一种新型风力发电机的设计
- 格式:pdf
- 大小:421.97 KB
- 文档页数:6
探讨无刷双馈风力发电机的设计分析与控制无刷双馈风力发电机(Brushless Double-fed Wind Power Generator,BDWG)由于其具有高效、稳定、可靠的特点,在风电发电产业的快速发展中得到了广泛应用。
其核心部件是无刷双馈电机(Brushless Double-fed Induction Machine,BDFIM),由于其内外转子之间通过转子侧电容连接,使其具有一定的电磁转矩特性。
因此,在BDWG中基于实时控制的电压源逆变器的功率控制策略中,可以通过控制转子的电压和电流使得BDFIM适应风机不同的转速变化(也即风速的变化)现象,从而在风力发电过程中实现良好的功率控制性能。
本文旨在对BDWG的设计原理和控制策略进行分析和探讨,主要从以下几个方面进行讨论。
1. BDWG的设计分析(1)结构和工作原理BDWG由涉及双馈电机转子部分(即有刷子组合,转子侧电容器等)和无刷直流电机(一般用于调节转子电容器电压的空间矢量调制控制)经由转子上的能量转换器进行变换,在输出端带有无功功率控制的PWM逆变器进行功率输出。
BDFIM相较于一般异步电机,其内部转子电流被划分为主磁通和次磁通两个部分,转子上的电容器则通过变压器与电网连接。
在风机转速发生变化时,由于双馈电机的特殊结构,主磁通和次磁通之间会产生一定的漏电感,从而使得转子上的电流产生相应的变化。
(2)参数设计和优化在BDWG的设计上,关键的参数设计主要包括了转子电容器的容量、变压比等。
为了实现风能的最大利用效率,需要在保证性能的前提下尽可能减小转子电容器的容量,同时在变压器的设计上注重其高效、轻便的特性。
以上两者则需要依据技术手段来进行有效的优化设计。
2. BDWG的控制策略(1)转子电压交换控制BDWG的控制策略之一是通过转子侧的能量转换器实现交换控制,从而在转速变化的情况下实现电极磁势的平衡控制。
该控制策略主要由节拍控制和逆变控制两个部分组成,其中节拍控制主要通过时序触发器和计数器实现;逆变控制则主要通过高功率开关管实现,其控制基础是PWM控制。
新能源风力发电智能控制系统的设计与优化随着社会经济的飞速发展,人们对清洁能源的需求越来越迫切。
作为一种环保、可再生的能源,风力发电在近年来得到了越来越广泛的应用。
然而,传统的风力发电系统存在诸多问题,如风场资源的不稳定性、功率输出的不可控性等,这些问题直接影响到风力发电系统的效率和稳定性。
针对这些问题,设计一套智能控制系统来优化风力发电系统的运行至关重要。
一、风力发电系统的原理风力发电系统利用风能驱动风力发电机转动发电,将机械能转化为电能。
风力发电机是核心部件,是通过风轮叶片的受力转动发电机转子以实现电能输出。
而智能控制系统则可以监测风场风速并实时调整叶片的角度、转速等参数,以最大程度地提高风力发电系统的风能利用率。
二、风力发电系统的挑战然而,由于风速的不稳定性和不可控性,传统风力发电系统存在发电效率低下、维护成本高等问题。
而传统的固定式风力发电机难以适应复杂多变的风场环境,因此如何设计一套智能控制系统,以提高风力发电系统的稳定性和效率成为亟待解决的问题。
三、智能控制系统的设计目标针对风力发电系统存在的问题,智能控制系统的设计目标主要包括:提高系统的发电效率、降低系统的维护成本、提高系统对复杂多变风场环境的适应能力。
通过优化设计智能控制系统,可以实现风力发电系统的智能化运行,从而更好地利用风能资源。
四、智能控制系统的关键技术为了实现智能化控制风力发电系统,需要运用现代控制理论与技术,如传感器技术、信号处理技术、信息传输技术等。
传感器技术可以实时采集风场环境变量信息,信号处理技术可以分析处理这些信息,从而实现智能控制系统对风力发电系统的监测与调控。
五、智能控制系统的应用领域智能控制系统在风力发电系统中的应用领域包括:对风场环境变量的实时监测、对风力发电机的转速、叶片角度等参数的实时调整、对发电效率的优化调控等。
通过智能控制系统的运用,可以提高风力发电系统的稳定性和效率,降低维护成本,实现风力发电系统的智能化运行。
风力发电机叶片的设计经济、能源与环境的协调发展是实现国家现代化目标的必要条件。
随着全世界气候变暖与化石能源的不断消耗及其对环境的影响问题,其他能源的开发愈来愈受到重视,如核能、地热能、风能、水能等新能源及生物质能、氢能的二次能源的开发应用也日趋发展起来。
而在这些新兴的能源种类中,核能的核废料处置相当困难,而且其日污染相较火电厂更为严重,同时需要相当周密的监管控制能力以避免其泄露而产生不可估量的破坏,国际上这些例子也是相当多的。
而地热能的开发必将要依赖与高科技,在现今对地热开发利用还不完善的现状下,更是难以做到,而且其开发对地表的影响也相当大。
而风能则作为太阳能的转换形式之一,它是取之不尽、用之不竭的清洁可再生能源,不产生任何有害气体和废料,不污染环境。
海上,陆地可利用开发的可达2×1010kW,远远高于地球水能的利用,风能的发展潜力庞大,前景广漠。
自20世纪70年代中期以来,世界主要发达国家和一些发展中国家都在加紧对风能的开发和利用,减少二氧化碳等温室气体的排放,保护人类赖以生存的地球。
风力发电技术相对太阳能、生物质等可再生能源技术更为方便,本钱更低,对环境破环更小,作为清洁能源的主要利用方式而飞速发展,且日趋规模化。
一、叶片设计的意义在风力发电机中叶片的设计直接影响风能的转换效率,直接影响其年发电量,是风能利用的重要一环。
本文主如果设计气动性能较好的翼型与叶片并进行气动分析。
而翼型作为叶片的气动外形,直接影响叶片对风能的利用率。
此刻翼型的选择有很多种,FFA-W系列翼型的长处是在设计工况下具有较高的升力系数和升阻比,而且在非设计工况下具有良好的失速性能。
叶片的气动设计方式主要有依据贝茨理论的简化设计方式,葛老渥方式与维尔森方式。
简化的设计方式未考虑涡流损失等因素的影响,一般只用于初步的气动方案的设计进程;葛老渥方式则忽略了叶尖损失与升阻比对叶片性能的影响,同时在非设计状态下的气动性能也并未考虑;维尔森方式则较为全面是现今常常利用的叶片气动外形设计方式。
摘要自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。
迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。
由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。
风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。
而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。
本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。
关键词:风能;风力发电机;叶片;轮毂;齿轮箱AbstractNatural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration.Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times.Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution.Key words: wind power;wind power generators;blade;wheel;Gearbox目录前言 (1)1概述 (2)1.1风力发电机的发展简史 (2)1.2我国现阶段风电技术发展状况 (2)1.3风力的等级选择 (3)1.4风能利用发展中的关键技术问题 (4)2风轮的结构设计 (6)2.1风轮设计中的关键技术—迎风技术 (6)2.2风轮桨叶的结构设计 (7)2.2.1桨叶材料的选择 (7)2.2.2风轮扫掠半径参数计算 (7)2.2.3风轮的半径分配问题 (8)2.3理想风能的利用 (8)2.4桨叶轴的结构设计计算 (11)2.4.1桨叶轴危险截面轴颈的计算 (11)2.4.2桨叶轴各轴段轴颈的结构设计计算 (13)2.5风力发电机组的功率调节问题 (13)2.6风轮桨叶的复位弹簧参数计算 (15)2.7风轮的桨叶轴轴承座的螺栓强度校核计算 (18)2.7.1轴承座上螺栓组的布置问题 (18)2.7.2螺栓的受力分析和参数计算 (19)2.7.3轴承座上螺栓直径的计算 (20)2.7.4轴承座上螺栓疲劳强度校核 (20)3风力发电机的主轴结构设计 (22)3.1主轴的相关参数的选择和计算 (22)3.2轴段的设计与校核 (22)4风力发电机的增速器和发动机的选取 (25)4.1主轴与增速器之间的联轴器 (25)4.1.1联轴器的特点 (25)4.2.2联轴器的型号及主要参数 (25)4.2风力发电机增速器的选择 (25)4.2.1使用范围和特点 (25)4.2.2型号的选择 (26)4.3发电机的选取 (26)4.3.1选择发电机应综合考虑的问题 (26)4.3.2型号的选择 (26)5风力发电机的回转体结构设计和参数计算 (27)5.1初步估计回转体危险轴颈的大小 (27)5.2结构设计 (28)6风力发电机的其他元件的设计 (29)6.1刹车装置的设计 (29)6.2选择滑环 (29)6.3托架的基本结构 (30)7结论 (31)致谢 (32)参考文献 (33)附录A译文 (34)附录B外文文献 (46)前言自然界的风是可以利用的资源,然而,我们现在还没有很好的对它进行开发。
垂直轴风力发电机组的设计与性能研究随着科技的不断发展和环保意识的提高,可再生能源逐渐受到人们的青睐。
风力发电机作为空气能转化成电能的重要装置之一,也在不断的研究和发展。
垂直轴风力发电机组在这个领域扮演着异军突起的角色,其独特的结构和性能优势吸引了国内外众多专家的目光。
一. 垂直轴风力发电机组的设计垂直轴风力发电机组是指风力发电设备中转子轴线竖直,叶片旋转面垂直于地面。
相对于传统的水平轴风力发电机,垂直轴风力发电机拥有更为广阔的应用领域。
其特点主要表现在以下几个方面:1.适应性强垂直轴风力发电机组可以被用于各种地形、各种气候条件下的风能资源利用,产生的振动和噪声较小,适合于城市和农村领域中的小型风电场。
2.高效性能垂直轴风力发电机组因为其结构上的特殊性,使得其在低风速条件下依然能够产生电能,相对于其他风力发电机而言,它的发电效率更高、更稳定。
3.运转安全垂直轴风力发电机组的机组不受方向和大小限制,转矩、重心、惯性力的平衡性也很好,可以在运转条件下减小结构疲劳损伤,从而提高设备的可靠性和使用寿命。
垂直轴风力发电机组的设计包含多个方面,其中重点考虑齿轮减速器、磨损与摩擦、自动转向等问题。
同时,风机的轴承材料、测量模型、风场起伏、大气压力等因素都将直接或间接影响垂轴风机的效率和性能。
二. 垂直轴风力发电机组的性能研究为了更好地发挥垂直轴风力发电机组的性能优势,优化其运行效率,研究者们也对其性能进行了深入探究,主要包括以下研究方向:1. 研究风机的动态特性风机在运行时,会出现转速的波动、能量的损失以及噪声的产生等问题,因此需要研究风机的动态特性。
刘维庆教授团队。
研究了垂直轴风力发电机的动态仿真模型,通过数理模型和实验对其动态特性进行了评估和分析,为进一步优化风机的控制提供了基础。
2. 研究风机的叶片设计近年来,研究者们也在着力改进机组的叶片设计。
研究表明,对于垂直轴风力发电机,叶片的设计对于功率密度和发电效率有着重要影响。
4.1桨叶轴复位斜板水平轴风力机的风轮一般由1~3个叶片组成(本设计中取6片桨叶),它是风力机从风中吸收能量的部件。
叶片采用实心木质叶片。
这种叶片是用优质木材精心加工而成,其表面可以蒙上一层玻璃钢[9]。
在本设计中桨叶材料选用落叶松作为内部骨架,桨叶轴从左至右安装零部件分别为:桨叶轴复位斜板、桨叶轴支撑轴承座、轴套、光轴、轴向固定螺母、垫片、加强钣金、桨叶夹槽。
4.2 托架的基本结构设计托架是放置轮盘、主轴、增速器、发电机以及回转体、滑环和刹车装置等附件的。
它分两层上层为支撑轮盘、主轴、增速器、刹车装置和发电机。
下托板与回转体上端面联接,中间放置滑环和滑轮组件。
滑轮组件是把刹车装置的钢丝绳缠绕在滑轮上改变其方向令钢丝绳与托板不能接触。
5 风力发电机的其他元件的设计5.1 刹车装置的设计由于机械维修以及意外情况的发生需要对风轮机进行刹车,所我们在增速器高速轴侧加装一轮毂并在轮毂外安置刹车装置通过拉拽钢丝绳带动刹车带使风轮转速降低直至停止。
刹车带的复位由弹簧套筒内的弹簧来保证停止刹车后刹车皮与轮毂不在接触。
滑环是在一绝缘圆筒外壁镶嵌三到四个圆环并相应放置电刷电刷的另一端连接发电机的输出电线电缆,在绝缘圆筒内引线一直通到地面的变电所。
6风力发电机在设计中的3个关键技术问题6.1空气动力学问题空气动力设计是风力机设计技术的基础,它主要涉及下列问题:一是风场湍流模型,早期风力机设计采用简化风场模型,对风力机疲劳载荷和极端载荷的确定具有重要意义;另一是动态气动模型。
再一是新系列翼型。
6.2结构动力学问题准确的结构动力学分析是风力机向更大、更柔和结构更优方向发展的关键。
6.3控制技术问题风力机组的控制系统是一个综合性的控制系统。
随着风力机组由恒速定浆距运行发展到变速变浆距运行,控制系统除了对机组进行并网、脱网和调向控制外,还要对机组进行转速和功率的控制,以保证机组安全和跟踪最佳运行功率2.5。
在横向力R的作用下底板链接接合面可能产生滑移,根据底板接合面不滑移条件,并考虑轴向力F∑对预紧力的影响,则各螺栓所需要的预紧力为:查得联结接合面间的摩擦系数f=0.35,查得螺栓的相对连接刚度系数=0.2,取可靠性系数=1.2 ,则各螺栓所需要的预紧力为f*1.2*0.2。
到目前为止,石油、天然气和煤炭等化石能源仍然是世界经济的能源支柱,然而化石资源的有限和对环境的危害性,已经日益地威胁着人类社会的安全和发展。
充足的能源、洁净的环境是经济持续发展的基础条件。
1996年联合国环境署报告指出:“从现在到2020年,全球能源消耗将比现在增长50%到100%,由此造成温室效应的气体排放将会增加45%到90%,从而带来灾难性后果。
”为了制止地球的温暖化,为了人类尽快走出燃煤时代,构建一个稳定的可持续发展的未来社会,各国都在不断追求不排放CO2,不污染环境的清洁能源。
随着经济社会的进步和发展,风力发电以其资源无尽,成本低廉,便于利用,成为目前再生新能源利用中技术最成熟,最具规模开发条件,发展前景看好的发电方式。
风力发电已经开始从“补充能源”向“战略替代能源”的方向转变。
“让风能带动世界,舞动全球”,已经由梦想成为现实可能。
风力发电作为一个新型朝阳产业,目前还存在着众多制约因素,“让风能带动世界,舞动全球”的构想从理念到现实仍有巨大的差距。
虽然自《可再生能源法》颁布实施后,我国风力发电发展出现了快速发展的势头,但仍存在一些制约因素和需要解决的问题。
我国风能产业的发展,仍需以国家支持为引导、市场拉动为主体,重点支持研发,并解决制约我国风电发展的三大瓶颈,即资源评价问题、电网问题和自主创新问题,实施稳步发展的战略,为日后大规模发展打下坚实的基础。
风力发电将会“让风能带动世界,舞动全球”。
一、风力发电机原理风力发电机是将风能转换为机械功的动力机械,又称风车。
广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。
风力发电利用的是自然能源。
相对柴油发电要好的多。
但是若应急来用的话,还是不如柴油发电机。
风力发电可视为备用电源,但是却可以长期利用。
风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。
垂直轴风力发电机增加概述及概述图片垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。
目录垂直轴风力发电机的分类垂直轴风力发电机发展风力发电设备行业的发展新型垂直轴风力发电机(H型)一、技术原理二、功率特性三、结构附:现有垂直轴风力发电电源比较:垂直轴风力发电机的特点现状垂直轴风力发电机的分类垂直轴风力发电机发展风力发电设备行业的发展新型垂直轴风力发电机(H型)一、技术原理二、功率特性三、结构附:现有垂直轴风力发电电源比较:垂直轴风力发电机的特点现状展开编辑本段垂直轴风力发电机的分类尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。
利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。
这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。
达里厄式风轮是法国G.J.M达里厄于19世纪30年代发明的。
在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。
达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。
现在有多种达里厄式风力发电机,如Φ型,Δ型,Y型和H型等。
这些风轮可以设计成单叶片,双叶片,三叶片或者多叶片。
其他形式的垂直轴风力发电机有马格努斯效应风轮,他由自旋的圆柱体组成,当它在气流中工作时,产生的移动力是由于马格努斯效应引起的,其大小与风速成正比。
有的垂直轴风轮使用管道或者漩涡发生器塔,通过套管或者扩压器使水平气流变成垂直气流,以增加速度,偶写还利用太阳能或者燃烧某种燃料,是水平气流变成垂直方向的气流。
风力发电机设计标准
风力发电机是利用风能转换为电能的设备,是清洁能源发电的重要装备之一。
为了确保风力发电机的安全、可靠、高效运行,制定了一系列的设计标准。
本文将对风力发电机设计标准进行详细介绍。
首先,风力发电机的设计应符合国家相关法律法规的要求,包括建设、安全、
环保等方面的规定。
其次,设计应考虑当地的气候条件、地形地貌、风资源等因素,合理确定风力发电机的安装位置和布局。
此外,设计还需考虑风力发电机的风轮叶片、塔架结构、发电机、变流器等关键部件的选型和设计。
在风轮叶片的设计中,需考虑叶片的材料、外形、叶片数目、叶片的倾角等参数,以确保叶片在各种气候条件下都能正常运行。
同时,还要考虑叶片的防腐蚀、抗风载荷、减震等特性,确保叶片的安全可靠。
对于塔架结构的设计,需要考虑塔架的高度、材料、结构形式等因素,以满足
风力发电机的稳定性和安全性要求。
同时,还需要考虑塔架的防腐蚀、抗震、抗风载荷等特性,确保塔架在长期运行中不会出现安全隐患。
发电机和变流器作为风力发电机的核心部件,设计时需要考虑其额定功率、效率、可靠性等指标。
发电机的选型应根据风力发电机的额定功率和转速来确定,同时需考虑发电机的绝缘、冷却、轴承等设计要求。
变流器的选型和设计需考虑其输出功率、效率、电网互连等要求,确保风力发电机的输出电能能够接入电网并符合电网的要求。
综上所述,风力发电机的设计标准涉及到多个方面,包括法律法规的要求、气
候条件、关键部件的设计等。
只有严格按照设计标准进行设计,才能保证风力发电机的安全、可靠、高效运行,为清洁能源发电做出贡献。
阻力型垂直轴风力发电机概述早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。
而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的石磨。
水平轴风力发电机最早出现在欧洲,要比垂直轴风力发电机晚很多年,所以垂直轴风力发电机可以称为所有风力发电机的先驱。
而垂直轴风力发电机根据驱动力的不同又可以分为升力型和阻力型垂直轴风力发电机,本文主要介绍阻力型垂直轴风力发电机。
1.阻力型风力发电机的工作原理阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。
风力作用于上述物体上的空气动力差别也很大。
作用力F可表示为:F=1/2?ρ?S·V??C其中ρ——空气密度,一般取1.25(kg/m?)S——风轮迎风面积V——来流风速C——空气动力系数以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。
对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。
由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。
阻力型风力发电机的种类及其性能1.杯式风速计是最简单的阻力型风力发电机。
fond风轮这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。
这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。
3.savonius(萨沃尼斯)式风轮(简称“s”轮)这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。
垂直轴风力发电机引言垂直轴风力发电机(Vertical Axis Wind Turbine,以下简称VAWT)是一种基于垂直轴旋转的装置,利用风能将其转化为电能的发电设备。
相较于传统的水平轴风力发电机,VAWT 具有一些独特的特点和优势。
本文将介绍垂直轴风力发电机的原理、构造、工作方式以及应用领域。
原理垂直轴风力发电机的原理基于风能转换为机械能,再转换为电能的过程。
当风经过风力发电机的叶片时,风能会转化为旋转动力。
垂直轴风力发电机使用的是垂直方向上旋转的叶片,而不是水平方向上旋转的叶片。
这种设计使得垂直轴风力发电机可以更好地适应风向的变化,并且在低风速下也能发电。
构造一台典型的垂直轴风力发电机由以下主要部件组成: 1. 轴承:支撑垂直轴的旋转部件。
2. 叶片:用来捕捉风能并转化为旋转力的组件。
3. 发电机:将机械能转化为电能的核心部件。
4. 塔架:支撑整个风力发电机系统的结构。
5. 控制系统:用于监测和控制风力发电机的运行状态。
工作方式垂直轴风力发电机的工作方式相对简单。
当风流经过垂直轴上的叶片时,叶片会转动,将风能转化为旋转力。
旋转的轴通过轴承连接到发电机,发电机则将机械能转化为电能。
电能可直接供给附近的电网,或者储存于蓄电池中供以后使用。
控制系统会监测垂直轴风力发电机的运行状态,并根据需要进行调整和优化。
优势相较于水平轴风力发电机,垂直轴风力发电机具有以下优势: 1. 适应性更强:垂直轴风力发电机不受风向变化的限制,可以从360度方向上的风捕捉能量。
2. 更高的效率:垂直轴风力发电机可以在低风速环境下开始工作,并且在高风速环境下不会受到太大损坏。
3. 更低的噪音:由于其设计方式的不同,垂直轴风力发电机产生的噪音相对较低。
4. 更小的空间需求:垂直轴风力发电机的设计使其可以安装在有限的空间内,方便在城市或者高楼大厦等地区使用。
应用领域垂直轴风力发电机在以下领域有着广泛的应用: 1. 城市环境:由于其较小的空间需求和较低的噪音输出,垂直轴风力发电机适合在城市环境中使用,例如在屋顶或高楼大厦上安装。
⼩型垂直轴风⼒发电机设计⼩型垂直轴风⼒发电系统设计[摘要]本⽂介绍了⼀种⼩型垂直轴风⼒发电系统的设计⽅案,本系统主要⾯向沿海⾼层建筑或边远地区⽤户。
经过查阅⼤量⽂献资料结合必要的理论计算,系统采⽤四⽚NACA0012型叶⽚构成H型达⾥厄风⼒机,利⽤永磁直驱同步发电机将机械能转化为电能,经过电⼒电⼦电路对蓄电池进⾏充电。
⽂中对主要⽀撑件和传动件进⾏了必要的结构校核,对所⽤的两个⾓接触球轴承进⾏了使⽤寿命校核。
最后以垂直轴风轮和永磁直驱发电机为主要对象,⽤solidworks软件建⽴三维模型,设计风⼒发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。
[关键字] 垂直轴风⼒发电机达⾥厄 NACA0012翼型Design of the Vertical Axis Wind Turbine[Abstract]This is a design of a kind of vertical axis wind turbine which was used in removed rural area or highrise in seaside city based on related theories. By consulting reference sources and necessary mathematical operation,four NACA0012 air-foil blades were used as the compoments of the H-type Darrieus. The lead-acid bettery was charged by the electrical energy which was generated by a permanent magnet synchronous motor with the operation of power electronic circuits. In this article,some constructures such as the main suppoting parts and the angular contact ball bearings were vertified on the intensity and life. By using of the solidworks2006 software,every important part has a 3D model. We also design a control circuit and bettery breifly.[Keywords] Vertical axis Wind turbine Darrieus NACA0012 air-foil⽬录第⼀章绪论 (1)1.1 国内外风⼒发电的发展现状及其趋势 (1)1.2 ⼩型垂直轴风⼒发电机发展概况 (3)第⼆章风⼒发电基本原理 (4)2.1 风特性 (4)2.1.1 风能量 (4)2.1.2 湍流特性 (5)2.2 风⼒发电系统结构框架 (5)第三章⼩型垂直轴风⼒发电的总体设计 (6)3.1 风⼒机的种类及选择 (6)3.2 垂直轴风⼒机空⽓动⼒学 (8)3.2.1 风能利⽤率 (9)3.2.2 Cp-λ功率特性曲线 (10)3.2.3 贝茨极限 (10)3.2.4 叶尖速⽐ (11)3.2.5 风⼒机的功率及扭矩计算 (11)3.3 叶⽚选型 (12)3.3.1 叶⽚实度 (13)3.3.2 叶⽚形状及材料 (14)第四章电⽓设备及传动设计 (16)4.1 基本原理 (16)4.1.1 法拉第电磁感应原理 (16)4.1.2 相位⾓及功率因数 (16)4.2 转化装置 (17)4.2.1 直驱式永磁同步发电机 (17)4.2.2 电⽓系统电路设计 (17)4.3 传动系统结构设计及计算 (18)4.3.1 传动轴的设计 (18)4.3.2 轴承的计算及选型 (20)第五章刹车装置及其他部件设计 (25)5.1 刹车装置 (25)5.1.1 刹车装置原理 (25)5.1.2 刹车结构受⼒计算 (27)5.2 塔架的设计 (28)5.2.1 ⽀撑件受⼒分析 (28)5.2.2 拉索的受⼒计算 (30)5.3 蓄电池和选型 (31)5.3.1 蓄电池的种类及⼯作基本原理 (31)5.3.2 蓄电池选型 (32)5.4 箱体的设计 (32)5.4.1 箱体的外形设计 (32)5.4.2 箱体的防锈与密封 (33)结论 (34)致谢语 (35)参考⽂献 (36)附录 (37)引⾔当前⽕⼒发电仍然是主要的发电⽅式,其⾼污染⾼能耗正⼀步步吞噬着地球脆弱的⽣态环境,地球急需⼀种环保⾼效的可再⽣能源来替代⽕⼒发电。
小型垂直轴风力发电系统设计【引言】随着能源需求的增加和对可再生能源的认知,风力发电被广泛应用于各种规模的发电项目中。
而小型垂直轴风力发电系统由于其独特的设计特点,被认为是一种适用于城市和低风速地区的理想选择。
本文将设计一个小型垂直轴风力发电系统,以满足家庭或小型建筑物的基本能源需求。
【设计方案】1.机械部分设计:小型垂直轴风力发电系统主要包括垂直轴叶轮、轴承、发电机和塔架。
其中,垂直轴叶轮的设计应考虑到建筑物周围的风向和风速,以及叶轮的形状和大小对风能利用的影响。
轴承的选用应具备耐高速、低摩擦和长寿命等优点。
发电机应选用适合小型风力发电系统的低速稳定类型。
塔架的设计应考虑到高度、稳定性和安装便捷性。
2.控制系统设计:控制系统主要包括风速检测、转速调节和发电机控制。
风速检测可以采用风速传感器,通过实时监测风速来调节转速。
转速控制可以通过变频器进行调节。
发电机控制则需要实现电能的储存和输出。
3.电气系统设计:电气系统主要包括逆变器、电池组和电网连接。
逆变器将直流电转换为交流电,供给家庭或建筑物的用电设备。
电池组的设计可以通过并联并备份的方式来储存风能。
当风力不足或无法满足需求时,可以从电池组中获取电能。
电网连接则通过智能电网技术,将多余的电能输出到电网,从而实现电能的共享和交换。
【关键技术】1.垂直轴叶轮的优化设计:通过测试和模拟分析的方法,选择合适的叶片数目、形状和角度,以提高风能的利用效率。
2.风速检测和转速控制:采用先进的风速传感器和变频器进行风速检测和转速控制,以实现风能的最大化利用。
3.电池组的设计:选择合适的电池类型和配置方式,以实现电能的储存和输出,保证系统的稳定性。
【实施步骤】1.设计垂直轴叶轮:根据风速和建筑物周围环境的特点,设计合适的垂直轴叶轮形状和尺寸。
2.选择轴承和发电机:根据叶轮的重量和转速要求,选择适合的轴承和发电机。
3.设计塔架:根据叶轮的高度和稳定性需求,设计合适的塔架结构。
目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 开发利用风能的动因 (1)1.1.1 经济驱动力 (1)1.1.2 环境驱动力 (2)1.1.3 社会驱动力 (2)1.1.4 技术驱动力 (2)1.2 风力发电的现状 (2)1.2.1 世界风力发电现状 (2)1.2.2 中国风力发电现状[13] (3)1.3风力发电展望 (3)第2章风力发电系统的研究 (5)2.1 风力发电系统 (5)2.1.1 恒速恒频发电系统 (5)2.1.2 变速恒频发电机系统 (6)2.2 变速恒频风力发电系统的总体设计 (9)2.2.1 变速恒频风力发电系统的特点 (9)2.2.2 变速恒频风力发电系统的结构 (9)2.2.3 变速恒频风力发电系统运行控制的总体方案 (19)第3章风力发电机的设计 (25)3.1 概述[11] (25)3.2 风力发电机 (25)3.2.1 风力发电机的结构 (25)3.2.2 风力发电机的原理 (26)3.3 三相异步发电机的电磁设计 (27)3.3.1 三相异步发电机电磁设计的特点 (27)3.3.2 三相异步发电机和三相异步电动机的差异[2] (27)3.3.3 三相异步发电机的电磁设计方案 (28)3.3.4 三相异步发电机电磁计算程序 (29)结束语 (40)参考文献 (41)致谢 (43)风力发电机的设计及风力发电系统的研究摘要:本文对国内外风力发电的发展现状进行了概述。
指出了风力发电机的发展趋势和研究方向。
阐述了三相异步电机的结构与原理。
重点讲述了三相异步发电机的电磁设计方法,并列出了具体的电磁设计过程。
本课题所研究的异步发电机,是目前最理想的风力发电机,前景非常乐观重点介绍了目前风电场中所采用的风力发电机组 ,包括风力机、风力机的功率调节及恒速恒频和变速恒频发电系统。
介绍了风力发电机组的三种典型控制策略的理论依据技术路线。
设计了一个变速恒频风力发电系统。
1 摘要 随着化石能源的过渡消耗以及其对环境带来的严重影响,风能凭借其清洁、可循环利用等诸多优点而越来越受到重视,各国都在积极开发利用本国的风能资源,中国也不例外。本文根据导师布置的毕设课题《小型风力发电机组动力结构设计》中的要求,探索小型风力发电机动力结构的设计。 主要研究结果如下: 1、 根据风力发电机叶片设计的经典理论设计叶片的外形,利用三维建模软件建立叶片的三维实体模型。 2、 根据设计需求,设计出了轴毂、支撑架等零部件,并利用Solidworks软件建立了三维模型。 3、根据设计需求,设计出了变向器装置,并合理地选择了轴承、键等配套零部件。
关键词:小型风力发电机;叶片;轴承。 2
Abstract With the consumption of fossil fuels and their serious impact on the environment, the wind energy with the advantages of clean and can be recycled for use is growing importance to many countries and they are actively developing and utilizing its wind resource, China is no exception. This paper is based on the requirements of The Power Conformation of Small Wind Turbine to explore the method for design and manufacturing process of small wind turbine using of composite materials.
The main results achieved are as following: 1 .According to the classic theory of the wind turbine blade design and using 3D modeling software, the blade's 3-D solid model is established. 2. Based on the requirements of design ,the aim is to design some parts as bushing and brace, even more I should establish he blade's 3-D model using the software of Solidworks. 3. Based on the requirements of design, my aim is to select some parts just like axle-bearing, bond reasonably, and deign the apartment of transformer.
摘要当今对可再生能源的开发利用中,风能由于其突出的优点而成为了研究的热点,风力发电是我国能源和电力可持续发展战略的最现实的选择。
直驱永磁同步风力发电机去掉了风力发电系统中常见的齿轮箱,让风力机直接拖动电机转子运转在低速状态,这样就没有了齿轮箱所带来的噪声、故障率高和维护成本大等问题,从而提高了运行的可靠性。
本文对风力发电机的发展史和风力发电机的种类进行了详细的介绍;根据永磁电机的技术要求,进行电磁方案的初步设计,确定电机的基本结构、永磁体和铁心尺寸及绕组参数;应用ANSOFT软件进行风力发电机的设计并优化永磁发电机的性能指标。
关键词: 风力发电机,永磁电机设计,ANSOFT软件ABSTRACTRecently ,the renewable energy such as wind power have been strongly encouraged because of environmental problem and shortage of traditional energy sources in the near future.Without the typical gearbox in wind-generating system and the disadvantages caused by gearbox,the PMSG(Permanent Magnet Synchronous Generator)is directly driven by the wind turbine at low speed,which makes the operation of the generator more liable.The history of the development of wind turbines and wind turbine types were described in detail; Based on permanent magnet motor of the technical requirements,designer makes the preliminary design of the electromagnetic program, and determines the basic structure of the motor, permanent magnet and the core size and winding parameters; Apply ANSOFT ware to design wind turbine and to optimize performance of permanent magnet generator.KEY WORDS:Wind turbine, permanent magnet motor design, ANSOFT software目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 风力发电机的发展历史概述 (1)1.2 风力发电机的分类 (2)1.2.1直驱式风力发电机 (2)1.2.2双馈式风力发电机 (2)1.3 永磁风力发电机的特点 (3)1.4 本设计开发的风力发电机 (4)第2章永磁风力发电机的设计 (5)2.1发电机结构的选取 (5)2.2 永磁同步发电机电机转子磁路结构 (6)2.2.1切向式转子磁路结构 (6)2.2.2径向式转子磁路结构 (7)2.2.3混合式转子磁路结构 (8)2.2.4轴向式转子磁路结构 (8)2.3 励磁电动势和气隙合成电动势 (9)2.4 交、直轴电枢反应和电枢反应电抗 (12)2.5 固有电压调整率和降低措施 (13)2.6 短路电流倍数的计算 (14)2.7 永磁同步发电机电动势波形 (15)2.8 永磁材料的性能和选用 (16)2.8.1热稳定性 (16)2.8.2磁稳定性 (17)2.8.3化学稳定性 (17)2.8.4时间稳定性 (17)2.8.5永磁材料的选择原则为: (17)2.8.6 主要尺寸的选择 (18)2.8.7 永磁体尺寸与电磁负荷的选择 (19)2.8.8 定子绕组参数 (20)2.9手算算例 (23)第3章运用ansoft软件进行风力发电机的设计 (28)3.1 ansoft软件介绍 (28)3.2 RMXPRT介绍及应用 (28)3.2.1 RMXPRT工作界面 (28)3.2.2RMXPRT的特点 (30)3.3 Maxwell控制板 (31)3.3.1定子设计 (32)3.3.2定子绕组设计 (33)3.3.3转子磁极数据 (34)3.4设计输出 (35)3.5性能曲线 (41)第4章结论 (48)致谢 (49)参考文献 (50)第1章绪论1.1 风力发电机的发展历史概述我国是最早使用风帆船和风车的国家之一,至少在3000年前的商代就出现了帆船,到唐代风帆船已广泛用于江河航运。