物。
当燃烧器中的空气过剩系数与燃料种类、负荷、煤种等因素相匹配时,NOX就会很低;当燃烧过程中存在高温区时,温度较高时,燃料中氮化合物被氧化成氮氧化氮,这样NOX就会急剧升高;当燃烧过程中存在还原性气氛时,燃料中的氮氧化合物被还原成氮气;当燃烧器结构设计不合理,空气过剩系数过大或燃料种类与负荷不匹配时,燃烧器中的氧气过量系数过小,这时燃烧反应生成的氮氧会以NOX形式向空气中逃逸。
为减少NOX排放,国内外均采用降低燃料氮化合物生成量的方法来控制锅炉的NOx排放。
主要措施是优化燃烧过程、改进空气系统及改善燃烧条件等。
1.合理选择燃料及负荷
合理选择燃料是控制锅炉NOx生成量的有效途径。
—— 1 —1 —。
低NOx燃烧技术简介一??概述:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx!烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
二??低NOx燃烧技术方法:1、空气分级燃烧空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。
在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。
2、燃料分级燃烧燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。
把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。
3、烟气再循环燃烧烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx的排放。
将部分低温烟气直接送入炉内或与空气(一次风或与二次风)混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx三??低NO/然烧器根据上述低NOx l烧技术,我公司引进开发出以下型号的低NOx燃烧器:1、HDRB型低NOx然烧器;2、HHT-NRH低NOx燃烧器;3、HXCL型低NOx燃烧器;4、HWS型低NOx燃烧器;5、HDS型低NOx燃烧器;6 HSM型低NOx燃烧器;7、??HPM型低NOx燃烧器。
低氮燃烧技术水平要求低氮燃烧技术旨在减少燃烧过程中产生的氮氧化物(NOx)排放,这对于环保和大气质量的改善至关重要。
以下是实施低氮燃烧技术所需的一些关键要求和技术水平:1.燃烧系统设计:低氮燃烧技术要求采用特殊的燃烧系统设计,以最大程度地减少氮氧化物的生成。
这可能包括调整燃烧器的结构、燃烧室的形状以及燃烧过程的控制参数。
2.燃料调整:使用低氮燃烧技术时,通常需要对燃料进行调整,以减少氮氧化物的生成。
例如,可以使用低氮燃料或添加氮氧化物还原剂。
3.燃烧控制系统:先进的燃烧控制系统是关键,以确保燃烧过程的稳定性和效率,并最大程度地减少NOx排放。
这可能需要使用先进的控制算法和传感器来监测和调整燃烧参数。
4.选择适当的技术:有多种低氮燃烧技术可供选择,如选择性催化还原(SCR)和选择性非催化还原(SNCR)等。
根据具体情况选择适当的技术是至关重要的。
5.排放监测和控制:实施低氮燃烧技术需要进行排放监测和控制,以确保达到法规要求的NOx排放限值。
这包括安装排放监测设备和采取必要的控制措施。
6.培训和管理:操作和维护人员需要接受培训,以了解低氮燃烧技术的操作和维护要求。
此外,需要有效的管理和维护计划,以确保系统长期运行稳定。
7.法规和合规性:遵守国家和地区的环保法规和排放标准是必要的。
低氮燃烧技术必须符合适用的法规,以确保排放不超过法定限值。
8.研究和创新:持续研究和创新对于提高低氮燃烧技术的水平至关重要。
新技术和方法的发展可以进一步降低NOx排放。
总之,实施低氮燃烧技术需要一系列的技术和管理措施,以减少氮氧化物排放,改善大气质量,并符合环保法规。
这需要系统性的方法,包括工程设计、操作控制、培训和合规性管理。
燃气锅炉低氮改造是我国工业锅炉行业发展的一个新发展方向,为了减少燃气锅炉废气中的氮排放,许多用户选择进行低氮改造。
本篇文章就为您简单介绍一下燃气锅炉低氮改造的标准、技术方案和费用。
一、燃气锅炉低氮改造的标准由于国家对于各地的锅炉低氮改造没有统一的标准,导致各地施行的低氮改造标准不同,大致分为30mg/m3和50 mg/m3两种。
1、京津冀地区,西安、太原、成都、长沙等几个省会城市:30mg/m3;2、江浙沪皖等南方地区,山西、河南,济南:50mg/m3。
为了避免因二次低氮改造造成不必要的浪费,建议不管当地是否出台政策,新上锅炉或者低氮改造锅炉都按照30mg/m3标准进行。
二、燃气锅炉低氮改造方案:燃气锅炉低氮改造主要通过配置低氮燃烧器和加大锅炉的炉膛尺寸来实现。
为了帮助企业节约成本,配置合适的低氮燃烧器分级燃烧技术+烟气内循环技术可以实现低氮改造,将其排放量控制在小于30mg/m³。
目前燃气锅炉的低氮改造方案有以下两种:1、FGR技术,即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法。
采用FGR低氮燃烧技术,针对使用锅炉进行改造升级,采用超低氮燃烧机,将新进炉的冷空气过量系数降到尽可能低的水平,最终达到减少排烟热损失,降低排烟NOx含量的节能减排效果。
FGR低氮燃烧技术是一种利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。
由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。
另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。
2、全预混燃烧,全预混燃烧也可实现低氮排放,但是运行中问题较多,经常出现金属编制燃烧网堵塞导致燃烧问题,无法长期稳定运行,北京质监局已作出安全风险提示(见下图)三、燃气锅炉改造费用在各大生产性企业中,2吨、4吨、6吨、10吨、15吨、20吨燃气锅炉是比较常见的几种类型了,这些燃气锅炉的低氮改造费用往往受低氮燃烧器的选择影响较大。
工业锅炉常用低氮燃烧技术解决方案
工业锅炉常用的低氮燃烧技术解决方案主要包括以下几种:
1. 空气分级燃烧:这种技术通过将空气分级为一次空气和二次空气,一次空气在预混区与燃料混合,二次空气在燃烧后期与燃料混合。
这种方式可降低炉膛温度,从而减少氮氧化物的生成。
2. 燃料分级燃烧:这种技术使用低氮氧化物产生能力的燃料,如生物质锅炉,或者使用催化剂促进氮氧化物的还原反应。
3. 低氧燃烧技术:这种方式可以减少氮氧化物的生成量,但需要注意氧浓度过低会导致碳不完全燃烧产生,可能导致有毒气体排放超标。
4. 烟气再循环技术:这种技术将一部分高温烟气回流到燃烧器,可以降低炉膛温度,从而减少氮氧化物的生成。
5. 燃料与空气预混合燃烧:采用这种技术可以减少燃烧过程中空气的总体需求量,同时燃料和空气的预先混合有助于控制火焰的传播,从而减少氮氧化物的生成。
6. 选择合适的锅炉类型:对于特定的工业应用,选择低氮锅炉或生物质锅炉等可以降低氮氧化物排放的设备,也是一种可行的低氮燃烧技术解决方案。
以上解决方案需要根据你的具体需求和锅炉的实际情况来选择和实施。
同时,低氮燃烧技术并不能完全消除氮氧化物的生成,还需要其他措施如改进燃烧设计、优化运行管理等来进一步降低氮氧化物的排放。
在实施这些技术时,应遵循相关环保法规,确保排放达标。
利雅路低氮燃烧器说明书利雅路低氮燃烧器是一款新型的燃烧器,它采用低氮技术,通过调整燃烧过程,有效地降低了氮氧化物的排放量,对保护环境和节能减排都有非常好的效果。
下面,我们将详细介绍利雅路低氮燃烧器的使用说明书。
一、安装前准备在进行燃烧器的安装前,需要经过一系列的准备工作,包括选择合适的安装场所、检查燃烧器的各项部件是否完好、确定气源与电源等。
在安装前应该进行充分的衡量和评估,确保所有的操作都符合要求。
二、安装步骤1、选择合适的安装场所燃烧器应该安装在通风良好的地方,以确保正常的燃烧和排放。
同时,还要注意避开其他设备和居民居住区域,以免造成安全隐患。
2、检查燃烧器各项部件是否完好在安装前,需要仔细检查燃烧器各项部件是否完好,包括燃烧器本体、阀门、电控箱等,并检查气源和电源接口是否正常,确保无漏气和漏电等问题。
3、固定燃烧器本体将燃烧器本体固定在安装位置上,并进行定位和调整,以确保与燃烧器间的连接管道连接牢固。
4、连接气源连接气源前需要先检查气源是否开启,确保气流通畅。
然后,根据适当的连接方式,将燃烧器和气源相连接。
5、连接电源连接电源前需要根据说明书上的图示,将线缆安装好,并做好绝缘。
然后再进行电源连接。
三、使用方法在安装完燃烧器后,需要按照说明书的要求进行操作。
首先,需要正确开启气源和电源,根据所需要的热量,选择相应的工作模式,进行燃烧。
在使用过程中还要注意定期保养和检查,包括更换过滤器、清理内部部件、检查阀门安全性等,确保燃烧器的正常运行。
如果发现异常情况,应当及时联系维修人员进行处理。
总之,利雅路低氮燃烧器是一款高效、环保的新型燃烧器,它通过专业的设计和严格的质量检查,保证了使用过程的安全和有效性。
在使用时,需要按照说明书上的规定进行操作,保证燃烧器的正常运行,同时为环保事业和节能减排做出自己的应有贡献。
一.低氮燃烧技术前言伴随着我国火力发电行业的快速发展,火电厂氮氧化物的排放量迅速增加。
2003—2007年5年间,我国火电厂装机容量增长了91.3%,煤耗量增长了65.6%,火电氮氧化物排放量增加了近40.6%,2007年火电氮氧货物排放量约占全国排放总量的35%~40%。
据预计,“十二五”期间火电厂氮氧化物的排放总量将由2010年的1050万吨增加到1200万吨。
针对上述形式要求,北京哈宜节能环保科技开发有限公司研发的电站燃煤锅炉污染减排技术—低氮燃烧技术,采用立体分级低氮燃烧,在使用一般煤质的情况下,可减少氮氧化物排放35%~55%,达到国际先进水平,实现减排目标。
1、降低NOx排放量主要技术措施:选取合适比例(不同煤种)的SOFA风率高位偏异布置,实现双向分级燃烧;浓淡燃烧技术,使燃烧器浓淡两相化学当量比都处于低NOx区域;降低主燃烧器区域峰值温度;通过组织垂直与水平方向的空气分级和水平方向的燃料分级立体化燃烧技术系统,是解决我国电站锅炉节能减排的关键技术,尤其适合我国境内的煤质。
这项技术对解决我国燃煤电站锅炉污染问题具有非常重大的意义。
此技术系统在实现减排氮氧化物的同时,还具有提高燃烧效率、降低烟温偏差、减轻(或防止)结渣和高温腐蚀等作用,具有极强的操作性和现实应用性。
(1)立体化燃烧技术(墙式切圆燃烧器)广泛的煤种适应性:褐煤、烟煤、贫煤、无烟煤;技术特点:立体化燃烧技术大幅降低NOx排放量和优化其他技术指标;能最大限度地合理利用炉膛空间,有利于充分燃烧,降低未燃碳损失;炉膛内温度场更加均匀,并且温度水平适中,能有效降低NOx的排放,同时使锅炉水循环更加可靠;上炉膛水平烟道温度分配均匀,炉膛出口烟温偏差只有普通四角燃烧的75%,保护高温过热器和再热器;燃烧器出口具有较大均等的空间,气流不易受到水冷壁的影响造成贴墙,从而有利于防止水冷壁的结渣;煤粉气流受水冷壁水冷程度要大大小于角式切圆燃烧,从而强化煤粉气流的着火特性、增加低负荷稳燃的能力;着火点易于调节,煤种适应性强;(2)墙式燃尽风系统用途:最大限度地降低NOx的排放量、最大限度地提高燃烧效率;适用燃烧系统:正方形或准正方形的煤粉燃烧锅炉(所有切园燃烧锅炉和墙式燃烧锅炉;布置方式:四面墙上(或角上)切圆(或对冲)布置;原理:布置在墙上(或角上),提高了燃尽风的穿透深度和扰动,在燃烧的后期提高风粉的混合速度,在降低NOx排放量的同时提高燃烧效率;(3)同时水平、垂直方向摆动的二次风燃烧器普通燃烧器的二次风只能单独地水平摆动或垂直摆动,作用受限。
16 随着国家对生态环境越来越重视,对炼化企业污染物排放的管控力度也不断加大。
其中,加热炉排放烟气中氮氧化物(NO x)含量就是一项重要的监管指标。
NO x是大气的主要污染物之一,它不但能破坏臭氧层而且也是形成光化学烟雾的主要组分。
2015年4月16日,中华人民共和国环境保护部发布了GB 31570—2015《石油炼制工业污染物排放标准》,规定“新建企业工艺加热炉自 2015年7月1日起执行该标准,特别限值地区执行 100mg/m3 的排放限值”[1]。
炼化企业早期投产加热炉的烟气排放很难达到这一指标要求,因此,通过一定的技术手段来实现减排十分有必要。
1 汽油加氢装置加热炉介绍大连石化公司225万t/年汽油加氢装置,2013年建成投产,共设置有2台加热炉,分别为分馏塔加热炉(位号H-9101)和加氢脱硫(HDS)反应加热炉(位号H-9102)。
分馏塔加热炉位于分馏塔底循环管线上,用于给分馏塔底提供热源。
HDS反应加热炉位于HDS第一反应器出口,物料经加热炉加热后至稳定塔底换热,再进入HDS第二反应器中反应。
2台加热炉均属于方箱式立管炉,分别设有辐射室和对流室。
加热炉下方设有燃烧器,分别通入瓦斯和空气进行燃烧,产生的热量用于加热四周炉管中的物料。
分馏塔加热炉(H-9101)内设16个燃烧器,中间用一个隔断隔开,两个腔室内各有8个燃烧器。
HDS反应加热炉(H-9102)内设有12个燃烧器,分3排排列,每排有4个燃烧器,每2排燃烧器中间设有炉管。
2台加热炉共用1套水热媒空气预热系统。
设置有1台鼓风机和1台引风机用于强制通风。
2台加热炉燃烧所产生的烟气被引风机产生的抽力抽出,经空气预热器回收余热,流经烟道,最后统一通过分馏塔加热炉顶的烟囱进行排放。
空气由引风机抽进风道中,与热媒水及烟气进行2次换热后送入燃烧器中与燃料气混合燃烧。
2台加热炉改造前排放烟气中氮氧化物NO x浓度在130 mg/m3左右,与国家要求的指标还存在一定的差距。
燃气锅炉低氮燃烧改造发布时间:2021-01-25T02:05:35.955Z 来源:《防护工程》2020年29期作者:雷昊[导读] 根据乌鲁木齐市乌环发【2018】31号关于印发《燃气锅炉大气污染物排放标准》(DB6501/T001-2018)对燃气锅炉排放浓度限值的规定,新建锅炉氮氧化物排放浓度低于40mg/m3,在用燃气锅炉氮氧化物排放浓度低于60mg/m3,自2020年10月1日起执行此标准,标准出台后,各单位在用的燃气锅炉多数面临低氮排放改造的问题。
乌鲁木齐热力工程设计研究院有限责任公司新疆乌鲁木齐 830000摘要:基于中小型燃气锅炉领域NOx的排放现状及产生机理,从浓淡燃烧技术、分级燃烧技术、超级混合技术、通过采用燃料及空气分级燃烧技术和浓淡型燃烧器实施技术改造,以降低氮氧化物排放浓度,基于此,本文对燃气锅炉低氮燃烧改造进行分析,仅供参考。
随着治污降霾工作深化推进,普通燃气锅炉已不能满足现有环境标准要求。
关键词:燃气、低氮、改造根据乌鲁木齐市乌环发【2018】31号关于印发《燃气锅炉大气污染物排放标准》(DB6501/T001-2018)对燃气锅炉排放浓度限值的规定,新建锅炉氮氧化物排放浓度低于40mg/m3,在用燃气锅炉氮氧化物排放浓度低于60mg/m3,自2020年10月1日起执行此标准,标准出台后,各单位在用的燃气锅炉多数面临低氮排放改造的问题。
锅炉低氮燃烧改造主要有两种方式,一是加装低氮燃烧器,另一种是更换低氮排放的燃气锅炉,两种方式均可降低锅炉尾气中氮氧化物浓度,实现达标排放。
由于加装低氮燃烧器的改造方式投资小、工程简单、技术较成熟,多数单位采用加装燃烧器的改造方式。
一、氮氧化物的分类与生成机理燃气(以天然气为例,主要成分甲烷CH4)锅炉在工作的过程中,所产生的废气氮氧化物(NOX)生成于空气中的氮气、氧气以及燃料中的微量氮气,共分热力型NOX、快速型NOX和燃料型NOX这3种氮氧化物。
低氮燃烧的原理采用空气分级燃烧技术,将一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
这种方法可以降低NOx排放20%-30%。
3低氮燃烧器采用低氮燃烧器可以将NOx排放降低到30mg/m³以下,是目前最有效的降低NOx排放的方法之一。
低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
总之,低NOx燃烧技术是降低NOx排放的有效手段,采用不同的方法可以达到不同的降低效果,应根据具体情况选择最合适的方法。
燃料分级燃烧是一种有效降低NOx排放浓度的方法,可使排放浓度降低50%以上。
为了保证未完全燃烧产物的燃尽,需要在再燃区上方布置"火上风"喷口,形成第三级燃烧区。
这种方法也称为燃料分级燃烧。
二次燃料可以是和一次燃料相同的燃料,也可以是碳氢类气体或液体燃料,但需要选择高挥发分易燃的煤种,并磨得更细。
在再燃区中影响NOx浓度值的因素需要进行研究。
烟气再循环法是常用的一种降低NOx排放浓度的方法。
可以在锅炉的空气预热器前抽取一部分低温烟气直接送入炉内,或与一次风或二次风混合后送入炉内,降低燃烧温度和氧气浓度,从而降低NOx的排放浓度。
烟气再循环率为15-20%时,煤粉炉的NOx排放浓度可降低25%左右。
燃烧温度越高,烟气再循环率对NOx降低率的影响越大。
电站锅炉和烟气再循环率一般控制在10-20%。
采用更高的烟气再循环率时,燃烧会不稳定,未完全燃烧热损失会增加。
烟气再循环法可单独使用或与其它低NOx燃烧技术配合使用,但需要进行技术经济比较。
低氮燃烧器改造技术方案引言随着环保意识的提高和我国大气污染治理的加强,低氮燃烧技术作为一种有效的降低燃烧产生的氮氧化物(NOx)排放的方法已经得到广泛应用。
本文将介绍低氮燃烧器改造技术方案,包括低氮燃烧器的原理、改造的具体方法以及改造后的效果。
低氮燃烧器原理低氮燃烧器是一种通过优化燃烧过程来减少氮氧化物产生的燃烧设备。
其主要原理是通过改变燃料和空气的混合方式和燃烧温度来降低燃烧时氮气和氧气的反应速率,从而减少氮氧化物的生成。
低氮燃烧器通常采用以下几种技术来实现低氮燃烧:1.燃烧空气分级:通过将燃烧空气分为多个级别,分别与燃料混合并燃烧,可以降低燃烧的温度,减少氮氧化物的生成。
2.吹风预混燃烧:将燃烧气体和空气预先混合,并通过喷嘴将混合气体喷入燃烧室,可以使燃烧更加均匀稳定,减少氮氧化物的生成。
3.氧化剂还原剂分级燃烧:通过将氧化剂和还原剂分为多个级别,分别与燃料混合并燃烧,可以调节燃烧过程中氧化还原反应的位置和速率,降低氮氧化物的生成。
低氮燃烧器改造方法低氮燃烧器改造是在现有燃烧器基础上进行的改进和优化。
对于不同类型的燃烧设备,改造方法有所不同。
以下是常用的低氮燃烧器改造方法:1.燃烧室结构优化:通过对燃烧室结构进行优化设计,包括增加混合区长度、改善燃料和空气的混合程度等,可以提高燃烧效率,减少氮氧化物的生成。
2.燃料预处理:对燃料进行预处理,包括脱硫、脱氮等,可以减少燃料中氮氧化物的含量,从而降低燃烧过程中氮氧化物的生成。
3.燃料分级燃烧:通过将燃料分为多个级别,分别与空气混合并燃烧,可以减少燃烧过程中氮氧化物的生成。
4.燃烧风机优化:通过优化燃烧风机的设计和调节,可以使燃烧过程更加均匀稳定,减少氮氧化物的生成。
5.添加燃烧辅助装置:如添加SNCR(Selective Non-CatalyticReduction)装置,通过加入适量的还原剂来减少氮氧化物的生成。
低氮燃烧器改造效果通过采用低氮燃烧器改造技术,可以显著降低燃烧设备的氮氧化物排放。
低氮燃烧器如何选择
北京市将在2017年4月1日正式施行最严苛的锅炉氮氧化物排放标准, 要求新建的锅炉氮
氧化物排放低于30毫克,在用的锅炉氮氧化物排放低于80毫克. 对于目前市场上大部分的在
用燃气锅炉业主来说,意味着必须更换成低氮燃烧器,才能满足排放要求.
NOx氮氧化物的生成机制
对于天然气锅炉来说,Nox的产生主要来自空气中的氮气和过量氧气产生的热力型Nox,热
力型NOx的产生和燃烧的温度呈指数型关系,通常在燃烧温度高于1000摄氏度的时候开始
产生,而在1400度以上NOx的生成速度会急剧增加。下图反映的是燃煤型锅炉的NOx排放
和温度的关系,其中热力型Nox的温度关系同样适合于天然气锅炉燃烧器。
基于以上NOx的生长机制,低氮燃烧器的控制NOx的技术也主要着眼于两个方向:
降低火焰温度;
降低氧含量;
低氮燃烧器和超低氮燃烧器类型
传统的天然气锅炉燃烧器通常的NOx排放在120~150毫克左右。低氮燃烧器通常是指NOx
排放在30~80毫克的燃烧器。NOx排放在30毫克以下的通常称为超低氮燃烧器。
传统的燃烧器的高NOx排放主要源于下述几个原因:
为了保证燃烧充分,采用了较大的过量空气;
燃烧温度通常在1800度左右;
低氮燃烧器通常基于下列技术:
1. 电子比例调节和氧含量控制技术;来精确控制氧含量;
2. FGR烟气再循环技术,来降低火焰温度和氧含量;
3. 全预混的表面燃烧技术来降低火焰温度和实现充分燃烧;
上述技术中1通常是低氮燃烧器的必须配置;基于上述技术,市场的低氮燃烧器主要分为以
下类型:
FGR低氮燃烧器;
表面燃烧超低氮燃烧器;
表面燃烧+FGR超低氮燃烧器;
其中FGR低氮燃烧器通常能够将NOx在全火范围内控制到65毫克,极限大约在40毫克左
右,进一步降低NOx排放可能导致燃烧不稳定,或者牺牲可调比等弊端;
表面燃烧超低氮燃烧器通常能够将NOx在全火范围内控制到30毫克以内,其优点是安装简
单,不需要FGR烟气再循环管道;其主要缺点是需要过滤空气,加大了维护工作量;同时
氧含量在7%左右,降低了部分燃烧效率。
表面燃烧+FGR超低氮燃烧器结合了表面燃烧的NOx控制优点和FGR降氧含量优点,可以实
现在全火范围控制NOx到20毫克水平,同时控制氧含量在3%以内,最大化燃烧效率。其
主要短处是设备成本提高。
低氮燃烧器选择考虑的主要参数
NOx 排放
必须满足国家和地方的环保排放要求,在满足要求的前提下,从企业的社会责任角度出发,
尽量应该选择NOx排放更低的设备;
尾氧含量
为了达到充分燃烧的极限过剩空气系数为大约1.1, 对应的理论尾氧含量为大约2%. 更高的
尾氧含量通常意味着燃烧器效率的降低。理想的燃烧器最好尾氧含量可以控制在3%以内;
市场上表面燃烧的燃烧器的尾氧含量通常在7%左右,相对于3%的尾氧含量,意味着产生相
同的热量,需要多耗费大约6~8%的天然气。对于常年运转或者设备长期在较高负荷运转,
天然气消耗量比较大的业主,选择一款尾氧含量低的燃烧器对于降低运行成本至关重要。
可调比
采用了电子比例调节的低氮燃烧器通常应该具备至少5:1以上的高可调比。更低的可调比
意味着实际运行过程中更多的ON/Off启停,同时也意味着更多的天然气消耗。除非是负荷
常年在一个比较小的稳定区间的锅炉,选择一个高可调比的燃烧器对于降低天然气的消耗,
降低运行成本,延长设备的使用寿命非常重要。
其它主要考虑因素
燃烧稳定性是选择低氮燃烧器的主要考虑因素,包括设备本身的可靠性。由于在北京实施低
氮标准之前,全世界范围内实施低氮标准的区域主要在美国,所以基本上只有主要销售市场
在美国的燃烧器品牌在低氮燃烧器领域具有比较长的应用经验,主要包括美国Powerflame,
美国强生,美国IC,英国利普菲德Limpsfield燃烧器等。同时从燃烧稳定性的角度考虑,对
于采用FGR 技术的低氮燃烧器,需要特别关注FGR 烟气再循环比例,过大的比例意味着燃
烧极易不稳定,或者对于设备的技术和控制水平有比较苛刻的要求。