移动通信中的噪声和干扰(格式整齐)
- 格式:ppt
- 大小:1.59 MB
- 文档页数:65
第3章干扰和噪声3.1 概述外部噪声和干扰是使通信性能变坏的重要因素。
接收机能否正常工作,不仅取决于接收机输入信号的大小,而且取决于噪声和干扰的大小。
比如说,在接收机灵敏度很高的情况下,当外部噪声和干扰远高于接收机的固有噪声时,接收机的实际灵敏度就会大大降低。
因此,研究各种干扰和外部噪声,对移动通信系统的设计工作具有十分重要的意义。
外部噪声分自然噪声和人为噪声。
自然噪声主要是天电噪声、宇宙噪声和太阳噪声;人为噪声是各种电气设备所产生的噪声。
天电噪声、宇宙噪声和太阳噪声一般比接收机的固有噪声低得多,故可以忽略不计。
通常,仅需考虑人为噪声。
在移动通信环境中,基地台和移动台的接收机应具备抗干扰能力,即能在其它通信系统所产生的许多较强的干扰信号中检出可能是较弱的有用信号。
或者说,基地台在接收远距离移动台的有用信号时,还会受到较近的其它基地台的干扰及本系统中的另外几个移动台的干扰,因此对移动通信的干扰的限制更为严格,对其接收机、发射机的抗干扰特性要求更高。
3.2噪声移动通信的环境噪声大致分为:1.自然噪声大气噪声、银河噪声、太阳噪声2.人为噪声汽车或其他发动机点火系统噪声,通信电子干扰,工业、科研、家用电气设备干扰,电力线干扰。
人为噪声多属于冲击性噪声,大量噪声混一起还可能形成连续噪声或连续性噪声叠加冲击性噪声。
由频谱分析结果可知,这种噪声的频谱比较宽,且强度随频率的升高而降低。
根据美国国际电报电话公司(A T&T)提供的数据,环境噪声对移动通信的影响如图3-1所示。
图中A是市区人为噪卢;B是郊区人为噪声;C是典型接收机热噪声。
该曲线适合于工业化国家,而对我国目前工业化水平和汽车数量而言,人为噪声强度要略低一些。
从图3—1可见,人为噪声对移动通信的影响必须予以考虑,而自然噪声的影响则可忽略。
图3-1 认为噪声曲线对陆地移动通信来说,最主要的人为噪声是汽车点火系统的火花噪声,为了抑制这种噪声的影响可以采取必要的屏蔽和滤波措施,在接收机里采用噪声限制器和噪声熄火器也是行之有效的方法。
G SM常见的干扰一、概述GSM常见的干扰在GSM系统中,为提高系统容量,必须对频率进行复用。
频率复用就是指同一频率被相距足够远的几个小区同时使用.同频复用小区之间的距离就叫复用距离。
复用距离与小区半径之比称作同频干扰因子。
对于一定的频率资源,频率复用越紧密,网络容量越大,复用距离越小,干扰就越大。
上述频率复用引起的干扰是网内干扰(或叫系统内干扰),除此之外,GSM网络还可能受到自身硬件设备所产生的干扰和来自其它系统的网外干扰。
干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞均有显著影响。
如何降低或消除干扰是网络规划、优化的重要任务二、网络干扰产生的现象2。
1、当网络存在较大干扰时,手机用户经常会感觉到以下现象主被叫失败,主叫听到“嘟、嘟、嘟”后就掉线(不同的手机提示音可能不相同)。
通话过程中经常有断续、杂音、静音,甚至掉话。
2。
2、网络存在干扰时,从话统上看,会有以下现象上行干扰将体现在干扰带话统中.要结合干扰带门限设置和具体使用场景,例如边际网频率计划宽松,频点复用度不高,若话统中出现2级,就有可能存在干扰;而对于市区频率复用度大,若话统中出现4~5级,就要重点考虑是否有干扰存在。
SDCCH、TCH指配失败次数多。
掉话次数多或掉话率高。
切换成功率低。
接收电平/质量性能测量中出现高电平、低质量统计值比例高。
2。
3、路测会发现切换失败次数多。
高电平,低质量。
三、 GSM干扰源分类我们一般将干扰大致分为三类:硬件设备导致的干扰,网内干扰,网外干扰。
3。
1、硬件故障硬件的问题主要可以分为两类:一个是器件的老化导致大功率输出时异常频谱出现;另一个是天馈器件产生互调信号。
3。
1。
1、故障TRX故障:如果TRX因生产原因或在使用过程中性能下降,可能会导致TRX放大电路自激,产生干扰。
CDU或分路器故障:CDU中的分路器和分路器模块中使用了有源放大器,发生故障时,也容易导致自激。
3。
1。
2、互调干扰天线老化、跳线接头氧化、或连接故障等导致互调产生,导致小区高干扰.天线输入接头的清洁程度,机械性损伤,或者多次拆装造成内部的镀银层损坏和遗留在接头内的金属屑;天线接头安装不紧密或密封不良;密封在保护罩内部天线阵子被腐蚀;天线输入接头到天线阵子的馈电部分被腐蚀。
通信工程中的噪声与干扰分析在当今信息时代,通信工程扮演着至关重要的角色,它让我们能够在全球范围内迅速、准确地传递信息。
然而,在通信过程中,噪声与干扰的存在却常常给信息的传输带来诸多问题。
了解和分析通信工程中的噪声与干扰,对于提高通信质量、保障信息的可靠传输具有重要意义。
一、通信工程中的噪声噪声,简单来说,就是在通信系统中除了有用信号之外的各种随机的、不可预测的信号。
它就像是信号传输道路上的“绊脚石”,会使信号发生失真、误码等问题。
热噪声是通信中常见的一种噪声,它是由电子的热运动引起的。
无论通信设备是否在工作,热噪声始终存在。
在导体中,电子的无规则热运动导致了电流的微小波动,这种波动就形成了热噪声。
热噪声的功率谱密度在很宽的频率范围内是均匀分布的,因此也被称为白噪声。
散粒噪声则主要出现在电子设备的半导体器件中,比如二极管、晶体管等。
当电流通过这些器件时,由于载流子的离散性,电流会出现微小的起伏,从而产生散粒噪声。
还有一种常见的噪声是闪烁噪声,也称为 1/f 噪声。
它的功率谱密度与频率成反比,通常在低频段较为显著。
闪烁噪声的产生机制比较复杂,与半导体器件中的缺陷、杂质等因素有关。
二、通信工程中的干扰干扰与噪声有所不同,干扰通常是指由外部因素引起的、具有一定规律性和可预测性的信号。
同频干扰是指在通信系统中,使用相同频率的多个信号源之间相互干扰。
例如,在移动通信中,如果多个基站使用相同的频率,并且它们的覆盖区域有重叠,那么手机在这些区域就可能接收到多个相同频率的信号,从而导致干扰。
邻频干扰则是由于相邻频段的信号泄漏到有用信号的频段内而产生的干扰。
在频谱资源有限的情况下,相邻频段之间的隔离不够充分,就容易出现邻频干扰。
互调干扰是当多个不同频率的信号通过非线性器件时,产生的新的频率成分对有用信号造成的干扰。
这种干扰在通信系统中的放大器、混频器等非线性部件中较为常见。
三、噪声与干扰对通信系统的影响噪声和干扰会严重影响通信系统的性能。