机器人控制系统设计(毕业设计)文献综述
- 格式:doc
- 大小:105.00 KB
- 文档页数:6
机器人控制系统的设计和应用机器人技术正越来越广泛地应用于各个领域,从生产制造到医疗护理,都可以看到机器人的身影。
而机器人的灵活性和自主性很大程度上依赖于其控制系统的设计和应用。
本文将探讨机器人控制系统的设计原则以及其在不同领域中的应用。
一、机器人控制系统的设计原则机器人控制系统的设计需要考虑到以下几个原则:1. 功能性:机器人控制系统需要能够满足机器人的具体功能需求。
不同类型的机器人可能需要不同的功能模块,如运动控制、感知与导航、任务规划等。
因此,控制系统的设计应该根据机器人的具体任务需求来确定功能模块的设置和参数调整。
2. 稳定性:机器人控制系统需要具备良好的稳定性,能够保证机器人在各种环境和条件下的可靠运行。
这涉及到控制算法的设计和参数的优化,以及硬件设备的选择和配置。
稳定性的提高可以通过传感器的精确度提升、控制算法的优化等措施来实现。
3. 可扩展性:机器人技术不断发展,新的功能和特性不断涌现。
因此,机器人控制系统的设计应该具备可扩展性,能够方便地集成新的硬件设备和软件功能。
这样可以避免因为技术更新而导致整个机器人系统需要重构的问题。
4. 安全性:机器人控制系统需要保证机器人的安全运行。
这包括两个方面:一是机器人在工作时对人员和环境的安全保障;二是机器人自身的安全保障,如故障检测和紧急停机等功能。
安全性在设计和应用机器人控制系统时应该被放在首要位置。
二、机器人控制系统的应用领域1. 工业制造领域:机器人在工业制造领域的应用早已不是新鲜事物。
机器人控制系统在此领域的设计和应用,可以实现生产线的自动化和智能化。
通过控制系统的精确调度和协调,机器人可以完成复杂的装配工作、焊接工作、喷涂工作等,大大提高了生产效率和产品质量。
2. 医疗护理领域:随着人口老龄化的加剧,机器人在医疗护理领域的应用越来越受到关注。
机器人控制系统可以用于医疗机器人的运动和操作控制,如手术机器人和康复机器人等。
通过精确的运动控制和感知导航,机器人可以协助医生进行手术操作或者协助康复训练,提高手术的精确度和康复的效果。
浙江理工大学本科毕业设计(论文)文献综述报告随着机器人应用领域日益扩大,自动化水平不断提高,特别是在水下、高空及危险的作业环境中, 迫切希望能给机器人末端赋予一个类似人手的通用夹持器,以便在危险、复杂及非结构化的环境中,适应抓取任意形状的物体,完成各种复杂细微操作任务的要求,机器人多指灵巧手正是为了适应这一需要而提出的[1] 。
2 国外多指手发展历史及研究成果目前,国内和国外都有一些非常有代表性的多指灵巧手被制造出来。
国外多指手的研究始于20 世纪70 年代,其中具有代表性的早期灵巧手有: 日本“电子技术实验室”的okada灵巧手[2]。
如图1 所示,该手有3个手指, 一个手掌, 拇指有3个自由度, 另两个手指各有4个自由度。
各自由度都由电机驱动,并由钢丝和滑轮完成运动和动力的传递。
这种手的灵巧性比较好, 但由于拇指只有3个自由度, 还不是最灵巧的手。
另外, 在结构上, 各个手指细长而单薄, 难以实现较大的抓取力和操作力[3]。
图1 okada 灵巧手美国斯坦福大学研制的stanford/jpl手,也是一种非常具有代表性的多指灵巧手。
如图2 所示,这种手没有手掌,共有3个手指,每根手指有3个关节,拇指相对另两个手指而立。
手指内采用的也是腱、滑轮传动方法。
这种手的自由度较少,易于设计、制造和控制,所以,目前对这种手的研究比较多,也出现了许多与其相类似的手。
国内北航研制的多指灵巧手就是一种仿jpl手[5,6],也有3个手指,每指3个关节,外表结构也极其相似。
国防科大研制的多[4] 指手的模型[7],也是一种仿jpl的手。
这种手由于每个手指的自由度只有3个,在抓取物体时,抓取点(指尖位置)一旦确定后,其抓取姿态就唯一确定。
因此,实际上手指没有冗余关节,也就没有抓取的柔性,无法像人手一样进行灵巧的抓取和操作[5]。
图2 stanford/jpl 灵巧手图3 utah/mit 灵巧手1982年美国麻省理工学院和犹他大学联合研制了 utah/mit灵巧手[8,9] 。
无人机毕业设计参考文献无人机毕业设计参考文献1. 张亮. 无人机控制技术研究综述[J]. 计算机工程与应用, 2020, 56(1): 1-5.该文献综述了无人机控制技术的研究进展,包括姿态控制、轨迹规划、避障算法等方面的研究成果,为无人机毕业设计的控制部分提供了重要参考。
2. 陈立浩, 程建文, 熊文钊. 基于惯性导航系统的无人机航迹规划研究[J]. 电子科技应用, 2019(1): 110-112.该论文着重研究了基于惯性导航系统的无人机航迹规划方法,结合实际案例进行仿真分析,提供了可行的航迹规划算法和优化策略,对无人机毕业设计中的航迹规划模块有很多借鉴意义。
3. 王琳, 顾方明, 于永正. 基于无人机的地面目标跟踪算法研究[J]. 现代电子技术, 2018, 41(6): 78-82.该研究文章主要探讨了基于无人机的地面目标跟踪算法,包括目标检测、追踪、预测等方面,对无人机毕业设计中需要进行目标跟踪的场景有很好的借鉴意义。
4. 李洁, 卢佳, 陶盛,等. 无人机障碍物避障算法研究[J]. 控制与决策, 2017, 32(9): 1666-1672.该文献主要研究了无人机的障碍物避障算法,包括传感器数据处理、路径规划和控制方法等方面,对无人机毕业设计中需要设计避障系统的项目提供了重要的参考。
5. 王婧宇. 无人机电机控制系统研究[D]. 西安电子科技大学, 2016.该硕士毕业论文针对无人机电机控制系统进行了研究,对无人机毕业设计中电机控制部分的硬件设计和控制策略的选择提供了实用的指导。
6. 贾文华, 张梦雨. 基于无人机的图像识别技术研究[J]. 自动化与仪表学报, 2015, 36(10): 154-162.该研究文章综述了基于无人机的图像识别技术,包括图像预处理、特征提取、图像分类等方面的研究进展,对无人机毕业设计中需要进行图像识别的应用场景有很大帮助。
7. 袁玉仓. 无人机任务规划技术[D]. 浙江大学, 2014.该博士毕业论文系统地研究了无人机任务规划技术,包括任务规划模型建立、多目标优化算法、路径生成等方面的内容,对无人机毕业设计中需要进行任务规划的项目具有指导意义。
三一文库()〔文献综述 3000字〕一.前言部分:1.前言随着科学与技术的发展, 机械手的应用领域也不断扩大.目前, 机械手不仅应用于传统制造业如采矿,冶金,石油,化学,船舶等领域,同时也已开始扩大到核能,航空,航天,医药,生化等高科技领域以及家庭清洁,医疗康复等服务业领域中.如,水下机器人,抛光机器人,打毛刺机器人,擦玻璃机器人,高压线作业机器人,服装裁剪机器人,制衣机器人,管道机器人等特种机器人以及扫雷机器人,作战机器人,侦察机器人,哨兵机器人,排雷机器人,布雷机器人等军用机器人都是机械手应用的典型。
机械手广泛应用于各行各业.而且,随着人类生活水平的提高及文化生活的日益丰富多彩,未来各种专业服务机器人和家庭用消费机器人将不断贴近人类生活,其市场将繁荣兴旺。
2.相关概念机械手是一种模拟人手操作的自动机械。
它可按固定程序抓取、搬运物件或操持工具完成某些特定操作。
应用机械手可以代替人从事单调、重复或繁重的体力劳动,实现生产的机械化和自动化,代替人在有害环境下的手工操作,改善劳动条件,保证人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
20世纪40年代后期,美国在原子能实验中,首先采用机械手搬运放射性材料,人在安全间操纵机械手进行各种操作和实验。
50年代以后,机械手逐步推广到工业生产部门,用于在高温、污染严重的地方取放工件和装卸材料,也作为机床的辅助装置在自动机床、自动生产线和加工中心中应用,完成上下料或从刀库中取放刀具并按固定程序更换刀具等操作。
二.主题部分:1.历史它是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是19xx年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。
同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人的开发奠定了基础。
另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。
毕业论文文献综述要求一、文献综述的内容文献综述是大学生在毕业论文(设计)开题前阅读过某一主题的文献后,经过理解、整理、融会贯通,综合分析和评价而组成的一种文体。
综述的目的是反映某一课题的目前的研究或设计水平,特别是一些新动态、新技术和新发现。
从其历史到现状,存在问题以及发展趋势等,进行全面的介绍和评论.在此基础上提出自己的见解,预测未来的发展趋势,为选题和开题奠定良好的基础。
文献综述是在对搜集了某一研究领域或专题的大量文献和参考资料的基础上,进行综合归纳和分析而写成的。
“综”,就是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的评述。
二、文献综述的格式文献综述的格式与一般论文的格式有所不同.这是因为一般论文注重研究的方法和结果,而文献综述主要是介绍与主题有关的详细资料、动态、进展、展望以及对以上诸方面的评述。
因此文献综述的格式相对多样,但总的来说,一般应包含以下四部分:概述、主题、总结和参考文献。
撰写文献综述时可按这四部分先拟写提纲,再根据提纲进行撰写。
概述部分:主要是说明写作的目的,介绍有关的概念、综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓. 正文部分:是综述的主体,其写法多样,没有固定的格式.可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理、进行分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。
总结部分:与一般论文的小结有些类似,将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测。
参考文献:是进行毕业设计和研究的基础,撰写文献综述的依据,列出这些参考文献不仅表示对被引用文献作者的尊重及引用文献的依据,而且也为评审者提供查找线索。
机械手文献综述(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除毕业设计(论文)文献综述设计(论文)题目: 4自由度气动机械手设计学院名称:机械工程学院专业:机械设计制造及其自动化学生姓名:卢锋学号: 07403010309 指导教师:杨超珍2010年 12 月 24 日机械手的发展及应用前言机械工业是国民的装备部,是为国民经济提供装备和为人民生提供耐用消费品的产业。
机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的要标志。
因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。
生产水平及科学技术的不断进步与发展带动了整个机械工业的快速发展。
现代工业中,生产过程的机械化,自动化已成为突出的主题。
然而在机械工业中,加工、装配等生产是不连续的。
单靠人力将这些不连续的生产工序接起来,不仅费时而且效率不高。
同时人的劳动强度非常大,有时还会出现失误及伤害。
显然,这严重影响制约了整个生产过程的效率和自动化程度。
机械手的应用很好的解决了这一情况,它不存在重复的偶然失误,也能有效的避免了人身事故。
1.机械手的组成1.1 执行机构机械手主要由执行机构、驱动机构和控制系统三大部分组成。
其组成及相互关系如下图:(1)手部手部安装在手臂的前端。
手臂的内孔装有转动轴,可把动作传给手腕,以转动、伸屈手腕,开闭手指。
机械手手部的机构系模仿人的手指,分为无关节,固定关节和自由关节三种。
手指的数量又可以分为二指、三指和四指等,其中以二指用的最多。
可以根据夹持对象的形状和大小配备多种形状和尺寸的夹头,以适应操作需要。
(2)手臂手臂有无关节和有关节手臂之分本课所做的机械手的手臂采用无关节臂手臂的作用是引导手指准确的抓住工件,并运送到所需要的位置上。
为了使机械手能够正确的工作,手臂的三个自由度都需要精确的定位。
总括机械手的运动离不开直线移动和转动二种,因此,它采用的执行机构主要是直线油缸、摆动油缸、电液脉冲马达、伺服油马达、直流伺服马达和步进马达等。
文献综述机械设计制造及其自动化自由曲面研抛微小机器人设计1、国外机器人的发展现状:自从20世纪60年代机器人在美国诞生以来,世界各发达国家竞相竞争这个象征机电一体化最高成就领域的领先地位。
日本在1967年由川崎重工业公司从美Unimation公司引进了机器人和机器人技术,建立起生产车间,并于1968年试制出第一台川崎的“尤尼曼特”机器人,从那时起,日本有了自己的机器人技术,并开始向这个高技术领域的制高点进攻。
80年代中期, 日本一跃成为“机器人王国”,其机器人的产量和安装的台数在国际上跃居首位[1]。
1961年,美国Consolidated Control Corp和AMF公司联合制造了第一台实用的示教再现型工业机器人,迄今为止,世界上对工业机器人的研究已经经历了四十余年的历程,日本、美国、法国、德国的机器人产业已日趋成熟和完善[2]。
1.11吸盘式机器人研究方面的成果美国密歇根州立大学研制了两种双足结构的小型爬壁机器人,均采用真空吸附方式[3]。
1997美国西雅图的Henry R Seem ann由波音公司的资助研制出一种真空吸附履带式爬壁机器人“Auto Crawler”。
机器人两条履带上各装有数个微小吸附室,随着履带的移动,吸附室连续地形成真空腔而使得履带贴紧壁面行走[4]。
2006年,Carnegie Mellon University基于壁虎爬行的原理研究制造一种爬壁机器人,它可以完成检查、监督、探测、和清洗等特定工作[5]。
1966年,日本大阪府立大学工学部的西亮讲师成功研制了利用风扇进气侧低压作用作为吸附力的垂直移动机器人的原理样机,并且于1975年制作了以实用化为目标的第二号样机,采用单吸盘结构,这也是世界上出现最早的爬壁机器人。
日本东京工业大学制做了一种爬壁机器人“NINJA”,可以在不同表面(地面、墙壁、桌面)上爬行并且具有较高的静载荷能力。
脚步为三自由度并联机构,安装了真空吸盘,用来吸附在工作表面。
机器人智能控制系统的设计1. 引言近年来,随着科技的不断发展,机器人在各个领域的应用日益广泛。
机器人智能控制系统作为其核心技术之一,对机器人的性能和功能发挥起着至关重要的作用。
本文将讨论机器人智能控制系统的设计。
2. 机器人智能控制系统概述机器人智能控制系统是机器人的大脑和中枢神经系统,负责控制机器人的运动、感知和决策等功能。
智能控制系统一般由硬件和软件两部分组成。
硬件部分包括传感器、执行器和嵌入式计算单元等;软件部分则以算法和程序为基础,通过数据处理和决策实现对机器人的控制。
3. 感知与定位机器人智能控制系统首先需要对周围环境进行感知和定位。
感知包括对环境中的物体、声音、图像等信息进行采集和处理。
定位则是将机器人自身的位置和方向信息进行确定。
常用的感知和定位技术包括激光雷达、相机图像处理、超声波等。
4. 运动控制运动控制是机器人智能控制系统的核心部分。
机器人的运动控制具体包括路径规划、动力学建模和运动规划等。
路径规划是根据目标位置和环境限制确定机器人的运动路径;动力学建模则是为了对机器人的力学特性进行建模和分析;运动规划则是根据路径规划和动力学建模结果,计算机器人的轨迹和速度。
5. 决策与规划机器人智能控制系统需要具备一定的决策和规划能力。
决策是机器人根据感知信息和预设目标,通过算法和模型进行推理和判断,从而做出相应的行为选择。
规划则是根据决策的结果,制定运动和任务执行的策略。
决策与规划涉及到机器人的人工智能和机器学习等技术,以提高机器人在复杂环境下的自主性和适应能力。
6. 交互与通信机器人智能控制系统还需要具备交互和通信的能力。
机器人与人类之间的交互包括语音、图像和姿态等多种形式。
机器人需要能够理解和产生自然语言,实现与用户的沟通和指令传达。
同时,机器人还需要具备与外部环境和其他设备进行通信的能力,以接收和发送数据信息。
7. 优化与改进机器人智能控制系统设计过程中需要进行不断的优化和改进。
通过对系统的监控和反馈机制,可以识别和修正系统中的问题和缺陷。
一、前言 1.课题研究的意义,国外研究现状和发展趋势 1.1课题研究的意义 随着机器人在工业装配线的应用越来越广泛,工业环境对其控制系统的要求也越来越高,所以开放式机器人控制系统的设计具有工程实际意义。 课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。 在机械工业中,应用机械手的意义可以概括如下: ①以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ②以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 ③可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产 随着机器人技术的发展,机器人应用领域的不断扩大,对机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到机器人控制系统的实时操作中,是一项富有挑战性的研究工作。而具有开放式结构的模块化、标准化机器人,其控制系统的研究无疑对提高机器人性能和自主能力,推动机器人技术的发展具有重大意义。 1.2国外研究现状和发展趋势 随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向。近几年,日本、美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构、网络功能的机器人控制器。我国863计划智能机器人主题也已对这方面的研究立项。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发一个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC良好的开放性、安全性和联网性,标准的实时多任务操作系统,标准的总线结构,标准接口等,打破现有机器人控制结构封闭的局面,开发结构开放性、功能模块化的标准化机器人控制器是完全可行的。
新型的机器人控制器应有以下特色:
(1)开放式系统结构 采用开放式软件、硬件结构,可以根据需要方便的扩充功能,使其适用不同类型机器人或机器人化自动生产线。 (2)合理的模块化设计 对硬件来说,根据系统耍求和电气特性,按模块化设计,这不仅方便安装和维护,且提高了系统的可靠性,系统结构也更为紧凑。 (3)有效的任务划分 不同的子任务由不同的功能模块实现,以利于修改、添加、配置功能。 (4)实时性、多任务要求 机器人控制器必须能在确泣的时间完成对外部中断的处理,并且珂以使多个任务同时进行。 (5)网络通讯功能 利用网络通讯的功能,以便于实现资源共享或多台机器人协同工作。 (6)形象直观的人机接口 另外,机器人控制器中,运动控制板是必不可少的。由于机器人性能的不同,对运动控制板的要求也不同。美国De1taTau公司推出的PMAC(Programinable Multi-axies Controller)在国外引起重视。PMAC是一种功能强大的运动控制器,它全面地开发了DSP技术的强大功能,为用户提供了很强的功能和很大的灵活性。借助于Motorola公司的DSP56001数字信号处理器,PMAC可以同时操纵1-8轴,比起其他运动控制板來说,有很多可取之处。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发-个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC良好的开放性、安全性和联网性,标准的实时多任务操作系统,标准的总线结构,标准接口等,打破现有机器人控制器结构封闭的局面,开发结构开放性、功能模块化的标准化机器人控制器是完全可行的。 1.3目前机器人控制器存在的问题 随着现代科学技术的飞速发展和社会进步,对机器人的性能提出更高的要求。智能机器人技术的研究已成为机器人领域的主要发展方向,如各种精密装配机器人,力/位置混合控制机器人,多肢体协调控制系统以及先进制造系统中的机器人的研究等。相应的,对机器人控制器的性能也提出了更高的要求。 但是,机器人自诞生以来,特别是工业机器人所采用的控制器基本上都是开发者基于自己的独立结构进行开发的,采用专用计算机、专用机器人语言、专用操作系统、专用微处理器。这样的机器人控制器已不能满足现代工业发展的要求。 从前面提到的两类机器人控制器来看,串行处理结构控制器的结构封闭,功能单一,且计算能力差,难以保证实时控制要求,所以目前绝大多数商用机器人都是采用单轴PID控制,难以满足机器人控制的高速、高精度的要求。虽然分布式结构在一定层次上是开放的,可以根据需要增加更多的处理器,以满足传感器处理和通讯的需要,但它只是在有限围开放。并行处理结构控制器虽然能从计算速度上有了很大突破,能保证实时控制的需要,但我们必须看到还存在许多问题。目前的并行处理控制器研究一般集中于机器人运动学、动力学模型的并行处理方面,基于并行算法和多处理器结构的映射特征来设计,即通过分解给定任务,得到若干子任务,列山数据相关流图,实现各子任务在对应处理器上的并行处理。由于并行算法讯、同步等在特点,如程序设计不当则易出现锁死与通讯堵塞等现象。 综合起来,现有机器人控制器存在很多问题,如:(1)开放性差(2)软件独立性差(3)容错性差(4)扩展性差(5)缺少网络功能
2.课题的研究目标、容和拟解决的关键问题 2.1课题研究的目标、容 本设计通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的数控机床上下料机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。 本课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。主要的研究容是对SCARA机器人控制系统的软硬件选型和实现不同位置间运动,包括上下料的控制程序的研究。 2.2拟解决的关键问题 1、确定本课题研究的机器人控制系统的总体结构; 2、对应确定的系统结构,选用机器人控制系统的硬件结构; 3、设计运行机器人控制系统的软件部分; 4、控制系统的电路图设计; 二、设计方案的确定 1.研究路线、方法和拟使用的方法 (1)机器人控制系统的总体结构 其中,机器人的关节均选用私服电机驱动,光电码盘用来控制大臂和小臂的转动量,极限开关用来控制升降轴的上下移动量。运动控制卡用来控制机械手关节的转动和移动,实现定位,总体结构如图2所示。
(2)控制系统的硬件结构 通过小组初步讨论决定控制计算机使用研华的主机,运动控制卡选用ADT(众为兴),电机选用伺服电机。 (3)控制系统的软件部分 主要采用VC进行编程,构建一个控制系统平台,在程序中给定坐标后,实现机械手从一点移动到另一点进行上下料的搬运工作。之所以使用VC,一方面,ADT的运动控制卡支持VC进行编程,另一方面,使用VC进行编程比较灵活,易于改进和变化。 (4)电路图部分 根据所选的硬件设备,使用Protel进行绘制。 三、作者已进行的准备及资料收集情况 在设计之前,翻阅了多篇关于机器人方面的书籍。对于控制系统的发展及其在机器人上的应用都有了相关的了解,这为建立机器人控制系统的模型做了一些前期准备工作。在此期间,还自学Protel和Solidworks等软件,为控制系统的电路设计和程序设计做好了准备。还借了《单片机基础》、《48小时精通Solidworks2014》、《工业机器人》等书籍便于今后设计过程翻阅参考。 四、阶段性计划及预期研究成果 1.阶段性计划 第1周:阅读相关文献(中文≥10篇,英文≥1篇),提交文献目录及摘要。 第2周:翻译有关中英文文献,完成文献综述、外文翻译,提交外文翻译、文献综述。 第3~6周:控制系统总体设计,提交设计结果。 第7~11周:硬件元器件的选型、I/O口接线图,提交设计结果 第,12~14周:软件编程,装配图。 第15周:工程图绘制,工程图。 第16周撰写毕业设计说明书,提交论文,准备答辩。 2.预期的研究成果 (1)通过该课题的完成,能让自己对控制系统的开发设计及应用有全面的了解,增强对控制系统的设计能力。
(2)通过该课题的完成,综合考虑无负载条件和有负载条件下的工况要求,通过减少扰动误差来提高系统精度。 五、参考文献 1. 文波,白宁,段智敏编著,工业机器人. 东北大学, 2007.12. 2. 王承义著, 机械手及其应用.机械工业, 1981(TP241/2). 3. ()尤列维奇著, 新时代,机器人和机械手控制系统. 1985(TP24/1). 4.机械结构《工业机械手》编写组编,工业机械手.上册, 科学技术, 1978( TP241/1:1) 5.王淑英.电气控制与PLC的应用. 机械工业,2007. 6.奇志,周亚丽编著. 机器人学简明教程. 电子科技大学,2013.04(TP242/103) 7. Saeed B. Niku著. 机器人学导论:分析、控制及应用:analysis, control, applications (美). 电子工业, 2013(TP24/36). 8. 布鲁诺·西西利亚诺, (美) 欧沙玛·哈提卜编辑. 机器人手册 (意). 机械工业,2013 (TP242-62/1)
9.金广业编译.工业机器人与控制.东北大学,1991.3